Catalytic Modification of Porous Two-Dimensional Ni-MOFs on Portable Electrochemical Paper-Based Sensors for Glucose and Hydrogen Peroxide Detection
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Material Characterization and Electrochemical Instruments
2.3. Synthesis and Preparation of Ni-HHTP
2.4. Fabrication of Paper-Based Electrochemical Sensors
2.5. Modification of Paper-Based Electrochemical Sensors
3. Results and Discussion
3.1. Material Characterization
3.2. Optimization of Paper-Based Electrochemical Sensor
3.3. Electrochemical Responses of the Sensors to H2O2 and Glu
3.4. Application of Paper-Based Electrochemical Sensors
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ji, W.H.; Zhu, J.Y.; Wu, W.X.; Wang, N.X.; Wang, J.Q.; Wu, J.S.; Wu, Q.; Wang, X.W.; Yu, C.M.; Wei, G.F.; et al. Wearable Sweat Biosensors Refresh Personalized Health/Medical Diagnostics. Research 2021, 2021, 9757126. [Google Scholar] [CrossRef] [PubMed]
- Nyein, H.Y.Y.; Bariya, M.; Kivimäk, L.; Uusitalo, S.; Liaw, T.S.; Jansson, E.; Ahn, C.H.; Hangasky, J.A.; Zhao, J.Q.; Lin, Y.J.; et al. Regional and correlative sweat analysis using high-throughput microfluidic sensing patches toward decoding sweat. Sci. Adv. 2019, 5, 8. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Tang, W.X.; Yin, L.; Sempionatto, J.R.; Moon, J.M.; Teymourian, H.; Wang, J. Touch-Based Stressless Cortisol Sensing. Adv. Mater. 2021, 33, 2008465. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Cui, S.S.; Zhang, S.Y.; Tian, Q.J.; Liu, Y.F.; Zhang, P.; Wang, M.X.; Zhang, J.L.; Li, X.J. Cu-MOF/hemin: A bionic enzyme with excellent dispersity for the determination of hydrogen peroxide released from living cells. Analyst 2021, 19, 5951–5961. [Google Scholar] [CrossRef]
- Stone, J.R.; Yang, S.P. Hydrogen peroxide: A signaling messenger. Antioxid. Redox Signal. 2006, 8, 243–270. [Google Scholar] [CrossRef][Green Version]
- Tian, H.L.; Zhang, M.Z.; Jin, G.X.; Jiang, Y.; Luan, Y. Cu-MOF chemodynamic nanoplatform via modulating glutathione and H2O2 in tumor microenvironment for amplified cancer therapy. J. Colloid. Interface Sci. 2021, 587, 358–366. [Google Scholar] [CrossRef]
- Tong, P.F.; Asif, M.; Ajmal, M.; Aziz, A.; Sun, Y.M. A multicomponent polymer-metal-enzyme system as electrochemical biosensor for H2O2 detection. Front. Chem. 2022, 10, 2296–2646. [Google Scholar] [CrossRef]
- Elias, H.; Vayssié, S. Reactive peroxo compounds generated in situ from hydrogen peroxide: Kinetics and catalytic application in oxidation processes. Peroxide Chem. 2000, 5, 128–138. [Google Scholar]
- Asif, M.; Wang, H.T.; Dong, S.; Aziz, A.; Zhang, G.A.; Xiao, F.; Liu, H.F. Metal oxide intercalated layered double hydroxide nanosphere: With enhanced electrocatalytic activity towards H2O2 for biological applications. Sens. Actuators B Chem. 2017, 239, 243–252. [Google Scholar] [CrossRef]
- Zhao, A.S.; She, J.; Xiao, C.; Xi, J.B.; Xu, Y.; Manoj, D.; Sun, Y.M.; Xiao, F. Green and controllable synthesis of multi-heteroatoms Co-doped graphene fiber as flexible and biocompatible microelectrode for in situ electrochemical detection of biological samples. Sens. Actuators B Chem. 2021, 335, 129683. [Google Scholar] [CrossRef]
- Xiao, F.; Song, J.B.; Gao, H.C.; Zan, X.L.; Xu, R.; Duan, H.W. Coating graphene paper with 2D-assembly of electrocatalytic nanoparticles: A modular approach toward high-performance flexible electrodes. ACS Nano 2012, 6, 100–110. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.T.; Xing, Y.; Song, Y.; Gu, Y.; Yan, X.Y.; Lu, N.N.; Liu, H.; Xu, Z.Q.; Xu, H.X.; Zhang, Z.Q.; et al. AuPt/MOF-graphene: A synergistic catalyst with surprisingly high peroxidase-like activity and its application for H2O2 detection. Anal. Chem. 2019, 16, 10589–10595. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.T.; Zhou, T.; Berliner, A.; Banerjee, P.; Zhou, S.Q. Glucose-mediated assembly of phenylboronic acid modified CdTe/ZnTe/ZnS quantum dots for intracellular glucose probing. Angew. Chem. Int. Ed. 2010, 49, 6554–6558. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.Y.; Chu, Z.K.; Guo, J.C.; Liu, X.; Ma, X.; Guo, J.H. Minimally invasive electrochemical continuous glucose monitoring sensors: Recent progress and perspective. Biosens. Bioelectron. 2023, 225, 115103. [Google Scholar] [CrossRef]
- Adnan; Suheimat, M.; Efron, N.; Edwards, K.; Pritchard, N.; Mathur, A.; Mallen, E.A.H.; Atchison, D.A. Biometry of eyes in type 1 diabetes. Biomed. Opt. Express 2015, 6, 702–715. [Google Scholar] [CrossRef][Green Version]
- Xiao, Y.F.; Sun, H.; Du, J.Z. Sugar-breathing glycopolymersomes for regulating glucose level. J. Am. Chem. Soc. 2017, 139, 7640–7647. [Google Scholar] [CrossRef]
- Shibata, H.; Heo, Y.J.; Okitsu, T.; Matsunaga, Y.; Kawanishi, T.; Takeuchi, S. Injectable hydrogel microbeads for fluorescence-based in vivo continuous glucose monitoring. Proc. Natl. Acad. Sci. USA 2010, 107, 17894–17898. [Google Scholar] [CrossRef][Green Version]
- Fujiwara, T.; Takeda, N. Glucose fluctuation and cardiovascular diseases. Int. Heart J. 2020, 61, 633–635. [Google Scholar] [CrossRef]
- Appleton, S.L.; Seaborn, C.J.; Visvanathan, R.; Hill, C.L.; Gill, T.K.; Taylor, A.W.; Adams, R.J.; Robert, J.; Adams, M. Diabetes and cardiovascular disease outcomes in the metabolically healthy obese phenotype: A cohort study. Diabetes Care 2013, 36, 2388–2394. [Google Scholar] [CrossRef][Green Version]
- Lin, P.H.; Sheu, S.C.; Chen, C.W.; Huang, S.C.; Li, B.R. Wearable hydrogel patch with noninvasive, electrochemical glucose sensor for natural sweat detection. Talanta 2022, 241, 123187. [Google Scholar] [CrossRef]
- Kishnani, V.; Kumari, S.; Gupta, A. A chemometric-assisted colorimetric-based inexpensive paper biosensor for glucose detection. Biosensors 2022, 12, 1008. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.M.; Sun, Z.; Chen, C.B.; Zhang, L.L.; Zhu, S.H. Simultaneous separation and determination of fructose, sorbitol, glucose and sucrose in fruits by HPLC-ELSD. Food Chem. 2014, 145, 784–788. [Google Scholar] [CrossRef] [PubMed]
- Xiong, C.; Zhang, T.F.; Kong, W.Y.; Zhang, Z.X.; Qu, H.; Chen, W.; Wang, Y.B.; Luo, L.N.; Zheng, L. ZIF-67 derived porous Co3O4 hollow nanopolyhedron functionalized solution-gated graphene transistors for simultaneous detection of glucose and uric acid in tears. Biosens. Bioelectron. 2018, 101, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Hou, Y.T.; Zhang, M.D.; Hou, X.C.; Xu, L.; Wang, N.N.; Wang, J.P.; Hang, W. Amperometric cholesterol biosensor based on zinc oxide films on a silver nanowire–graphene oxide modified electrode. Anal. Methods 2016, 8, 1806–1812. [Google Scholar] [CrossRef]
- Ji, W.H.; Tang, X.; Du, W.; Lu, Y.; Wang, N.X.; Wu, Q.; Wei, W.; Liu, J.; Yu, H.D.; Ma, B.; et al. Optical/electrochemical methods for detecting mitochondrial energy metabolism. Chem. Soc. Rev. 2022, 51, 71–127. [Google Scholar] [CrossRef] [PubMed]
- Sempionatto, J.R.; Lasalde-Ramírez, J.A.; Mahato, K.; Wang, J.; Gao, W. Wearable chemical sensors for biomarker discovery in the omics era. Nat. Rev. Chem. 2022, 6, 899–915. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Liu, H.; Chen, W.W.; Ma, B.; Ju, H.X. Device integration of electrochemical biosensors. Nat. Rev. Bioeng. 2023, 1–15. [Google Scholar] [CrossRef]
- Arul, P.; Gowthaman, N.S.K.; John, S.A.; Tominaga, M. Tunable electrochemical synthesis of 3D nucleated microparticles like Cu-BTC MOF-carbon nanotubes composite: Enzyme free ultrasensitive determination of glucose in a complex biological fluid. Electrochim. Acta 2020, 354, 136673. [Google Scholar] [CrossRef]
- Zhao, Y.Y.; Yang, J.; Shan, G.Y.; Liu, Z.Y.; Cui, A.N.; Wang, A.L.; Chen, Y.W.; Liu, Y.C. Photothermal-enhanced tandem enzyme-like activity of Ag2-xCuxS nanoparticles for one-step colorimetric glucose detection in unprocessed human urine. Sens. Actuators B Chem. 2020, 305, 127420. [Google Scholar] [CrossRef]
- Zahed, M.A.; Sharifuzzaman, M.; Yoon, H.; Asaduzzaman, M.; Kim, D.K.; Jeong, S.; Pradhan, G.B.; Shin, Y.D.; Yoon, S.H.; Sharma, S.; et al. A nanoporous carbon-MXene heterostructured nanocomposite-based epidermal patch for real-time biopotentials and sweat glucose monitoring. Adv. Funct. Mater. 2022, 32, 2208344. [Google Scholar] [CrossRef]
- Liu, T.J.; Zhang, X.Y.; Fu, K.; Zhou, N.; Xiong, J.P.; Su, Z.Q. Fabrication of Co3O4/NiCo2O4 nanocomposite for detection of H2O2 and dopamine. Biosensors 2021, 11, 452. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.; Qiao, Y.X.; Zhao, H.T.; Liang, J.; Li, T.S.; Luo, Y.L.; Lu, S.L.; Shi, X.F.; Lu, W.B.; Sun, X.P. Electrochemical non-enzymatic glucose sensors: Recent progress and perspectives. Chem. Commun. 2020, 56, 14553–14569. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H. Ultrathin two-dimensional nanomaterials. ACS Nano 2015, 9, 9451–9469. [Google Scholar] [CrossRef] [PubMed]
- Shu, Y.; Su, T.; Lu, Q.; Shang, Z.J.; Xu, Q.; Hu, X.Y. Highly stretchable wearable electrochemical sensor based on Ni-Co MOF nanosheet-decorated Ag/rGO/PU metal–organic fiber for continuous sweat glucose detection. Anal. Chem. 2021, 93, 16222–16230. [Google Scholar] [CrossRef]
- Li, C.; Zhang, H.; Liu, M.; Lang, F.F.; Pang, J.D.; Bu, X.H. Recent progress in metal-organic frameworks (MOFs) for electrocatalysis. Ind. Chem. Mater. 2023, 1, 9–38. [Google Scholar] [CrossRef]
- Yao, M.S.; Lv, X.J.; Fu, Z.H.; Li, W.H.; Deng, W.H.; Wu, G.D.; Xu, G. Layer-by-layer assembled conductive metal–organic framework nanofilms for room-temperature chemiresistive sensing. Angew. Chem. Int. Ed. 2017, 56, 16510–16514. [Google Scholar] [CrossRef]
- Ko, M.; Mendecki, L.; Eagleton, A.M.; Durbin, C.G.; Stolz, R.M.; Meng, Z.; Mirica, K.A. Employing conductive metal-organic frameworks for voltammetric detection of neurochemicals. J. Am. Chem. Soc. 2020, 142, 11717–11733. [Google Scholar] [CrossRef]
- Li, C.; Zhang, L.L.; Chen, J.Q.; Li, X.L.; Sun, J.W.; Zhu, J.W.; Wang, X.; Fu, Y.S. Recent development and applications of electrical conductive MOFs. Nanoscale 2021, 13, 485–509. [Google Scholar] [CrossRef]
- Chen, H.H.; Xiao, Y.W.; Chen, C.; Yang, J.Y.; Gao, C.; Chen, Y.S.; Wu, J.S.; Shen, Y.; Zhang, W.N.; Li, S.; et al. Conductive MOF-modified separator for mitigating the shuttle effect of lithium-sulfur battery through a filtration method. ACS Appl. Mater. Interfaces 2019, 12, 11459–11465. [Google Scholar] [CrossRef]
- Hmadeh, M.; Lu, Z.; Liu, Z.; Gándara, F.; Furukawa, H.; Wan, S.; Augustyn, V.; Chang, R.; Liao, L.; Zhou, F.; et al. New porous crystals of extended metal-catecholates. Chem. Mater. 2012, 24, 3511–3513. [Google Scholar] [CrossRef]
- Wang, L.C.; Pan, L.Y.; Han, X.; Ha, M.N.; Li, K.R.; Yu, H.; Zhang, Q.H.; Li, Y.G.; Hou, C.Y.; Wang, H.Z. A portable ascorbic acid in sweat analysis system based on highly crystalline conductive nickel-based metal-organic framework (Ni-MOF). J. Colloid. Interface Sci. 2022, 616, 326–337. [Google Scholar] [CrossRef] [PubMed]
- Yi, X.H.; Yu, Z.; Niu, X.H.; Shang, J.; Mao, G.Y.; Yin, T.H.; Yang, H.L.; Xue, W.H.; Dhanapal, P.; Qu, S.X.; et al. Intrinsically stretchable resistive switching memory enabled by combining a liquid metal-based soft electrode and a metal-organic framework insulator. Adv. Electron. Mater. 2019, 5, 1800655. [Google Scholar] [CrossRef]
- Yuan, M.; Liu, A.P.; Zhao, M.; Dong, W.J.; Zhao, T.Y.; Wang, J.J.; Tang, W.H. Bimetallic PdCu nanoparticle decorated three-dimensional graphene hydrogel for non-enzymatic amperometric glucose sensor. Sens. Actuators B Chem. 2014, 190, 707–714. [Google Scholar] [CrossRef]
- Wang, Y.; Qian, Y.J.; Zhang, L.M.; Zhang, Z.H.; Chen, S.W.; Liu, J.F.; He, X.; Tian, Y. Conductive Metal–Organic Framework Microelectrodes Regulated by Conjugated Molecular Wires for Monitoring of Dopamine in the Mouse Brain. J. Am. Chem. Soc. 2023, 4, 2118–2126. [Google Scholar] [CrossRef]
- Martinez, A.W.; Phillips, S.T.; Carrilho, E.; Thomas, S.W., III; Sindi, H.; Whitesides, G.M. Simple telemedicine for developing regions: Camera phones and paper-based microfluidic devices for real-time, off-site diagnosis. Anal. Chem. 2008, 80, 3699–3707. [Google Scholar] [CrossRef][Green Version]
- Martinez, A.W.; Phillips, S.T.; Butte, M.J.; Whitesides, G.M. Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew. Chem. Int. Ed. 2007, 46, 1318–1320. [Google Scholar] [CrossRef][Green Version]
- Yáñez-Sedeño, P.; Campuzano, S.; Pingarrón, J.M. Screen-printed electrodes: Promising paper and wearable transducers for (bio) sensing. Biosensors 2020, 10, 76. [Google Scholar] [CrossRef]
- Mathew, M.; Radhakrishnan, S.; Vaidyanathan, A.; Chakraborty, B.; Rout, C.S. Flexible and wearable electrochemical biosensors based on two-dimensional materials: Recent developments. Anal. Bioanal. Chem. 2021, 413, 727–762. [Google Scholar] [CrossRef]
- Yao, Z.Q.; Coatsworth, P.; Shi, X.W.; Zhi, J.C.; Hu, L.X.; Yan, R.; Güder, F.; Yu, H.D. Paper-based sensors for diagnostics, human activity monitoring, food safety and environmental detection. Sens. Diagn. 2022, 1, 312–342. [Google Scholar] [CrossRef]
- Zhou, J.; Wu, Q.; Chen, X.W.; Qin, X.F.; Zhang, G.B.; Wu, M.R.; Fang, H.X.; Lu, Y.; Yu, H.D.; Li, L.; et al. Two-component ratiometric sensor for Cu2+ detection on paper-based device. Anal. Bioanal. Chem. 2019, 411, 6165–6172. [Google Scholar] [CrossRef]
- Li, M.; Wang, L.C.; Liu, R.; Li, J.M.; Zhang, Q.H.; Shi, G.Y.; Li, Y.G.; Hou, C.Y.; Wang, H.Z. A highly integrated sensing paper for wearable electrochemical sweat analysis. Biosens. Bioelectron. 2021, 174, 112828. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.C.; Du, C.; Zong, L.J.; Guo, X.Y.; Han, Y.F.; Zhang, X.P.; Li, L.; Zhang, C.W.; Ju, Q.; Liu, J.H.; et al. 3D vertical-flow paper-based device for simultaneous detection of multiple cancer biomarkers by fluorescent immunoassay. Sens. Actuators B Chem. 2020, 306, 127239. [Google Scholar] [CrossRef]
- Siraprapa, B.; Nipapan, R.; Nadnudda, R.; Orawon, C.; Vincent, T.R. A copper oxide-ionic liquid/reduced graphene oxide composite sensor enabled by digital dispensing: Non-enzymatic paper-based microfluidic determination of creatinine in human blood serum. Anal. Chim. Acta 2019, 1083, 110–118. [Google Scholar]
- Elmira, R.; Bahram, H. Dendrite gold nanostructures electrodeposited on paper fibers: Application to electrochemical non-enzymatic determination of glucose. Sens. Actuators B Chem. 2020, 304, 127335. [Google Scholar]
- Janmee, N.; Preechakasedkit, P.; Rodthongkum, N.; Chailapakul, O.; Potiyaraj, P.; Ruecha, N. A non-enzymatic disposable electrochemical sensor based on surface-modified screen-printed electrode CuO-IL/rGO nanocomposite for a single-step determination of glucose in human urine and electrolyte drinks. Anal. Methods 2021, 13, 2796–2803. [Google Scholar] [CrossRef]
- Shuang, W.; Wang, Y.; Chen, F.Y.; Wu, Y.J.; Bai, Z.Y.; Yang, L. Engineering the modulation of the active sites and pores of pristine metal–organic frameworks for high-performance sodium-ion storage. Inorg. Chem. Front. 2023, 10, 396–405. [Google Scholar] [CrossRef]
- Li, H.; Guo, C.Y.; Xu, C.L. A highly sensitive non-enzymatic glucose sensor based on bimetallic Cu-Ag superstructures. Biosens. Bioelectron. 2015, 63, 339–346. [Google Scholar] [CrossRef]
- Zhang, L.; Ding, Y.R.; Li, R.R.; Ye, C.; Zhao, G.Y.; Wang, Y. Ni-based metal–organic framework derived Ni@C nanosheets on a Ni foam substrate as a supersensitive non-enzymatic glucose sensor. J. Mater. Chem. B 2017, 5, 5549–5555. [Google Scholar] [CrossRef]
- Tong, S.F.; Xu, Y.H.; Zhang, Z.X.; Song, W.B. Dendritic bimetallic nanostructures supported on self-assembled titanate films for sensor application. J. Phys. Chem. C 2010, 114, 20925–20931. [Google Scholar] [CrossRef]
- Fumanal, M.; Ortega-Guerrero, A.; Jablonka, K.M.; Smit, B.; Tavernelli, I. Charge separation and charge carrier mobility in photocatalytic metal–organic frameworks. Adv. Funct. Mater. 2020, 30, 2003792. [Google Scholar] [CrossRef]
- Ling, W.; Liew, G.G.; Li, Y.; Hao, Y.F.; Pan, H.Z.; Wang, H.J.; Ning, B.A.; Xu, H.; Huang, X. Materials and techniques for implantable nutrient sensing using flexible sensors integrated with metal–organic frameworks. Adv. Mater. 2018, 30, 1800917. [Google Scholar] [CrossRef] [PubMed]
- Zeraati, M.; Alizadeh, V.; Kazemzadeh, P.; Safinejad, M.; Kazemian, H.; Sargazi, G. A new nickel metal organic framework (Ni-MOF) porous nanostructure as a potential novel electrochemical sensor for detecting glucose. J. Porous Mater. 2022, 29, 257–267. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, Y.D.; Ye, B.X. An efficient electrochemical glucose sensor based on porous nickel-based metal organic framework/carbon nanotubes composite (Ni-MOF/CNTs). J. Alloys Compd. 2018, 767, 651–656. [Google Scholar] [CrossRef]
- Liu, X.; Xiang, M.H.; Zhang, X.Y.; Li, Q.; Liu, X.Y.; Zhang, W.J.; Qin, X.; Qu, F.L. An enzyme-free electrochemical H2O2 sensor based on a nickel metal-organic framework nanosheet array. Electroanalysis 2022, 34, 369. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, Y.; Gao, P.; Yin, W.; Yin, M.; Pu, H.; Sun, Q.; Liang, X.; Fa, H.B. Bimetal-organic frameworks MnCo-MOF-74 derived Co/MnO@HC for the construction of a novel enzyme-free glucose sensor. Microchem. J. 2022, 175, 107097. [Google Scholar] [CrossRef]
- Lavín, Á.; Vicente, J.D.; Holgado, M.; Laguna, M.F.; Casquel, R.; Santamaría, B.; Maigler, M.V.; Hernández, A.L.; Ramírez, Y. On the determination of uncertainty and limit of detection in label-free biosensors. Sensors 2018, 18, 2038. [Google Scholar] [CrossRef][Green Version]
- Xue, Z.; Jia, L.; Zhu, Z.Z.; Du, L.; Zhao, Q.H. High-performance non-enzymatic glucose electrochemical sensor constructed by transition nickel modified Ni@Cu-MOF. J. Electroanal. Chem. 2020, 858, 113783. [Google Scholar] [CrossRef]
- Qiao, Y.X.; Liu, Q.; Lu, S.Y.; Chen, G.; Gao, S.Y.; Lu, W.B.; Sun, X.P. High-performance non-enzymatic glucose detection: Using a conductive Ni-MOF as an electrocatalyst. J. Mater. Chem. B 2020, 8, 5411–5415. [Google Scholar] [CrossRef]
- Shu, Y.; Shang, Z.J.; Su, T.; Zhang, S.H.; Lu, Q.; Xu, Q.; Hu, X.Y. A highly flexible Ni–Co MOF nanosheet coated Au/PDMS film based wearable electrochemical sensor for continuous human sweat glucose monitoring. Analyst 2022, 147, 1440–1448. [Google Scholar] [CrossRef]
- Hu, S.S.; Lin, Y.X.; Teng, J.; Wong, W.L.; Qiu, B. In situ deposition of MOF-74(Cu) nanosheet arrays onto carbon cloth to fabricate a sensitive and selective electrocatalytic biosensor and its application for the determination of glucose in human serum. Microchim. Acta 2020, 187, 670. [Google Scholar] [CrossRef]
- Yang, L.Z.; Xu, C.L.; Ye, W.C.; Liu, W.S. An electrochemical sensor for H2O2 based on a new Co-metal-organic framework modified electrode. Sens. Actuators B Chem. 2015, 215, 489–496. [Google Scholar] [CrossRef]
- Xu, Z.D.; Yang, L.Z.; Xu, C.L. Pt@UiO-66 Heterostructures for Highly Selective Detection of Hydrogen Peroxide with an Extended Linear Range. Anal. Chem. 2015, 6, 3438–3444. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Min, M.K.; Liu, Y.; Tang, J.; Tang, W.H. Layered assembly of NiMn-layered double hydroxide on graphene oxide for enhanced non-enzymatic sugars and hydrogen peroxide detection. Sens. Actuators B Chem. 2018, 260, 408–417. [Google Scholar] [CrossRef]
- Ertas, N.A.; Kavak, E.; Salman, F.; Kazici, H.C.; Kivrak, H.; Kivrak, A. Synthesis of ferrocene based naphthoquinones and its application as novel non-enzymatic hydrogen peroxide. Electroanalysis 2020, 32, 1178. [Google Scholar] [CrossRef]
Count | Spiked (μM) | Detected (μM) | Recovery (%) | RSD (%) |
---|---|---|---|---|
1 | 50 | 48.20 | 96.41 | 3.03 |
2 | 53.48 | 106.96 | ||
3 | 56.71 | 113.41 | ||
4 | 100 | 102.40 | 102.40 | 1.91 |
5 | 107.21 | 107.21 | ||
6 | 109.74 | 109.74 |
Count | Spiked (μM) | Detected (μM) | Recovery (%) | RSD (%) |
---|---|---|---|---|
1 | 50 | 53.63 | 107.26 | 4.24 |
2 | 48.90 | 97.80 | ||
3 | 47.22 | 94.45 | ||
4 | 100 | 110.35 | 110.35 | 4.35 |
5 | 102.62 | 102.62 | ||
6 | 99.07 | 99.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Ji, W.; Yin, Y.; Wang, N.; Wu, W.; Zhang, W.; Pei, S.; Liu, T.; Tao, C.; Zheng, B.; et al. Catalytic Modification of Porous Two-Dimensional Ni-MOFs on Portable Electrochemical Paper-Based Sensors for Glucose and Hydrogen Peroxide Detection. Biosensors 2023, 13, 508. https://doi.org/10.3390/bios13050508
Yang Y, Ji W, Yin Y, Wang N, Wu W, Zhang W, Pei S, Liu T, Tao C, Zheng B, et al. Catalytic Modification of Porous Two-Dimensional Ni-MOFs on Portable Electrochemical Paper-Based Sensors for Glucose and Hydrogen Peroxide Detection. Biosensors. 2023; 13(5):508. https://doi.org/10.3390/bios13050508
Chicago/Turabian StyleYang, Ya, Wenhui Ji, Yutao Yin, Nanxiang Wang, Wanxia Wu, Wei Zhang, Siying Pei, Tianwei Liu, Chao Tao, Bing Zheng, and et al. 2023. "Catalytic Modification of Porous Two-Dimensional Ni-MOFs on Portable Electrochemical Paper-Based Sensors for Glucose and Hydrogen Peroxide Detection" Biosensors 13, no. 5: 508. https://doi.org/10.3390/bios13050508
APA StyleYang, Y., Ji, W., Yin, Y., Wang, N., Wu, W., Zhang, W., Pei, S., Liu, T., Tao, C., Zheng, B., Wu, Q., & Li, L. (2023). Catalytic Modification of Porous Two-Dimensional Ni-MOFs on Portable Electrochemical Paper-Based Sensors for Glucose and Hydrogen Peroxide Detection. Biosensors, 13(5), 508. https://doi.org/10.3390/bios13050508