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Abstract: Rapid and accurate detection of changes in glucose (Glu) and hydrogen peroxide (H2O2)
concentrations is essential for the predictive diagnosis of diseases. Electrochemical biosensors exhibit-
ing high sensitivity, reliable selectivity, and rapid response provide an advantageous and promis-
ing solution. A porous two-dimensional conductive metal–organic framework (cMOF), Ni-HHTP
(HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene), was prepared by using a one-pot method. Subse-
quently, it was employed to construct enzyme-free paper-based electrochemical sensors by applying
mass-producing screen-printing and inkjet-printing techniques. These sensors effectively determined
Glu and H2O2 concentrations, achieving low limits of detection of 1.30 µM and 2.13 µM, and high
sensitivities of 5573.21 µA µM−1 cm−2 and 179.85 µA µM−1 cm−2, respectively. More importantly,
the Ni-HHTP-based electrochemical sensors showed an ability to analyze real biological samples by
successfully distinguishing human serum from artificial sweat samples. This work provides a new
perspective for the use of cMOFs in the field of enzyme-free electrochemical sensing, highlighting
their potential for future applications in the design and development of new multifunctional and
high-performance flexible electronic sensors.

Keywords: Ni-MOFs; paper-based sensors; electrochemical sensor; non-enzymatic catalysis;
hydrogen peroxide; glucose

1. Introduction

Owing to severe global environmental pollution, aging populations, and increasing
sub-healthy populations, health problems have become a major public concern, making the
early prevention and diagnosis of diseases crucial. To this end, the design and establishment
of highly sensitive, specific, and rapid analysis methods for disease-related biomarkers
are essential. Human body fluids (such as sweat, blood, tears, and saliva) contain a large
amount of biochemical information that can reflect the health status of the human body [1].
For example, sweat or blood sodium and potassium ions reflect the amount of electrolytes in,
or hydration level of, the human body [2]; sweat and blood cortisol can reveal the stress and
mental state of humans [3]. Therefore, the detection of disease-related biomarkers in human
body fluids can provide important references for the diagnosis and prevention of diseases.
Hydrogen peroxide (H2O2) is a key reactive oxygen species that acts as a disease biomarker
and a second messenger to maintain normal cellular function. The normal concentration
of H2O2 in cells ranges from 0.001 to 0.1 µM [4–7]. When H2O2 concentration is high,
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it causes oxidative stress, which usually leads to various diseases, such as Parkinson’s
disease and cancer [8–11]. H2O2 is also one of the products of oxidative enzymes, such as
lactate oxidase; a catalyzing target; and can be used to indirectly detect the concentration of
relevant biomarkers, such as lactate [9,10,12]. Diabetes is a metabolic disease that is mainly
characterized by elevated glucose (Glu) concentrations [13]. The normal concentrations
of Glu in blood and sweat are 4.9–6.9 mM and 0.23–0.38 mM, respectively [14]. When
the concentration of Glu is extremely high, it may cause blindness, weight loss, kidney
disease, neurological disorders, and cardiovascular disease in addition to diabetes [15–19].
Therefore, the accurate detection of H2O2 and Glu in human body fluids is essential for the
diagnosis and prevention of related diseases [20].

Common detection methods for H2O2 and Glu include spectrophotometry, chemilumi-
nescence, titrimetric analysis, colorimetry, and chromatography; however, these methods
generally suffer from low sensitivity, cumbersome operation steps, long process durations,
and high costs, limiting their wide application [21–23]. The recently developed electrochem-
ical method has the advantages of high specificity and sensitivity for real-time monitoring;
it is also inexpensive and portable and involves a simple operation procedure [24,25].
Traditional electrochemical Glu and H2O2 sensors are mainly based on glucose oxidase
(GOX) and horseradish peroxidase (HRP), respectively; these enzymatic electrochemical
sensors are often limited by their susceptibility to external environmental factors, such as
temperature and light [26]. Therefore, in recent years, researchers have begun to focus on
enzyme-free electrochemical sensors owing to their high sensitivity, excellent stability, and
wide linear range [27]. Various biomimetic materials have been developed for the construc-
tion of enzyme-free sensors [28,29]. The design and preparation of H2O2 enzyme-mimetic
materials can not only improve and expand the detection performance and application of
H2O2 sensors but also enhance the detection performance of enzyme-based sensors that
form H2O2 as a product. For example, lactate oxidase and GOX catalyze lactate and Glu,
respectively, to produce H2O2, which can be further decomposed by H2O2 enzyme-mimetic
materials to produce electrons [30]. Similarly, the design and preparation of Glu enzyme-
free sensors are significant and facilitate practical application. Although numerous Glu
enzyme-mimetic materials have been developed, their selectivities are still lower than that
of GOX; therefore, the design and preparation of both enzyme and enzyme-free sensors for
Glu are similarly critical.

Metal–organic frameworks (MOFs) are networks of porous crystals with organic
linkers that act as “struts” and metal clusters as “joints” through coordination bonds or
molecular interactions. These structures impart MOFs with both the flexibility of organic
materials and the rigidity of inorganic materials [31–33]. High surface areas, tunable
pores, and ordered crystal structures make MOFs potential candidates as enzyme-mimetic
materials [31,34]. However, the poor electrical conductivity of MOFs limits their application
in biosensing. One typical solution is to combine MOFs with other active materials, such
as carbon nanotubes or metal particles, to improve their electrochemical properties [35].
Among such active materials, transition metals are of considerable interest because of
their low cost, excellent conductivity, high catalytic activity, and ease of preparation [36].
Conductive MOFs (cMOFs) possess the advantage of having highly porous structures [37],
abundant catalytic active sites [38], and intrinsic electrical conductivity [39], enabling them
to overcome the shortcomings of MOFs and thus become an ideal multifunctional material
for electrochemical sensing applications [40–42]. In general, the catalytic sites of cMOFs are
mainly their metal centers, indicating that the metal centers directly determine the intrinsic
electrocatalytic capacity of cMOFs [43,44].

Whitesides et al. first introduced the concept of paper-based microfluidic chips in 2007
and used optical and electrochemical methods to develop a variety of paper-based sensors
for various applications, such as clinical diagnosis and environmental monitoring [45–49].
Paper-based sensors have many advantages, including the ability to self-actuate, good
three-dimensional fiber structure, suitable biodegradability and biocompatibility, simple
preparation and modification processes, and low cost [50]. For example, an inexpensive
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and highly combined wearable paper-based sensor was designed by Li et al. for the precise
analysis of Glu and lactate in human sweat during exercise [51]; Jiao et al. developed
a novel three-dimensional vertical flow paper device and combined it with a sandwich-
type fluorescence assay for the simultaneous detection of multiple cancer biomarkers [52].
In addition, several researchers have modified the surfaces of paper-based sensors with
nanomaterials or chemical treatments, which substantially improved their physical and
chemical properties [53–55]. Therefore, paper-based sensors have a broad development
potential and good research prospects.

In this study, a nanosized porous two-dimensional MOF, Ni-HHTP (HHTP = 2,3,6,7,10,11-
hexahydroxytriphenylene), was prepared by using a one-pot method. Then, a contamination-
free, flexible, and mass-producible paper-based electrochemical sensor was fabricated by
applying screen and inkjet printing techniques. Finally, Ni-HHTP was modified onto the
surface of the paper-based electrode by drop coating; the resulting device achieved enzyme-
free, rapid, and highly sensitive detection of Glu and H2O2. We verified that Ni-HHTP
had a porous structure and exhibited excellent electrical conductivity and electrocatalytic
properties, using H2O2 and Glu as detection models. Furthermore, the H2O2 and Glu
sensors achieved low limits of detection (LODs; 2.13 µM and 1.30 µM, respectively), high
sensitivity (179.85 µA µM−1 cm−2 and 5573.21 µA µM−1 cm−2, respectively), and excellent
selectivity, which can be used to detect H2O2 in human serum and Glu in artificial sweat.
This study presents a novel role for MOFs in the field of non-enzymatic electrochemical
sensing and highlights their extensive potential applications in the design and development
of new multifunctional and high-performance flexible electronic sensors.

2. Materials and Methods
2.1. Reagents and Materials

Nickel acetate tetrahydrate (Ni(Ac)2·4H2O) was purchased from Sinopharm (Beijing,
China). Moreover, 2,3,6,7,10,11-hexahydroxytriphenyl (HHTP) was acquired from Shanghai
Tengqian Co., Ltd. (Shanghai, China). Potassium ferricyanide (K3Fe[(CN)6]), sodium
hydroxide (NaOH), sodium chloride (NaCl), calcium chloride (CaCl2), potassium chloride
(KCl), potassium ferricyanide (K4[Fe(CN)6]), and hydrogen peroxide (H2O2, 30%) were
obtained from Shanghai Aladdin Biochemical Technology Co., Ltd. (Shanghai, China).
Dopamine, urea, and L-cysteine were acquired from Nanjing Beyotime Biotechnology
Co., Ltd. (Nanjing, China). Ascorbic acid and glucose were purchased from Shanghai
Yuanye Biotechnology Co., Ltd. (Shanghai, China). Lactic acid was purchased from NanJing
WanQing Chemical Glassware Instrument Co., Ltd. (Nanjing, China). Perfluorosulfonic
acid resin (Nafion, 5%) was acquired from Shanghai Adamax Reagent Co., Ltd. (Shanghai,
China). Anhydrous ethanol (EtOH) was acquired from Nanjing Evening Chemical Glass
Instrument Co., Ltd. (Nanjing, China). Conductive carbon pulp and conductive silver pulp
were purchased from Shanghai Julong Electronic Technology Co., Ltd. (Shanghai, China)
Whatman® Grade 5 qualitative filter paper was acquired from GE Healthcare Worldwide
(Shanghai, China). Deionized water (18.2 MΩ cm) was obtained from a Milli-Q water
purification system. Human serum was provided by the Nanjing Maternal and Child
Health Hospital. Artificial sweat was prepared by dissolving 0.05 g urea, 0.25 g NaCl, and
47 µL 0.01 M lactic acid in 50 mL ultrapure water.

2.2. Material Characterization and Electrochemical Instruments

X-ray diffraction (XRD; Bruker, Beijing, China), field-emission scanning electron mi-
croscopy (SEM; Dayu Keyi, Beijing, China), and transmission electron microscopy (TEM;
Tianmei, Beijing, China) were used to characterize the structures of the crystals and the
morphological features of the materials. Fourier transform infrared (FT-IR) spectroscopy
(RuiJie, Tianjin, China), energy-dispersive X-ray spectroscopy (EDS; Mahwah, Nanjing,
China), Brunauer–Emmett–Teller (BET) surface area (Gold APP, Beijing, China) and pore
size distribution data were also used for material characterization. Chronoamperometry
(CA), differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS),
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and cyclic voltammetry (CV) were conducted using the Palmsens4 electrochemical work-
station (RED MATRIX, Guangzhou, China). The Xerox Color Qube 8570 wax printer was
purchased from Xerox (Norwalk, CT, USA).

2.3. Synthesis and Preparation of Ni-HHTP

First, 25 mg of Ni(Ac)2·4H2O was dissolved in 5 mL of ultrapure water in a glass vial,
which was then placed in an ultrasonicator to fully disperse it; 1 mL of the dispersion was
taken as solution A. Similarly, 35 mg of HHTP was dissolved in 30 mL of ultrapure water in
a glass vial, which was then placed in the ultrasonicator to fully disperse the HTTP; 6 mL
of the dispersion was taken as solution B. Then, 1 mL of solution A was mixed with 6 mL
of solution B in a 50 mL glass vial, following which 13 mL of ultrapure water was added to
the mixture. The glass vial was placed in an oven and heated at 85 ◦C for 12 h, resulting in
the formation of black lumps. These were allowed to cool naturally to room temperature,
and then washed three times by employing centrifugation with 1 mL of ultrapure water
and EtOH, and then dried overnight at room temperature under vacuum to obtain the final
black powdered crystals (Scheme 1).
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Scheme 1. Schematic diagram of Ni-HHTP synthesis and detection mechanism of paper-based sensor
based on Ni-HHTP.

2.4. Fabrication of Paper-Based Electrochemical Sensors

A schematic diagram of the Ni-HHTP/screen-printed carbon electrode (SPCE) fabri-
cation process is shown in Figure S1. The detection zone was divided into a hydrophilic
zone in the middle and a hydrophobic zone in the outer layer. The hydrophobic zone
was daubed with wax using the Xerox Color Qube 8570 wax printer and then dried at
120 ◦C for 2.5 min to promote wax penetration into the paper. The SPCE, a three-electrode
system, was then fabricated via screen printing. Carbon paste was applied as the counter
electrode (CE) and the working electrode (WE); after screen printing the WE and CE, the
printed electrode was dried at 60 ◦C for 30 min. Silver paste was then printed and dried at
40 ◦C for 20 min to prepare the reference electrode (RE). The printed paper was cut into
3 cm × 2 cm electrode arrays, and double-sided tape was applied to their backs to prevent
liquid leakage.

2.5. Modification of Paper-Based Electrochemical Sensors

The WE was functionalized with Ni-HHTP using the drop-coating method. First,
1.4 mg of Ni-HHTP was fully dissolved in 200 µL EtOH and 200 µL ultrapure water
to obtain a 3.5 mg/mL Ni-HHTP solution. Second, 20 µL of the 3.5 mg/mL Ni-HHTP
solution and 2 µL of 0.1% Nafion solution were mixed, following which they were vor-
texed for 15 min and sonicated for 30 min. Finally, 2 µL of the manufactured Ni-HHTP
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mixture was applied uniformly on the WE using a microsampler and dried naturally at
room temperature.

3. Results and Discussion
3.1. Material Characterization

The characteristic structures of the crystals were verified by performing powder XRD.
The XRD pattern of Ni-HHTP showed diffraction peaks at 2θ = 4.5◦, 9.3◦, 13.8◦, and 27.0◦,
which corresponded to the (100), (020), (002), and (111) crystal planes, respectively [40]
(Figure 1a). The FT-IR spectra of HHTP and Ni-HHTP are shown in Figure 1b. For HHTP,
peaks were observed at 3300–3600 cm−1, indicating the presence of −OH; these peaks
disappeared in the pattern for Ni-HHTP owing to the coordination of O in the hydroxyl
group to Ni. The peaks at 1632 cm−1 and 1454 cm−1 were ascribed to the asymmetric
vibration of O=C−O, whereas those at 1218 cm−1 and 1308 cm−1 represented C−O. A new
peak appeared at 806 cm−1, indicating the formation of the Ni−O bonds. The BET-specific
surface area was 484.9 m2 g−1. Ni-HHTP exhibited a typical reversible type I adsorption
isotherm (Figure 1c). The average pore size calculated by using the density function
theory (DFT) model was approximately 1.18 nm (Figure 1d), which is consistent with the
crystallographic structure of the material [56].
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Figure 1. Material characterization. (a) XRD patterns of Ni-HHTP; (b) FTIR spectra of Ni-HHTP and
HHTP; (c,d) BET surface area and pore size distribution of Ni-HHTP; (e,f) SEM and TEM images of
Ni-HHTP; (g) EDS layered images of Ni-HHTP; (h–j) EDS elemental mapping images of Ni-HHTP.
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The composite Ni-HHTP material was also characterized by using SEM and TEM to
further explore its structural and morphological features. As revealed in Figure 1e,f, Ni-
HHTP has a relatively regular columnar structure with a small size of approximately 100 nm
in diameter. The EDS layered image of Ni-HHTP further characterized the microporous
structure of the Ni-HHTP surface (Figure 1g), whereas its corresponding elemental mapping
patterns proved the presence of elemental Ni and its complete overlap with the distribution
of elemental C and O (Figure 1h-j). This led us to conclude that the metal Ni and the
organic ligand HHTP underwent reciprocal coordination to form a two-dimensional layered
crystal structure.

3.2. Optimization of Paper-Based Electrochemical Sensor

Among all the transition metals, Ni metal usually exhibits a large number of excellent
properties as an electrochemical sensor, including high sensitivity, low detection limits,
and favorable stability, as well as a wider linear range compared to other metals [32,57,58].
The key ligand, HHTP, greatly contributes to the charge leaving domain owing to its good
orbital overlap with the metal center, which enhances the holistic electrical conductivity of
the material [59,60]. To enhance the detection performance of the sensor, the test conditions
were optimized. First, different excitation potentials of 0.2, 0.3, 0.4, and 0.45 V were
tested using the chronoamperometry (CA) method, and 0.4 V was chosen as the definitive
potential (Figure S2c). Second, the catalytic effect of the MOF and Nafion at different
ratios (3.5 mg/mL MOF: 0.1% Nafion = 1:1, 2:1, 5:1, 10:1, and 25:1) (Figure S2a) were
compared, and the results indicated that the optimal ratio was 10:1. The effect of the
number of activation cycles (40, 60, 80, and 100 cycles) on the sensor was also evaluated,
and the results indicated that the oxidation and reduction currents gradually increased with
an increasing number of activation cycles, and reach the equilibrium state was reached
after 80 activation cycles (Figure S2b). In addition, in order to ensure that the amount
of H2O2 molecules entering the MOF pores and being adsorbed was sufficient, the pre-
enrichment time of the analyte at the electrode was optimized by comparing the current
change before and after different enrichment times, and was found to be 120 s (Figure S2d).
Generally, the solution contains dissolved oxygen, and its presence can sometimes hinder
the redox process. Therefore, the sensor was tested to investigate whether argon protection
by purging the dissolved oxygen in the solution was necessary; the results showed that
argon sealing protection was dispensable to the test system (Figure S2e). Different processes
by which nickel changed during the pre-activation process are shown in Figure S2f. As
shown in Figure S6a, by testing the CA of Ni-HHTP/SPCE at the excitation potential of 0.4,
0.5, 0.6, and 0.7 V, and comparing the slope of the fitting curve. It was concluded that the
best excitation potential of Glu tested by CA is 0.5 V. Because the cyclic voltammetry (CV)
oxidation peak current of Glu was not obvious with the increase of concentration, we used
a more sensitive differential pulse voltammetry (DPV) to detect Glu. It can be seen that the
oxidation peak current rose gradually with growth concentrations (Figure S6b,c).

3.3. Electrochemical Responses of the Sensors to H2O2 and Glu

A two-dimensional porous Ni-HHTP material with high catalytic activity was used to
prepare an electrochemical paper-based sensor for detecting H2O2 and Glu. To increase
the electron transport efficiency and catalytic performance of Ni-HHTP, the sensor was
pre-activated in 0.1 M NaOH for 80 cycles to remove the trapped solvent inside the Ni-
HHTP pore channel. The interconversion between Ni2+ and Ni3+ can be achieved in
alkaline solution [37,40,61]. We also performed a control experiment, which was pe-
formed in PBS solution, and found that it did not produce the typical redox signals of
Ni2+ and Ni3+ (Figure S5). The oxidation peak represents the process of Ni and Ni2+

losing electrons to Ni2+ and Ni3+, respectively, while the reduction peak signifies the
process of Ni2+ and Ni3+ gaining electrons from Ni and Ni2+, respectively (Figure 2a).
In addition, the conductivity of Ni-HHTP was analyzed using EIS (Figure 2e), and it
was found that when the bare electrode was modified with Ni-HHTP, its charge transfer
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resistance (Rct) decreased significantly from 1420 Ω to 660.6 Ω, indicating that Ni-HHTP
possessed good conductivity. The reaction processes on the electrode surface were also
investigated. Next, we investigated the relationship between the current and the scan
rate for the Ni-HHTP/SPCE electrode (Figure S3a,b). The oxidation peaks shifted toward
a more positive potential with increasing scan rate, and a linear relationship (R2 = 0.9912)
was observed between the oxidation peak current (Ipa) and the square root of the scan rate
(V1/2), indicating that the electrochemical reaction of the potassium ferricyanide system in
Ni-HHTP/SPCE was a typical diffusion-controlled process.
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Figure 2. Electrochemical responses of the sensors to H2O2 and Glu. (a) Electron transfer reactions
during Ni-HHTP/SPCE activation. (b) CV of Ni-HHTP/SPCE in H2O, 0.1 M NaOH, 0.1 M NaOH
containing 50 µM H2O2, and 0.1 M NaOH containing 100 µM H2O2. (c) CV of Ni-HHTP/SPCE in
H2O, 0.1 M NaOH, 0.1 M NaOH containing 50 µM Glu, and 0.1 M NaOH containing 100 µM Glu.
(d) CV of Ni-HHTP/SPCE in 100 µM Glu containing 0.1 M NaOH mixed with different concentrations
of H2O2. (e) EIS plot and fitting circuit of Ni-HHTP/SPCE. (f) CV of Ni-HHTP/SPCE at different scan
rates (0.04, 0.05, 0.06, 0.07, 0.08, 0.09 and 0.10 V/s) in 50 µM H2O2 (inset shows the fitted curves of Ipc

versus the V1/2). (g) CV of Ni-HHTP/SPCE at different scan rates (0.02, 0.03, 0.04, 0.05, 0.06, 0.07,
0.08, 0.09 and 0.10 V/s) in 100 µM Glu (insets show the fitted curves of Ipa versus the V1/2). (h) CV
of Ni-HHTP/SPCE in 100 µM H2O2 containing 0.1 M NaOH mixed with different concentrations
of Glu.

We then evaluated the H2O2 and Glu detection performances of the prepared sensors.
Ni-HHTP/SPCE generated weak currents in ultrapure water and NaOH and exhibited
relatively positive potentials. In comparison, the current generated by Ni-HHTP/SPCE
for H2O2 increased significantly, and the peak shifted toward a negative potential. Fur-
thermore, as the H2O2 concentration increased, the current increased further, indicating
that Ni-HHTP was effective in catalyzing H2O2 (Figure 2b). Figure 2f shows the CV of
Ni-HHTP/SPCE in H2O2 at different scan rates. When the scan rate gradually increased,
the current increased as well, and the peak moved toward a relatively negative poten-
tial. Similar to the observation regarding the oxidation peak, a linear relationship was
observed between the reduction peak current (Ipc) and the V1/2 (R2 = 0.9971), indicating
a diffusion-controlled process of H2O2 reduction on the Ni-HHTP/SPCE, which means
that quantitative analysis can be conducted. The CV curves in Figure 2c show that the
current increased gradually with increasing Glu concentration, further indicating that
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Ni-HHTP catalyzed the oxidation of Glu. The reaction mechanism of Glu and H2O2 based
on Ni-HHTP/SPCE is as follows [62–64]:

Ni2+−MOF→ Ni3+−MOF + e− (1)

Ni3+−MOF + OH− + glucose→ Ni2+−MOF + glucolactone + H2O (2)

Ni2+−MOF + H2O2 → Ni3+−MOF + H2O + O2 + e− (3)

The CV curves of Ni-HHTP/SPCE for Glu at different scan rates in Figure 2g exhibited
a similar trend as well. The currents increased gradually as the scan rate increased, and
the peak shifted toward a relatively negative potential. Further analysis revealed a linear
relationship between the Ipa and the V1/2 (R2 = 0.9964), implying that Glu undergone
a diffusion-controlled oxidation reaction on the Ni-HHTP/SPCE. In addition, we fixed the
concentration of Glu and added different concentrations of H2O2 to it, and discovered
that the Ipc increased gradually with increasing H2O2 concentration; however, the Ipa did
not change significantly, indicating that the reduction reaction of H2O2 was catalyzed by
Ni-HHTP (Figure 2d). Similarly, we fixed the H2O2 concentration (Figure 2h). The results
showed that while the Ipa increased gradually with the increasing Glu concentration, its
value did not change significantly; this proved that Glu underwent oxidation, which further
confirmed that the two-dimensional conductive Ni-HHTP composite can be used for the
common detection of dual biomarkers.

The selectivity, stability, and repeatability of the prepared sensors were also eval-
uated. Among these, selectivity is of particular importance for non-enzymatic sensors,
as they are often utilized to detect analytes in complex samples. Different interferents
were selected. The plots in Figure 3a,e show that although Ni-HHTP/SPCE responded
to the interferents, the response currents to H2O2 and Glu were the highest, evidencing
that the prepared sensor possessed good selectivity. Moreover, the sensor exhibited reli-
able stability, as it could detect H2O2 and Glu even after 9 days of storage, with relative
standard deviations (RSDs) of 2.54% for H2O2 and 4.20% for Glu (Figure 3b,f). Addi-
tionally, the RSDs became 3.47% and 3.43% when the tests were repeated (Figure 3c,g).
In order to accurately quantify H2O2, CA was used to measure various H2O2 and Glu
concentrations. As shown in Figure 3d,h, with the increment of concentration, the current
increased gradually. The LOD of H2O2 and Glu reached 2.13 µM and 1.30 µM, respectively,
according to the equation S1. The electrochemical surface area was calculated using the
Randles–Sevcik equation. The result showed that the electrochemical surface area of Ni-
HHTP/SPCE was 3.92 × 10−5 cm−2. The sensitivities of H2O2 and Glu were calculated
as 179.85 µA µM−1 cm−2 and 5573.21 µA µM−1 cm−2 by the quotient between the slope
of the fitting curve and the electrochemical surface area (Figure 3d,h) [65]. Compared
with other MOF-based sensors (Tables S3 and S4), this sensor exhibits relatively higher
sensitivity and lower LOD.

3.4. Application of Paper-Based Electrochemical Sensors

Two different biofluids (human serum and artificial sweat) were employed as ap-
plication models to validate the performance of the Ni-HHTP/SPCE sensor for practical
applications. Since the sensitivity of the Ni-HHTP/SPCE sensor is correlated with the
NaOH concentration, in this trial, 10 µL of 100-fold-diluted human serum and 140 µL of
0.1 M NaOH were mixed well as the sample for the assay, and then added to the sen-
sor chamber dropwise [41]. Note that the addition of the serum may dilute the NaOH
concentration, which may affect the sensitivity of the sensor, as the sensitivity of the
Ni-HHTP/SPCE sensor depends on the NaOH concentration [40]. Therefore, we first estab-
lished a calibration standard curve for the Ni-HHTP/SPCE sensor in human serum using
the standard addition method (Figure S4a), and then determined the recovery of 50 µM and
100 µM H2O2 from the human serum. The recoveries were in the range of 96.41–113.41%,
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with RSDs in the range of 1.91–3.03%, as shown in Table 1. The concentration of Glu in
the artificial sweat was also detected using the standard addition method; the different
concentrations of Glu in artificial sweat were calculated by using the linear relationship
in Figure S4b. The recoveries ranged from 94.45–110.35%, with RSD values of 4.24% to
4.35% (Table 2). These results further confirmed the high reliability of the paper-based
electrochemical sensor.
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Figure 3. Selectivity, stability, repeatability, and linearity of the paper-based electrochemical sensors.
(a) Selectivity of Ni-HHTP/SPCE for H2O2 detection (n = 9). (b) Changes in current generated
by Ni-HHTP/SPCE in 0.1 M NaOH containing 50 µM H2O2 over 9 days. (c) Repeatability of Ni-
HHTP/SPCE sensing in 0.1 M NaOH containing 50 µM H2O2 (n = 5). (d) CA of Ni-HHTP/SPCE
at 0.4 V excitation potential for detection of different concentrations of H2O2 (inset shows the
corresponding calibration curve of current versus H2O2 concentrations ranging from 0 to 5000 µM).
(e) Selectivity of Ni-HHTP/SPCE Glu detection (n = 9). (f) Change in current generated by Ni-
HHTP/SPCE in 0.1 M NaOH containing 100 µM Glu over 9 days. (g) Repeatability of Ni-HHTP/SPCE
in 0.1 M NaOH containing 100 µM Glu (n = 5). (h) CV of Ni-HHTP/SPCE at different concentrations
of Glu. Linear fitting curve of H2O2 concentration vs. current (inset shows the corresponding
calibration curve of current versus Glu concentration).

Table 1. H2O2 spiked recovery in human serum.

Count Spiked (µM) Detected (µM) Recovery (%) RSD (%)

1
50

48.20 96.41
3.032 53.48 106.96

3 56.71 113.41

4
100

102.40 102.40
1.915 107.21 107.21

6 109.74 109.74
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Table 2. Glucose spiked recovery in artificial sweat.

Count Spiked (µM) Detected (µM) Recovery (%) RSD (%)

1
50

53.63 107.26
4.242 48.90 97.80

3 47.22 94.45

4
100

110.35 110.35
4.355 102.62 102.62

6 99.07 99.07

4. Conclusions

We designed and prepared a flexible and stable Ni-HHTP/SPCE sensor that combines
the two-dimensional porosity, high conductivity, and catalytic properties of Ni-HHTP with
the advantages of paper-based sensors via a one-pot method. The sensor detected H2O2
and Glu with high sensitivity and low detection limits. It also exhibited good selectivity
for the target and showed excellent stability and reproducibility in multiple sets of sensors
for up to 9 days. This study presents novel ideas for the use of cMOFs in non-enzymatic
electrochemical sensing and highlights their widespread potential application in the design
and development of new multifunctional and high-performance flexible electronic sensors.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/bios13050508/s1, Figure S1: Schematic diagram of the preparation
of Ni-HHTP/SPCE paper-based electrochemical sensor; Figure S2: Condition optimization; Figure S3:
(a) CV of Ni-HHTP/SPCE in a 1:1:1 mixture of 5 mM K3[Fe(CN)6], 5 mM K4[Fe(CN)6], and 0.1 M KCl
at different scan rates (0.02, 0.04, 0.05, 0.07, and 0.09 V/s). (b) Linear fitting curve of oxidation peak
current versus square root of scan rate. (c) CV of bare SPCE in H2O, 0.1 M NaOH, 0.1 M NaOH
containing 50 µM H2O2, and 0.1 M NaOH containing 100 µM H2O2. (d) CV of bare SPCE in H2O,
0.1 M NaOH, 0.1 M NaOH containing 50 µM Glu, and 0.1 M NaOH containing 100 µM Glu; Figure
S4: (a) CV of Ni-HHTP/SPCE in human serum (140 µL of 0.1 M NaOH with 10 µL of human serum)
containing different concentrations of H2O2 (inset shows the fitted curve of the reduction peak current
versus concentration). (b) CV of Ni-HHTP/SPCE in artificial sweat (140 µL of 0.1 M NaOH with
10 µL of artificial sweat) containing different concentrations of Glu (inset shows the fitted curve of
the oxidation peak current versus concentration); Figure S5: PBS, PBS, and NaOH mixture control
group; Figure S6: (a) The slope of Ni-HHTP/SPCE curve fitted by CA at the excitation potential of
0.4V, 0.5V, 0.6V, and 0.7V. (0.1M NaOH containing 50 µM Glu, 150 µM Glu, and 300 µM Glu). (b) CA
of Ni-HHTP/SPCE at 0.5 V excitation potential for detecting different concentrations of Glu (inset
shows the corresponding calibration curve of current versus Glu concentrations ranging from 0 to
200 µM). (c) DPV of Ni-HHTP/SPCE in 0.1 M NaOH containing 0 µM Glu, 100 µM Glu, 150 µM
Glu, and 300 µM Glu, respectively; Table S1: Detection of blank sample (H2O2 sensor); Table S2:
Detection of blank sample (Glucose sensor); Table S3: Comparison of MOF-based nonenzymatic
glucose sensor; Table S4: Comparison of different nonenzymatic electrochemical H2O2 sensors.
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