Aggregation-Induced Emission Luminogen-Encapsulated Fluorescent Hydrogels Enable Rapid and Sensitive Quantitative Detection of Mercury Ions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Instruments
2.3. Synthesis of TR Hydrogel Probes
2.4. Detection of Hg2+
2.5. Real Sample Detection
3. Results and Discussion
3.1. Characterizations and Fluorescence Response of TR Hydrogels
3.2. Optimizations of the TR Hydrogel Formulation and Detection Conditions
3.3. Analytical Performance of the TR Hydrogel Chemosensor
3.4. Quantitative Detection of Hg2+ in Real-World Water Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shi, M.; Min, X.; Ke, Y.; Lin, Z.; Yang, Z.; Wang, S.; Peng, N.; Yan, X.; Luo, S.; Wu, J.; et al. Recent progress in understanding the mechanism of heavy metals retention by iron (oxyhydr)oxides. Sci. Total Environ. 2021, 752, 141930. [Google Scholar] [CrossRef]
- Bjorklund, G.; Dadar, M.; Mutter, J.; Aaseth, J. The toxicology of mercury: Current research and emerging trends. Environ. Res. 2017, 159, 545–554. [Google Scholar] [CrossRef] [PubMed]
- Crowe, W.; Allsopp, P.J.; Watson, G.E.; Magee, P.J.; Strain, J.J.; Armstrong, D.J.; Ball, E.; McSorley, E.M. Mercury as an environmental stimulus in the development of autoimmunity—A systematic review. Autoimmun. Rev. 2017, 16, 72–80. [Google Scholar] [CrossRef]
- Budnik, L.T.; Casteleyn, L. Mercury pollution in modern times and its socio-medical consequences. Sci. Total Environ. 2019, 654, 720–734. [Google Scholar] [CrossRef]
- Nan, X.; Huyan, Y.; Li, H.; Sun, S.; Xu, Y. Reaction-based fluorescent probes for Hg2+, Cu2+ and Fe3+/Fe2+. Coord. Chem. Rev. 2021, 426, 213580. [Google Scholar] [CrossRef]
- Sun, J.; Zhao, Q.; Wang, S.; Wang, J.; Li, Z.; Liu, X. Chemical behaviours of Arsenium, Chromium, Mercury, Lead, and Strontium in aqueous system. E3S Web Conf. 2021, 290, 01022. [Google Scholar] [CrossRef]
- Ajsuvakova, O.P.; Tinkov, A.A.; Aschner, M.; Rocha, J.B.T.; Michalke, B.; Skalnaya, M.G.; Skalny, A.V.; Butnariu, M.; Dadar, M.; Sarac, I.; et al. Sulfhydryl groups as targets of mercury toxicity. Coord. Chem. Rev. 2020, 417, 213343. [Google Scholar] [CrossRef] [PubMed]
- Misra, T.K.J.P. Bacterial resistances to inorganic mercury salts and organomercurials. Plasmid 1992, 27, 4–16. [Google Scholar] [CrossRef] [PubMed]
- Ynalvez, R.; Gutierrez, J.; Gonzalez-Cantu, H.J.B. Mini-review: Toxicity of mercury as a consequence of enzyme alteration. Biometals 2016, 29, 781–788. [Google Scholar] [CrossRef] [PubMed]
- De Burbure, C.; Buchet, J.P.; Leroyer, A.; Nisse, C.; Haguenoer, J.M.; Mutti, A.; Smerhovsky, Z.; Cikrt, M.; Trzcinka-Ochocka, M.; Razniewska, G.; et al. Renal and neurologic effects of cadmium, lead, mercury, and arsenic in children: Evidence of early effects and multiple interactions at environmental exposure levels. Environ. Health Perspect. 2006, 114, 584–590. [Google Scholar] [CrossRef] [Green Version]
- Tan, S.W.; Meiller, J.C.; Mahaffey, K.R. The endocrine effects of mercury in humans and wildlife. Crit. Rev. Toxicol. 2009, 39, 228–269. [Google Scholar] [CrossRef]
- Kim, K.H.; Kabir, E.; Jahan, S.A. A review on the distribution of Hg in the environment and its human health impacts. J. Hazard. Mater. 2016, 306, 376–385. [Google Scholar] [CrossRef] [PubMed]
- Minet, A.; Manceau, A.; Valada-Mennuni, A.; Brault-Favrou, M.; Churlaud, C.; Fort, J.; Nguyen, T.; Spitz, J.; Bustamante, P.; Lacoue-Labarthe, T. Mercury in the tissues of five cephalopods species: First data on the nervous system. Sci. Total Environ. 2021, 759, 143907. [Google Scholar] [CrossRef]
- Sakamoto, M.; Kakita, A.; Domingo, J.L.; Yamazaki, H.; Oliveira, R.B.; Sarrazin, S.L.; Eto, K.; Murata, K. Stable and episodic/bolus patterns of methylmercury exposure on mercury accumulation and histopathologic alterations in the nervous system. Environ. Res. 2017, 152, 446–453. [Google Scholar] [CrossRef] [PubMed]
- Stejskal, V.; Reynolds, T.; Bjorklund, G. Increased frequency of delayed type hypersensitivity to metals in patients with connective tissue disease. J. Trace Elem. Med. Biol. 2015, 31, 230–236. [Google Scholar] [CrossRef]
- Basu, N.; Abass, K.; Dietz, R.; Krummel, E.; Rautio, A.; Weihe, P. The impact of mercury contamination on human health in the Arctic: A state of the science review. Sci. Total Environ. 2022, 831, 154793. [Google Scholar] [CrossRef] [PubMed]
- Syversen, T.; Kaur, P. The toxicology of mercury and its compounds. J. Trace Elem. Med. Biol. 2012, 26, 215–226. [Google Scholar] [CrossRef]
- Wu, L.; Long, Z.; Liu, L.; Zhou, Q.; Lee, Y.I.; Zheng, C. Microwave-enhanced cold vapor generation for speciation analysis of mercury by atomic fluorescence spectrometry. Talanta 2012, 94, 146–151. [Google Scholar] [CrossRef]
- Doker, S.; Bosgelmez, İ.İ. Rapid extraction and reverse phase-liquid chromatographic separation of mercury(II) and methylmercury in fish samples with inductively coupled plasma mass spectrometric detection applying oxygen addition into plasma. Food Chem. 2015, 184, 147–153. [Google Scholar] [CrossRef]
- Lei, Y.; Zhang, F.; Guan, P.; Guo, P.; Wang, G. Rapid and selective detection of Hg(II) in water using AuNP in situ-modified filter paper by a head-space solid phase extraction Zeeman atomic absorption spectroscopy method. New J. Chem. 2020, 44, 14299–14305. [Google Scholar] [CrossRef]
- Li, Y.; Yan, X.-P.; Dong, L.-M.; Wang, S.-W.; Jiang, Y.; Jiang, D.-Q. Development of an ambient temperature post-column oxidation system for high-performance liquid chromatography on-line coupled with cold vapor atomic fluorescence spectrometry for mercury speciation in seafood. J. Anal. At. Spectrom. 2005, 20, 467–472. [Google Scholar] [CrossRef]
- Ma, C.; Zeng, F.; Wu, G.; Wu, S. A nanoparticle-supported fluorescence resonance energy transfer system formed via layer-by-layer approach as a ratiometric sensor for mercury ions in water. Anal. Chim. Acta. 2012, 734, 69–78. [Google Scholar] [CrossRef]
- Bakir, E.M.; Sayed, A.R.; El-Lateef, H.M.A. Colorimetric detection of Hg2+ ion using fluorescein/thiourea sensor as a receptor in aqueous medium. J. Photochem. Photobiol. A 2022, 422, 113569. [Google Scholar] [CrossRef]
- Bünau, G. J. B. Birks: Photophysics of Aromatic Molecules. Wiley-Interscience, London 1970. 704 Seiten. Preis: 210s. Ber. Bunsenges. Phys. Chem. 1970, 74, 1294–1295. [Google Scholar] [CrossRef]
- Zong, L.; Xie, Y.; Wang, C.; Li, J.R.; Li, Q.; Li, Z. From ACQ to AIE: The suppression of the strong pi-pi interaction of naphthalene diimide derivatives through the adjustment of their flexible chains. Chem. Commun. 2016, 52, 11496–11499. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Xie, Z.; Lam, J.W.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H.S.; Zhan, X.; Liu, Y.; Zhu, D.; et al. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun. 2001, 18, 1740–1741. [Google Scholar] [CrossRef]
- Hong, Y.; Lam, J.W.; Tang, B.Z. Aggregation-induced emission. Chem. Soc. Rev. 2011, 40, 5361–5388. [Google Scholar] [CrossRef] [Green Version]
- Wurthner, F. Aggregation-Induced Emission (AIE): A Historical Perspective. Angew. Chem. Int. Ed. 2020, 59, 14192–14196. [Google Scholar] [CrossRef]
- Alam, P.; Leung, N.L.C.; Zhang, J.; Kwok, R.T.K.; Lam, J.W.Y.; Tang, B.Z. AIE-based luminescence probes for metal ion detection. Coord. Chem. Rev. 2021, 429, 213693. [Google Scholar] [CrossRef]
- Kaur, J.; Singh, P.K.J.S.; Chemical, A.B. An AIEgen–protamine assembly/disassembly based fluorescence turn-on probe for sensing alkaline phosphatase. Sens. Actuators B 2021, 346, 130517. [Google Scholar] [CrossRef]
- Hu, R.; Qin, A.; Tang, B.Z. AIE polymers: Synthesis and applications. Prog. Polym. Sci. 2020, 100, 101176. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, Y.; Xu, R.; Xu, Y.; Dang, D.; Shen, Q.; Meng, L.; Tang, B.Z. Seeing the unseen: AIE luminogens for super-resolution imaging. Coord. Chem. Rev. 2022, 451, 214279. [Google Scholar] [CrossRef]
- Khan, I.M.; Niazi, S.; Khan, M.K.I.; Pasha, I.; Mohsin, A.; Haider, J.; Iqbal, M.W.; Rehman, A.; Yue, L.; Wang, Z. Recent advances and perspectives of aggregation-induced emission as an emerging platform for detection and bioimaging. TrAC Trends Anal. Chem. 2019, 119, 115637. [Google Scholar] [CrossRef]
- Guan, L.; Zeng, Z.; Liu, W.; Wang, T.; Tian, S.; Hu, S.; Tian, D. Aggregation-induced emission (AIE) nanoparticles based on gamma-cyclodextrin and their applications in biomedicine. Carbohydr. Polym. 2022, 298, 120130. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Wang, H.; Wang, W.; Ma, Z.; Chi, Z.; Liu, S. A Cationic Amphiphilic AIE Polymer for Mitochondrial Targeting and Imaging. Pharmaceutics 2022, 15, 103. [Google Scholar] [CrossRef]
- Ishiwari, F.; Hasebe, H.; Matsumura, S.; Hajjaj, F.; Horii-Hayashi, N.; Nishi, M.; Someya, T.; Fukushima, T. Bioinspired design of a polymer gel sensor for the realization of extracellular Ca2+ imaging. Sci. Rep. 2016, 6, 24275. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Zhang, Y.; Zou, Y.; Wang, Y.; Niu, D.; He, Q.; Huang, Z.; Zhu, W.; Tian, H.; Shi, J.; et al. Dual Intratumoral Redox/Enzyme-Responsive NO-Releasing Nanomedicine for the Specific, High-Efficacy, and Low-Toxic Cancer Therapy. Adv. Mater. 2018, 30, e1704490. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, Y.; Lu, W.; Le, X.; Li, P.; Huang, L.; Zhang, J.; Yang, J.; Serpe, M.J.; Chen, D.; et al. Fluorescent Hydrogel-Coated Paper/Textile as Flexible Chemosensor for Visual and Wearable Mercury(II) Detection. Adv. Mater. Technol. 2019, 4, 1800201. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.; He, J.; Guo, B.J.A.N. Functional hydrogels as wound dressing to enhance wound healing. ACS Nano 2021, 15, 12687–12722. [Google Scholar] [CrossRef]
- Zhang, D.; Tian, X.; Li, H.; Zhao, Y.; Chen, L. Novel fluorescent hydrogel for the adsorption and detection of Fe (III). Colloids Surf. A 2021, 608, 125563. [Google Scholar] [CrossRef]
- Wang, K.; Hao, Y.; Wang, Y.; Chen, J.; Mao, L.; Deng, Y.; Chen, J.; Yuan, S.; Zhang, T.; Ren, J.; et al. Functional Hydrogels and Their Application in Drug Delivery, Biosensors, and Tissue Engineering. Int. J. Polym. Sci. 2019, 2019, 3160732. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Li, Y.; Chai, F.; Li, Q.; Wang, D.; Liu, L.; Tang, B.Z.; Jiang, X.J.S.A. Ultrasensitive point-of-care biochemical sensor based on metal-AIEgen frameworks. Sci. Adv. 2022, 8, eabo1874. [Google Scholar] [CrossRef]
- Li, Z.; Liu, P.; Ji, X.; Gong, J.; Hu, Y.; Wu, W.; Wang, X.; Peng, H.Q.; Kwok, R.T.; Lam, J.W.J.A.M. Bioinspired simultaneous changes in fluorescence color, brightness, and shape of hydrogels enabled by AIEgens. Adv. Mater. 2020, 32, 1906493. [Google Scholar] [CrossRef] [PubMed]
- Baeissa, A.; Dave, N.; Smith, B.D.; Liu, J. DNA-functionalized monolithic hydrogels and gold nanoparticles for colorimetric DNA detection. ACS Appl. Mater. Interfaces 2010, 2, 3594–3600. [Google Scholar] [CrossRef] [Green Version]
- Khimji, I.; Kelly, E.Y.; Helwa, Y.; Hoang, M.; Liu, J. Visual optical biosensors based on DNA-functionalized polyacrylamide hydrogels. Methods 2013, 64, 292–298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Zhang, W.; Cai, Y.; Kwok, R.T.K.; Hu, Y.; Lam, J.W.Y.; Gu, X.; He, Z.; Zhao, Z.; Zheng, X.; et al. AIEgens for dark through-bond energy transfer: Design, synthesis, theoretical study and application in ratiometric Hg2+ sensing. Chem. Sci. 2017, 8, 2047–2055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, Q.; Zhang, Y.; Zhou, Y.; Liu, S.G.; Gao, W.; Shi, X. Portable functional hydrogels based on silver metallization for visual monitoring of fish freshness. Food Control 2021, 123, 107824. [Google Scholar] [CrossRef]
- Hong, M.; Lu, S.; Lv, F.; Xu, D. A novel facilely prepared rhodamine-based Hg2+ fluorescent probe with three thiourea receptors. Dyes Pigm. 2016, 127, 94–99. [Google Scholar] [CrossRef]
- Chen, S.; Wang, W.; Yan, M.; Tu, Q.; Chen, S.-W.; Li, T.; Yuan, M.-S.; Wang, J. 2-Hydroxy benzothiazole modified rhodol: Aggregation-induced emission and dual-channel fluorescence sensing of Hg2+ and Ag+ ions. Sens. Actuators B 2018, 255, 2086–2094. [Google Scholar] [CrossRef]
- Xu, L.Q.; Neoh, K.-G.; Kang, E.-T.; Fu, G.D. Rhodamine derivative-modified filter papers for colorimetric and fluorescent detection of Hg2+ in aqueous media. J. Mater. Chem. A 2013, 1, 2526–2532. [Google Scholar] [CrossRef]
- Hussain, S.; De, S.; Iyer, P.K. Thiazole-containing conjugated polymer as a visual and fluorometric sensor for iodide and mercury. ACS Appl. Mater. Interfaces 2013, 5, 2234–2240. [Google Scholar] [CrossRef] [PubMed]
- Ziarani, G.M.; Roshankar, S.; Mohajer, F.; Badiei, A.; Sillanpää, M. The synthesis of SBA-Pr-N-Is-Bu-SO3H as a new Hg2+ fluorescent sensor. Inorg. Chem. Commun. 2022, 146, 110100. [Google Scholar] [CrossRef]
- Wu, H.L.; Dong, J.P.; Sun, F.G.; Li, R.X.; Jiang, Y.X. New Selective Fluorescent “Turn-On” Sensor for Detection of Hg2+ Based on a 1, 8-Naphthalimide Schiff Base Derivative. J. Appl. Spectrosc. 2022, 89, 487–494. [Google Scholar] [CrossRef]
- Wu, S.; Yang, Y.; Cheng, Y.; Wang, S.; Zhou, Z.; Zhang, P.; Zhu, X.; Wang, B.; Zhang, H.; Xie, S.; et al. Fluorogenic detection of mercury ion in aqueous environment using hydrogel-based AIE sensing films. Aggregate 2022, e287. [Google Scholar] [CrossRef]
- Xiao, J.; Liu, J.; Gao, X.; Ji, G.; Wang, D.; Liu, Z. A multi-chemosensor based on Zn-MOF: Ratio-dependent color transition detection of Hg (II) and highly sensitive sensor of Cr (VI). Sens. Actuators B 2018, 269, 164–172. [Google Scholar] [CrossRef]
- Qu, Z.; Wang, C.; Duan, H.; Chi, L. Highly efficient and selective supramolecular hydrogel sensor based on rhodamine 6G derivatives. RSC Adv. 2021, 11, 22390–22397. [Google Scholar] [CrossRef]
Spiking Levels (μM) | Mean (μM) | CV (%) | Recovery (%) |
---|---|---|---|
0.5 | 0.55±0.25 | 12.17 | 109.59 |
1 | 0.83±0.24 | 10.30 | 82.54 |
4 | 4.12±0.31 | 7.06 | 103.03 |
6 | 5.16±0.17 | 4.60 | 86.02 |
8 | 7.30±0.10 | 2.51 | 91.29 |
Lake | Spiking Levels (μM) | ICP-AES | TR Hydrogel Chemosensor | |||
---|---|---|---|---|---|---|
Mean (μM) | Recovery (%) | Mean (μM) | Recovery (%) | CV (%) | ||
Aixihu Lake | 4 | 4.78 | 119.5 | 3.81 | 95.21 | 8.21 |
Donghu Lake | 4 | 4.78 | 119.5 | 3.43 | 86.45 | 4.64 |
Meihu Lake | 6 | 6.26 | 104.33 | 6.56 | 109.22 | 5.12 |
Yaohu Lake | 6 | 6.26 | 104.33 | 5.61 | 94.63 | 7.99 |
Nanhu Lake | 7 | 6.63 | 94.71 | 7.13 | 102.72 | 8.73 |
Xianghu Lake | 7 | 6.63 | 94.71 | 6.69 | 99.85 | 2.37 |
Qingshanhu Lake | 7 | 7.37 | 105.29 | 7.35 | 105.18 | 5.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhan, W.; Su, Y.; Chen, X.; Xiong, H.; Wei, X.; Huang, X.; Xiong, Y. Aggregation-Induced Emission Luminogen-Encapsulated Fluorescent Hydrogels Enable Rapid and Sensitive Quantitative Detection of Mercury Ions. Biosensors 2023, 13, 421. https://doi.org/10.3390/bios13040421
Zhan W, Su Y, Chen X, Xiong H, Wei X, Huang X, Xiong Y. Aggregation-Induced Emission Luminogen-Encapsulated Fluorescent Hydrogels Enable Rapid and Sensitive Quantitative Detection of Mercury Ions. Biosensors. 2023; 13(4):421. https://doi.org/10.3390/bios13040421
Chicago/Turabian StyleZhan, Wenchao, Yu Su, Xirui Chen, Hanpeng Xiong, Xiaxia Wei, Xiaolin Huang, and Yonghua Xiong. 2023. "Aggregation-Induced Emission Luminogen-Encapsulated Fluorescent Hydrogels Enable Rapid and Sensitive Quantitative Detection of Mercury Ions" Biosensors 13, no. 4: 421. https://doi.org/10.3390/bios13040421
APA StyleZhan, W., Su, Y., Chen, X., Xiong, H., Wei, X., Huang, X., & Xiong, Y. (2023). Aggregation-Induced Emission Luminogen-Encapsulated Fluorescent Hydrogels Enable Rapid and Sensitive Quantitative Detection of Mercury Ions. Biosensors, 13(4), 421. https://doi.org/10.3390/bios13040421