Gold vs. Silver Colloidal Nanoparticle Films for Optimized SERS Detection of Propranolol and Electrochemical-SERS Analyses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Colloidal Nanoparticle Syntheses
2.2. Convective Self-Assembly of Nanoparticle Films
2.3. Characterization
2.4. SERS Measurements and Analysis
2.5. EC-SERS Measurements
2.6. DFT Calculations
2.7. Finite-Difference Time-Domain Electromagnetic Simulations
3. Results and Discussion
3.1. Morphology of the Self-Assembled Nanoparticle Films
3.2. SERS of Propranolol on Ag and Au NP Films
3.3. DFT Analysis
3.4. Optical Response Analysis
3.5. SERS Detection on Au NP Films
3.6. Au NP Films as Electrodes for EC-SERS Assays
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Buchberger, W.W. Current Approaches to Trace Analysis of Pharmaceuticals and Personal Care Products in the Environment. J. Chromatogr. A 2011, 1218, 603–618. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Ding, T.; Zhang, M. Analytical Techniques and Challenges for Removal of Pharmaceuticals and Personal Care Products in Water. In Pharmaceuticals and Personal Care Products: Waste Management and Treatment Technology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 239–257. ISBN 978-0-12-816189-0. [Google Scholar]
- Fatta, D.; Achilleos, A.; Nikolaou, A.; Meriç, S. Analytical Methods for Tracing Pharmaceutical Residues in Water and Wastewater. TrAC Trends Anal. Chem. 2007, 26, 515–533. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, X.; Zhao, G.; Shi, Y.; Thuy, N.T.D.; Yang, H. SERS Determination of Trace Phosphate in Aquaculture Water Based on a Rhodamine 6G Molecular Probe Association Reaction. Biosensors 2022, 12, 319. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Hou, X.; Zhen, C.; Wang, A.X. Sub-Part-Per-Billion Level Sensing of Fentanyl Residues from Wastewater Using Portable Surface-Enhanced Raman Scattering Sensing. Biosensors 2021, 11, 370. [Google Scholar] [CrossRef]
- Moldovan, R.; Vereshchagina, E.; Milenko, K.; Iacob, B.-C.; Bodoki, A.E.; Falamas, A.; Tosa, N.; Muntean, C.M.; Farcău, C.; Bodoki, E. Review on Combining Surface-Enhanced Raman Spectroscopy and Electrochemistry for Analytical Applications. Anal. Chim. Acta 2022, 1209, 339250. [Google Scholar] [CrossRef] [PubMed]
- European Commission. European Union Strategic Approach to Pharmaceuticals in the Environment, (n.d.). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52019DC0128&qid=1605854880622. (accessed on 27 March 2023).
- MedlinePlus Trusted Health Information for You. Available online: https://Medlineplus.Gov/Druginfo/Meds/A682607.html. (accessed on 27 March 2023).
- Liu, Y.; Bao, J.; Zhang, L.; Chao, C.; Guo, J.; Cheng, Y.; Zhu, Y.; Xu, G. Ultrasensitive SERS Detection of Propranolol Based on Sandwich Nanostructure of Molecular Imprinting Polymers. Sens. Actuators B Chem. 2018, 255, 110–116. [Google Scholar] [CrossRef]
- Levene, C.; Correa, E.; Blanch, E.W.; Goodacre, R. Enhancing Surface Enhanced Raman Scattering (SERS) Detection of Propranolol with Multiobjective Evolutionary Optimization. Anal. Chem. 2012, 84, 7899–7905. [Google Scholar] [CrossRef]
- Stiufiuc, R.; Iacovita, C.; Stiufiuc, G.; Bodoki, E.; Chis, V.; Lucaciu, C.M. Surface Mediated Chiral Interactions between Cyclodextrins and Propranolol Enantiomers: A SERS and DFT Study. Phys. Chem. Chem. Phys. 2014, 17, 1281–1289. [Google Scholar] [CrossRef]
- Farcaș, A.; Iacoviță, C.; Vințeler, E.; Chiș, V.; Știufiuc, R.; Lucaciu, C.M. The Influence of Molecular Structure Modifications on Vibrational Properties of Some Beta Blockers: A Combined Raman and DFT Study. J. Spectrosc. 2016, 2016, 3137140. [Google Scholar] [CrossRef]
- Stiufiuc, R.; Iacovita, C.; Lucaciu, C.M.; Stiufiuc, G.; Nicoara, R.; Oltean, M.; Chis, V.; Bodoki, E. Adsorption Geometry of Propranolol Enantiomers on Silver Nanoparticles. J. Mol. Struct. 2013, 1031, 201–206. [Google Scholar] [CrossRef]
- Rupérez, A.; Laserna, J.J. Surface-Enhanced Raman Spectrometry of Chiral β-Blocker Drugs on Colloidal Silver. Anal. Chim. Acta 1996, 335, 87–94. [Google Scholar] [CrossRef]
- Tim, B.; Błaszkiewicz, P.; Kotkowiak, M. Recent Advances in Metallic Nanoparticle Assemblies for Surface-Enhanced Spectroscopy. Int. J. Mol. Sci. 2021, 23, 291. [Google Scholar] [CrossRef] [PubMed]
- Culha, M.; Cullum, B.; Lavrik, N.; Klutse, C.K. Surface-Enhanced Raman Scattering as an Emerging Characterization and Detection Technique. J. Nanotechnol. 2012, 2012, 971380. [Google Scholar] [CrossRef]
- Darby, B.L.; Etchegoin, P.G.; Ru, E.C.L. Single-Molecule Surface-Enhanced Raman Spectroscopy with Nanowatt Excitation. Phys. Chem. Chem. Phys. 2014, 16, 23895–23899. [Google Scholar] [CrossRef]
- Maleeva, K.A.; Kaliya, I.E.; Tkach, A.P.; Babaev, A.A.; Baranov, M.A.; Berwick, K.; Perova, T.S.; Baranov, A.V.; Bogdanov, K.V. Formation of Gold Nanoparticle Self-Assembling Films in Various Polymer Matrices for SERS Substrates. Materials 2022, 15, 5197. [Google Scholar] [CrossRef]
- Wen, P.; Yang, F.; Hu, X.; Xu, Y.; Wan, S.; Chen, L. Optimized Design and Preparation of Ag Nanoparticle Multilayer SERS Substrates with Excellent Sensing Performance. Biosensors 2022, 13, 52. [Google Scholar] [CrossRef]
- Arai, N.; Watanabe, S.; Miyahara, M.T. On the Convective Self-Assembly of Colloidal Particles in Nanofluid Based on in Situ Measurements of Interaction Forces. Langmuir 2019, 35, 11533–11541. [Google Scholar] [CrossRef]
- Farcau, C.; Moreira, H.; Viallet, B.; Grisolia, J.; Ciuculescu-Pradines, D.; Amiens, C.; Ressier, L. Monolayered Wires of Gold Colloidal Nanoparticles for High-Sensitivity Strain Sensing. J. Phys. Chem. C 2011, 115, 14494–14499. [Google Scholar] [CrossRef]
- Farcau, C.; Potara, M.; Leordean, C.; Boca, S.; Astilean, S. Reliable Plasmonic Substrates for Bioanalytical SERS Applications Easily Prepared by Convective Assembly of Gold Nanocolloids. Analyst 2012, 138, 546–552. [Google Scholar] [CrossRef]
- Sultangaziyev, A.; Ilyas, A.; Dyussupova, A.; Bukasov, R. Trends in Application of SERS Substrates beyond Ag and Au, and Their Role in Bioanalysis. Biosensors 2022, 12, 967. [Google Scholar] [CrossRef]
- Zeman, E.J.; Schatz, G.C. An Accurate Electromagnetic Theory Study of Surface Enhancement Factors for Silver, Gold, Copper, Lithium, Sodium, Aluminum, Gallium, Indium, Zinc, and Cadmium. J. Phys. Chem. 1987, 91, 634–643. [Google Scholar] [CrossRef]
- Lee, P.C.; Meisel, D. Adsorption and Surface-Enhanced Raman of Dyes on Silver and Gold Sols. J. Phys. Chem. 1982, 86, 3391–3395. [Google Scholar] [CrossRef]
- Chai, J.-D.; Head-Gordon, M. Systematic Optimization of Long-Range Corrected Hybrid Density Functionals. J. Chem. Phys. 2008, 128, 084106. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef]
- Lin, Y.-S.; Li, G.-D.; Mao, S.-P.; Chai, J.-D. Long-Range Corrected Hybrid Density Functionals with Improved Dispersion Corrections. J. Chem. Theory Comput. 2013, 9, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297. [Google Scholar] [CrossRef]
- Neese, F. The ORCA Program System. WIREs Comput. Mol. Sci. 2012, 2, 73–78. [Google Scholar] [CrossRef]
- Neese, F. Software Update: The ORCA Program System, Version 4.0. WIREs Comput. Mol. Sci. 2018, 8, e1327. [Google Scholar] [CrossRef]
- Neese, F.; Wennmohs, F.; Hansen, A.; Becker, U. Efficient, Approximate and Parallel Hartree–Fock and Hybrid DFT Calculations. A ‘Chain-of-Spheres’ Algorithm for the Hartree–Fock Exchange. Chem. Phys. 2009, 356, 98–109. [Google Scholar] [CrossRef]
- Weigend, F. Accurate Coulomb-Fitting Basis Sets for H to Rn. Phys. Chem. Chem. Phys. 2006, 8, 1057–1065. [Google Scholar] [CrossRef]
- Weigend, F.; Baldes, A. Segmented Contracted Basis Sets for One- and Two-Component Dirac–Fock Effective Core Potentials. J. Chem. Phys. 2010, 133, 174102. [Google Scholar] [CrossRef] [PubMed]
- Gražulis, S.; Chateigner, D.; Downs, R.T.; Yokochi, A.F.T.; Quirós, M.; Lutterotti, L.; Manakova, E.; Butkus, J.; Moeck, P.; Le Bail, A. Crystallography Open Database—An Open-Access Collection of Crystal Structures. J. Appl. Cryst. 2009, 42, 726–729. [Google Scholar] [CrossRef] [PubMed]
- Wyckoff, R.W. Cubic Closest Packed, Ccp, Structure. Cryst. Struct. 1963, 1, 7–83. [Google Scholar]
- Brezestean, I.A.; Tosa, N.; Falamas, A.; Cuibus, D.; Muntean, C.M.; Bende, A.; Cozar, B.; Berghian-Grosan, C.; Farcău, C. Silver Nanoparticle Films Obtained by Convective Self-Assembly for Surface-Enhanced Raman Spectroscopy Analyses of the Pesticides Thiabendazole and Endosulfan. Front. Chem. 2022, 10, 915337. [Google Scholar] [CrossRef] [PubMed]
- Lippincott, E.R.; O’Reilly, E.J. Vibrational Spectra and Assignment of Naphthalene and Naphthalene-d-8. J. Chem. Phys. 1955, 23, 238–244. [Google Scholar] [CrossRef]
- Huang, K.; Pan, W.; Zhu, J.F.; Li, J.C.; Gao, N.; Liu, C.; Ji, L.; Yu, E.T.; Kang, J.Y. Asymmetric Light Reflectance from Metal Nanoparticle Arrays on Dielectric Surfaces. Sci. Rep. 2015, 5, 18331. [Google Scholar] [CrossRef] [PubMed]
- Bass, M.; Optical Society of America (Eds.) Handbook of Optics, 2nd ed.; McGraw-Hill: New York, NY, USA, 1995; ISBN 978-0-07-047740-7. [Google Scholar]
- Sarkar, P.; Panda, S.; Maji, B.; Mukhopadhyay, A.K. Comparative Study of Au and Ag Nanoparticle to Improved in Absorption in Plasmonic Solar Cell. In Proceedings of the 2017 Devices for Integrated Circuit (DevIC), Kalyani, India, 23–24 March 2017; pp. 175–179. [Google Scholar]
- Ritcey, A.M.; Borra, E. Magnetically Deformable Liquid Mirrors from Surface Films of Silver Nanoparticles. ChemPhysChem 2010, 11, 981–986. [Google Scholar] [CrossRef]
- Saponjic, Z.V.; Csencsits, R.; Rajh, T.; Dimitrijevic, N.M. Self-Assembly of TOPO-Derivatized Silver Nanoparticles into Multilayered Film. Chem. Mater. 2003, 15, 4521–4526. [Google Scholar] [CrossRef]
- Storhoff, J.J.; Lazarides, A.A.; Mucic, R.C.; Mirkin, C.A.; Letsinger, R.L.; Schatz, G.C. What Controls the Optical Properties of DNA-Linked Gold Nanoparticle Assemblies? J. Am. Chem. Soc. 2000, 122, 4640–4650. [Google Scholar] [CrossRef]
- Wu, D.-Y.; Li, J.-F.; Ren, B.; Tian, Z.-Q. Electrochemical Surface-Enhanced Raman Spectroscopy of Nanostructures. Chem. Soc. Rev. 2008, 37, 1025–1041. [Google Scholar] [CrossRef]
- Subaihi, A.; Almanqur, L.; Muhamadali, H.; AlMasoud, N.; Ellis, D.I.; Trivedi, D.K.; Hollywood, K.A.; Xu, Y.; Goodacre, R. Rapid, Accurate, and Quantitative Detection of Propranolol in Multiple Human Biofluids via Surface-Enhanced Raman Scattering. Anal. Chem. 2016, 88, 10884–10892. [Google Scholar] [CrossRef] [PubMed]
- Boca, S.; Leordean, C.; Astilean, S.; Farcau, C. Chemiresistive/SERS Dual Sensor Based on Densely Packed Gold Nanoparticles. Beilstein J. Nanotechnol. 2015, 6, 2498–2503. [Google Scholar] [CrossRef] [PubMed]
- Farcau, C.; Moreira, H.; Viallet, B.; Grisolia, J.; Ressier, L. Tunable Conductive Nanoparticle Wire Arrays Fabricated by Convective Self-Assembly on Nonpatterned Substrates. ACS Nano 2010, 4, 7275–7282. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muntean, C.M.; Cuibus, D.; Boca, S.; Falamas, A.; Tosa, N.; Brezeştean, I.A.; Bende, A.; Barbu-Tudoran, L.; Moldovan, R.; Bodoki, E.; et al. Gold vs. Silver Colloidal Nanoparticle Films for Optimized SERS Detection of Propranolol and Electrochemical-SERS Analyses. Biosensors 2023, 13, 530. https://doi.org/10.3390/bios13050530
Muntean CM, Cuibus D, Boca S, Falamas A, Tosa N, Brezeştean IA, Bende A, Barbu-Tudoran L, Moldovan R, Bodoki E, et al. Gold vs. Silver Colloidal Nanoparticle Films for Optimized SERS Detection of Propranolol and Electrochemical-SERS Analyses. Biosensors. 2023; 13(5):530. https://doi.org/10.3390/bios13050530
Chicago/Turabian StyleMuntean, Cristina M., Denisa Cuibus, Sanda Boca, Alexandra Falamas, Nicoleta Tosa, Ioana Andreea Brezeştean, Attila Bende, Lucian Barbu-Tudoran, Rebeca Moldovan, Ede Bodoki, and et al. 2023. "Gold vs. Silver Colloidal Nanoparticle Films for Optimized SERS Detection of Propranolol and Electrochemical-SERS Analyses" Biosensors 13, no. 5: 530. https://doi.org/10.3390/bios13050530
APA StyleMuntean, C. M., Cuibus, D., Boca, S., Falamas, A., Tosa, N., Brezeştean, I. A., Bende, A., Barbu-Tudoran, L., Moldovan, R., Bodoki, E., & Farcǎu, C. (2023). Gold vs. Silver Colloidal Nanoparticle Films for Optimized SERS Detection of Propranolol and Electrochemical-SERS Analyses. Biosensors, 13(5), 530. https://doi.org/10.3390/bios13050530