Recent Progress in Long-Term Sleep Monitoring Technology
Abstract
:1. Introduction
1.1. Sleep
1.2. Sleep Problems
1.3. Summary
2. Sleep Monitoring
2.1. Polysomnography
2.2. Sleep Cycle
2.3. Sleep Disorders
3. Bioelectrical Signal Monitoring
3.1. Electroencephalography
3.2. Electrocardiography
3.3. Electromyography and Electrooculography
3.4. Electroretinography
3.5. Passive Bioelectricity Detection
3.6. Summary
4. Biomechanical Signal Monitoring
4.1. Motion Detection
4.2. Posture Detection
4.3. Sleep Bruxism Detection
4.4. Mechanical Breath Detection
4.5. Blood Flow Detection
4.6. Acoustic Detection
4.7. Other Mechanical Detection
4.8. Summary
5. Biochemical Signal Detection
5.1. O2 Level Detection
5.2. CO2 Level Detection
5.3. Hormone Detection
5.4. Prospect of Biochemical Detections
6. Multi-Signal Sleep Monitoring
6.1. Multi-Signal, Single Physiological Information
6.2. Single Sensor, Multiple Physiological Information
6.3. Integrated Sleep Monitoring
6.4. Summary
7. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Neculicioiu, V.S.; Colosi, I.A.; Costache, C.; Sevastre-Berghian, A.; Clichici, S. Time to Sleep?—A Review of the Impact of the COVID-19 Pandemic on Sleep and Mental Health. Int. J. Environ. Res. Public Health 2022, 19, 3497. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zhao, N. Generalized anxiety disorder, depressive symptoms and sleep quality during COVID-19 outbreak in China: A web-based cross-sectional survey. Psychiatry Res. 2020, 288, 112954. [Google Scholar] [CrossRef] [PubMed]
- Iranzo, A. An Overview on Sleep Medicine. Adv. Exp. Med. Biol. 2022, 1384, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Lammers-van der Holst, H.M.; Lammers, G.J.; van Der Horst, G.T.J.; Chaves, I.; de Vries, R.D.; GeurtsvanKessel, C.H.; Koch, B.; van Der Kuy, H.M. Understanding the association between sleep, shift work and COVID-19 vaccine immune response efficacy: Protocol of the S-CORE study. J. Sleep Res. 2022, 31, e13496. [Google Scholar] [CrossRef]
- Mohammadi, S.M.; Enshaeifar, S.; Hilton, A.; Dijk, D.J.; Wells, K. Transfer Learning for Clinical Sleep Pose Detection using a Single 2D IR Camera. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 29, 290–299. [Google Scholar] [CrossRef]
- Margherita, G.; Caffieri, A. An observatory on changes in dreaming during a pandemic: A living systematic review (part 1). J. Sleep Res. 2022, e13742. [Google Scholar] [CrossRef]
- Kohyama, J. Which Is More Important for Health: Sleep Quantity or Sleep Quality? Children 2021, 8, 542. [Google Scholar] [CrossRef]
- Cudney, L.E.; Frey, B.N.; McCabe, R.E.; Green, S.M. Investigating the relationship between objective measures of sleep and self-report sleep quality in healthy adults: A review. J. Clin. Sleep Med. 2022, 18, 927–936. [Google Scholar] [CrossRef]
- Cellini, N.; Canale, N.; Mioni, G.; Costa, S. Changes in sleep pattern, sense of time and digital media use during COVID-19 lockdown in Italy. J. Sleep Res. 2020, 29, e13074. [Google Scholar] [CrossRef]
- Gohari, A.; Baumann, B.; Jen, R.; Ayas, N. Sleep Deficiency: Epidemiology and Effects. Clin. Chest Med. 2022, 43, 189–198. [Google Scholar] [CrossRef]
- Tracy, E.L.; Reid, K.J.; Baron, K.G. The relationship between sleep and physical activity: The moderating role of daily alcohol consumption. Sleep 2021, 44, zsab112. [Google Scholar] [CrossRef]
- Grandner, M.A. Sleep, Health, and Society. Sleep Med. Clin. 2022, 17, 117–139. [Google Scholar] [CrossRef]
- Yamazaki, E.M.; Antler, C.A.; Lasek, C.R.; Goel, N. Residual, differential neurobehavioral deficits linger after multiple recovery nights following chronic sleep restriction or acute total sleep deprivation. Sleep 2021, 44, zsaa224. [Google Scholar] [CrossRef]
- Kwon, A.; Choi, Y.; Kim, S.; Song, K.; Suh, J.; Chae, H.W.; Kim, H.S. Characteristic Sleep Patterns and Associated Obesity in Adolescents. Life 2022, 12, 1316. [Google Scholar] [CrossRef]
- Armstrong, B.; Beets, M.W.; Starrett, A.; Brazendale, K.; Turner-McGrievy, G.; Saelens, B.E.; Pate, R.R.; Youngstedt, S.D.; Maydeu-Olivares, A.; Weaver, R.G. Dynamics of sleep, sedentary behavior, and moderate-to-vigorous physical activity on school versus nonschool days. Sleep 2021, 44, zsaa174. [Google Scholar] [CrossRef]
- Li, J.; Vitiello, M.V.; Gooneratne, N.S. Sleep in Normal Aging. Sleep Med. Clin. 2022, 17, 161–171. [Google Scholar] [CrossRef]
- Baker, F.C.; Lee, K.A. Menstrual Cycle Effects on Sleep. Sleep Med. Clin. 2022, 17, 283–294. [Google Scholar] [CrossRef]
- Hutka, P.; Krivosova, M.; Muchova, Z.; Tonhajzerova, I.; Hamrakova, A.; Mlyncekova, Z.; Mokry, J.; Ondrejka, I. Association of Sleep Architecture and Physiology with Depressive Disorder and Antidepressants Treatment. Int. J. Mol. Sci. 2021, 22, 1333. [Google Scholar] [CrossRef]
- McCarthy, E.; De Viva, J.C.; Southwick, S.M.; Pietrzak, R.H. Self-rated sleep quality predicts incident suicide ideation in US military veterans: Results from a 7-year, nationally representative, prospective cohort study. J. Sleep Res. 2022, 31, e13447. [Google Scholar] [CrossRef]
- Walter, J.R.; Lee, J.Y.; Snoll, B.; Park, J.B.; Kim, D.H.; Xu, S.; Barnhart, K. Pregnancy outcomes in infertility patients diagnosed with sleep disordered breathing with wireless wearable sensors. Sleep Med. 2022, 100, 511–517. [Google Scholar] [CrossRef]
- Dunn, K.E.; Finan, P.H.; Huhn, A.S.; Gamaldo, C.; Bergeria, C.L.; Strain, E.C. Wireless electroencephalography (EEG) to monitor sleep among patients being withdrawn from opioids: Evidence of feasibility and utility. Exp. Clin. Psychopharmacol. 2021, 30, 1016–1023. [Google Scholar] [CrossRef] [PubMed]
- Elias, M.N. Assessment and Monitoring of Sleep in the Intensive Care Unit. Crit. Care Nurs. Clin. N. Am. 2021, 33, 109–119. [Google Scholar] [CrossRef] [PubMed]
- Rundo, J.V.; Downey, R., III. Polysomnography. In Clinical Neurophysiology: Basis and Technical Aspects; Levin, K.H., Chauvel, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 160, pp. 381–392. [Google Scholar]
- Locihova, H.; Axmann, K.; Ziakova, K. Sleep-disrupting effects of nocturnal nursing interventions in intensive care unit patients: A systematic review. J. Sleep Res. 2021, 30, e13223. [Google Scholar] [CrossRef] [PubMed]
- Ai, S.; Mayo, K.; Akifumi, K.; Hiroyoshi, A.; Masako, T.; Takafumi, K. Discrepancies in the Time Course of Sleep Stage Dynamics, Electroencephalographic Activity and Heart Rate Variability Over Sleep Cycles in the Adaptation Night in Healthy Young Adults. Front. Physiol. 2021, 12, 623401. [Google Scholar]
- Zavanelli, N.; Kim, H.; Kim, J.; Herbert, R.; Mahmood, M.; Kim, Y.-S.; Kwon, S.; Bolus, N.B.; Torstrick, F.B.; Lee, C.S.D.; et al. At-home wireless monitoring of acute hemodynamic disturbances to detect sleep apnea and sleep stages via a soft sternal patch. Sci. Adv. 2021, 7, eabl4146. [Google Scholar] [CrossRef]
- Dietmann, A.; Wenz, E.; van Der Meer, J.; Ringli, M.; Warncke, J.D.; Edwards, E.; Schmidt, M.H.; Bernasconi, C.A.; Nirkko, A.; Strub, M.; et al. The Swiss Primary Hypersomnolence and Narcolepsy Cohort study (SPHYNCS): Study protocol for a prospective, multicentre cohort observational study. J. Sleep Res. 2021, 30, e13296. [Google Scholar] [CrossRef]
- Edgar, D.T.; Gill, N.D.; Beaven, C.M.; Zaslona, J.L.; Driller, M.W. Sleep duration and physical performance during a 6-week military training course. J. Sleep Res. 2021, 30, e13393. [Google Scholar] [CrossRef]
- Karhu, T.; Myllymaa, S.; Nikkonen, S.; Mazzotti, D.R.; Kulkas, A.; Toyras, J.; Leppanen, T. Diabetes and cardiovascular diseases are associated with the worsening of intermittent hypoxaemia. J. Sleep Res. 2022, 31, e13441. [Google Scholar] [CrossRef]
- Etindele Sosso, F.A. Measuring Sleep Health Disparities with Polysomnography: A Systematic Review of Preliminary Findings. Clocks Sleep 2022, 4, 80–87. [Google Scholar] [CrossRef]
- McCarter, S.J.; Hagen, P.T.; St Louis, E.K.; Rieck, T.M.; Haider, C.R.; Holmes, D.R.; Morgenthaler, T.I. Physiological markers of sleep quality: A scoping review. Sleep Med. Rev. 2022, 64, 101657. [Google Scholar] [CrossRef]
- Souto, C.d.S.F.; Paetzold, W.; Paul, M.; Debener, S.; Wolf, K.I. Pre-gelled Electrode Grid for Self-Applied EEG Sleep Monitoring at Home. Front. Neurosci. 2022, 16, 1004. [Google Scholar] [CrossRef]
- Partinen, M. Sleep research in 2020: COVID-19-related sleep disorders. Lancet Neurol. 2021, 20, 15–17. [Google Scholar] [CrossRef]
- Siyahjani, F.; Molina, G.G.; Barr, S.; Mushtaq, F. Performance Evaluation of a Smart Bed Technology against Polysomnography. Sensors 2022, 22, 2605. [Google Scholar] [CrossRef]
- Hussain, I.; Hossain, M.A.; Jany, R.; Bari, M.A.; Uddin, M.; Kamal, A.M.; Ku, Y.; Kim, J.S. Quantitative Evaluation of EEG-Biomarkers for Prediction of Sleep Stages. Sensors 2022, 22, 3079. [Google Scholar] [CrossRef]
- Tsuda, T.; Fitzgerald, K.K.; Temple, J. Sudden cardiac death in children and young adults without structural heart disease: A comprehensive review. Rev. Cardiovasc. Med. 2020, 21, 205–216. [Google Scholar] [CrossRef]
- Verrier, R.L.; Pang, T.D.; Nearing, B.D.; Schachter, S.C. The Epileptic Heart: Concept and clinical evidence. Epilepsy Behav. 2020, 105, 106946. [Google Scholar] [CrossRef]
- Ottaviani, G.; Buja, L.M. Pathology of unexpected sudden cardiac death: Obstructive sleep apnea is part of the challenge. Cardiovasc. Pathol. 2020, 47, 107221. [Google Scholar] [CrossRef]
- Fox, H.; Rudolph, V.; Munt, O.; Malouf, G.; Graml, A.; Bitter, T.; Oldenburg, O. Early identification of heart failure deterioration through respiratory monitoring with adaptive servo-ventilation. J. Sleep Res. 2023, 32, e13749. [Google Scholar] [CrossRef]
- Feinsilver, S.H. Normal and Abnormal Sleep in the Elderly. Clin. Geriatr. Med. 2021, 37, 377–386. [Google Scholar] [CrossRef]
- De Fazio, R.; Mattei, V.; Al-Naami, B.; De Vittorio, M.; Visconti, P. Methodologies and Wearable Devices to Monitor Biophysical Parameters Related to Sleep Dysfunctions: An Overview. Micromachines 2022, 13, 1335. [Google Scholar] [CrossRef]
- Sharma, M.; Makwana, P.; Chad, R.S.; Acharya, U.R. A novel automated robust dual-channel EEG-based sleep scoring system using optimal half-band pair linear-phase biorthogonal wavelet filter bank. Appl. Intell. 2023, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Blumberg, M.S.; Lesku, J.A.; Libourel, P.A.; Schmidt, M.H.; Rattenborg, N.C. What Is REM Sleep? Curr. Biol. 2020, 30, R38–R49. [Google Scholar] [CrossRef] [PubMed]
- Miano, S.; Paolino, M.C.; Castaldo, R.; Villa, M.P. Visual scoring of sleep: A comparison between the Rechtschaffen and Kales criteria and the American Academy of Sleep Medicine criteria in a pediatric population with obstructive sleep apnea syndrome. Clin. Neurophysiol. 2010, 121, 39–42. [Google Scholar] [CrossRef]
- Simor, P.; van der Wijk, G.; Nobili, L.; Peigneux, P. The microstructure of REM sleep: Why phasic and tonic? Sleep Med. Rev. 2020, 52, 101305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riemann, D.; Krone, L.B.; Wulff, K.; Nissen, C. Sleep, insomnia, and depression. Neuropsychopharmacology 2020, 45, 74–89. [Google Scholar] [CrossRef]
- Drews, H.J.; Wallot, S.; Brysch, P.; Berger-Johannsen, H.; Weinhold, S.L.; Mitkidis, P.; Baier, P.C.; Lechinger, J.; Roepstorff, A.; Goder, R. Bed-Sharing in Couples Is Associated With Increased and Stabilized REM Sleep and Sleep-Stage Synchronization. Front. Psychiatry 2020, 11, 583. [Google Scholar] [CrossRef]
- Juwonlo, S.; Bessam, A.; Ibrahim, S. Unobtrusive Monitoring of Sleep Cycles: A Technical Review. BioMed Inform. 2022, 2, 204–216. [Google Scholar]
- Yeghiazarians, Y.; Jneid, H.; Tietjens, J.R.; Redline, S.; Brown, D.L.; El-Sherif, N.; Mehra, R.; Bozkurt, B.; Ndumele, C.E.; Somers, V.K.; et al. Obstructive Sleep Apnea and Cardiovascular Disease: A Scientific Statement from the American Heart Association. Circulation 2021, 144, E56–E67. [Google Scholar] [CrossRef]
- Phillips, B.; Young, T.; Finn, L.; Asher, K.; Hening, W.A.; Purvis, C. Epidemiology of restless legs symptoms in adults. Arch. Intern. Med. 2000, 160, 2137–2141. [Google Scholar] [CrossRef]
- Lavigne, G.J.; Montplaisir, J.Y. Restless Legs Syndrome and Sleep Bruxism—Prevalence and Association among Canadians. Sleep 1994, 17, 739–743. [Google Scholar]
- Manconi, M.; Garcia-Borreguero, D.; Schormair, B.; Videnovic, A.; Berger, K.; Ferri, R.; Dauvilliers, Y. Restless legs syndrome. Nat. Rev. Dis. Prim. 2021, 7, 80. [Google Scholar] [CrossRef]
- Penzel, T.; Kantelhardt, J.W.; Bartsch, R.P.; Riedl, M.; Kraemer, J.F.; Wessel, N.; Garcia, C.; Glos, M.; Fietze, I.; Schobel, C. Modulations of Heart Rate, ECG, and Cardio-Respiratory Coupling Observed in Polysomnography. Front. Physiol. 2016, 7, 460. [Google Scholar] [CrossRef] [Green Version]
- Bloch, K.E. Polysomnography: A systematic review. Technol. Health Care 1997, 5, 285–305. [Google Scholar] [CrossRef]
- Kushida, C.A.; Littner, M.R.; Morgenthaler, T.; Alessi, C.A.; Bailey, D.; Coleman, J., Jr.; Friedman, L.; Hirshkowitz, M.; Kapen, S.; Kramer, M.; et al. Practice parameters for the indications for polysomnography and related procedures: An update for 2005. Sleep 2005, 28, 499–521. [Google Scholar] [CrossRef] [Green Version]
- Miettinen, T.; Myllymaa, K.; Muraja-Murro, A.; Westeren-Punnonen, S.; Hukkanen, T.; Toyras, J.; Lappalainen, R.; Mervaala, E.; Sipila, K.; Myllymaa, S. Screen-printed ambulatory electrode set enables accurate diagnostics of sleep bruxism. J. Sleep Res. 2018, 27, 103–112. [Google Scholar] [CrossRef] [Green Version]
- Miettinen, T.; Myllymaa, K.; Westeren-Punnonen, S.; Ahlberg, J.; Hukkanen, T.; Toyras, J.; Lappalainen, R.; Mervaala, E.; Sipila, K.; Myllymaa, S.; et al. Success Rate and Technical Quality of Home Polysomnography With Self-Applicable Electrode Set in Subjects With Possible Sleep Bruxism. IEEE J. Biomed. Health Inf. 2018, 22, 1124–1132. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Kumar, K.S.; He, H.; Cai, C.J.Y.; He, X.; Gao, H.X.; Yue, S.Z.; Li, C.S.; Seet, R.C.S.; Ren, H.L.; et al. Fully organic compliant dry electrodes self-adhesive to skin for long-term motion-robust epidermal biopotential monitoring. Nat. Commun. 2020, 11, 4683. [Google Scholar] [CrossRef]
- Wu, X.; Yang, J.; Pan, Y.; Zhang, X.; Luo, Y. Automatic sleep-stage scoring based on photoplethysmographic signals. Physiol. Meas. 2020, 41, 065008. [Google Scholar] [CrossRef]
- Acar, G.; Ozturk, O.; Golparvar, A.J.; Elboshra, T.A.; Böhringer, K.; Yapici, M.K. Wearable and Flexible Textile Electrodes for Biopotential Signal Monitoring: A review. Electronics 2019, 8, 479. [Google Scholar] [CrossRef] [Green Version]
- Shustak, S.; Inzelberg, L.; Steinberg, S.; Rand, D.; David Pur, M.; Hillel, I.; Katzav, S.; Fahoum, F.; De Vos, M.; Mirelman, A.; et al. Home monitoring of sleep with a temporary-tattoo EEG, EOG and EMG electrode array: A feasibility study. J. Neural Eng. 2019, 16, 026024. [Google Scholar] [CrossRef]
- Lee, W.K.; Lee, H.J.; Yoon, H.N.; Chung, G.S.; Park, K.S. Automatic Noise Removal and Peak Detection Algorithm for ECG Measured from Capacitively Coupled Electrodes Included within a Cloth Mattress Pad. J. Biomed. Eng. Res. 2014, 35, 87–94. [Google Scholar] [CrossRef] [Green Version]
- Liguori, C.; Palmieri, M.G.; Pierantozzi, M.; Cesareo, M.; Romigi, A.; Izzi, F.; Marciani, M.G.; Oliva, C.; Mercuri, N.B.; Placidi, F. Optic Nerve Dysfunction in Obstructive Sleep Apnea: An Electrophysiological Study. Sleep 2016, 39, 19–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsieh, H.-Y.; Luo, C.-H.; Tai, C.-C. Wireless potential difference electrocardiogram constituted by two electrode-pairs wearing comfort. J. Instrum. 2020, 15, P08011. [Google Scholar] [CrossRef]
- Lofhede, J.; Seoane, F.; Thordstein, M. Textile electrodes for EEG recording—A pilot study. Sensors 2012, 12, 16907–16919. [Google Scholar] [CrossRef]
- Beniczky, S.; Conradsen, I.; Wolf, P. Detection of convulsive seizures using surface electromyography. Epilepsia 2018, 59 (Suppl. S1), 23–29. [Google Scholar] [CrossRef]
- Imtiaz, S.A. A Systematic Review of Sensing Technologies for Wearable Sleep Staging. Sensors 2021, 21, 1562. [Google Scholar] [CrossRef]
- Wichniak, A.; Gustavsson, K.; Wierzbicka, A.; Jernajczyk, W. Sleep Disorders; Elsevier: Amsterdam, The Netherlands, 2020; pp. 220–238. [Google Scholar] [CrossRef]
- Markovic, A.; Kaess, M.; Tarokh, L. Gender differences in adolescent sleep neurophysiology: A high-density sleep EEG study. Sci. Rep. 2020, 10, 15935. [Google Scholar] [CrossRef]
- Moghadam, S.M.; Nevalainen, P.; Stevenson, N.J.; Vanhatalo, S. Sleep State Trend (SST), a bedside measure of neonatal sleep state fluctuations based on single EEG channels. Clin. Neurophysiol. 2022, 143, 75–83. [Google Scholar] [CrossRef]
- Campbell, I.G. EEG recording and analysis for sleep research. Curr. Protoc. Neurosci. 2009, 49, 10–12. [Google Scholar] [CrossRef] [Green Version]
- Guilleminault, C.; Abad, V.C.; Philip, P.; Stoohs, R. The effect of CNS activation versus EEG arousal during sleep on heart rate response and daytime tests. Clin. Neurophysiol. 2006, 117, 731–739. [Google Scholar] [CrossRef]
- Michel, V.; Mazzola, L.; Lemesle, M.; Vercueil, L. Long-term EEG in adults: Sleep-deprived EEG (SDE), ambulatory EEG (Amb-EEG) and long-term video-EEG recording (LTVER). Neurophysiol. Clin. 2015, 45, 47–64. [Google Scholar] [CrossRef]
- Hassan, A.R.; Subasi, A.; Zhang, Y. Epilepsy seizure detection using complete ensemble empirical mode decomposition with adaptive noise. Knowl.-Based Syst. 2020, 191, 105333. [Google Scholar] [CrossRef]
- Arnal, P.J.; Thorey, V.; Debellemaniere, E.; Ballard, M.E.; Hernandez, A.B.; Guillot, A.; Jourde, H.; Harris, M.; Guillard, M.; Van Beers, P.; et al. The Dreem Headband compared to polysomnography for electroencephalographic signal acquisition and sleep staging. Sleep 2020, 43, zsaa097. [Google Scholar] [CrossRef]
- Hsieh, T.H.; Liu, M.H.; Kuo, C.E.; Wang, Y.H.; Liang, S.F. Home-Use and Real-Time Sleep-Staging System Based on Eye Masks and Mobile Devices with a Deep Learning Model. J. Med. Biol. Eng. 2021, 41, 659–668. [Google Scholar] [CrossRef]
- Yang, Y.; Yuan, Y.; Zhang, G.; Wang, H.; Chen, Y.-C.; Liu, Y.; Tarolli, C.G.; Crepeau, D.; Bukartyk, J.; Junna, M.R.; et al. Artificial intelligence-enabled detection and assessment of Parkinson’s disease using nocturnal breathing signals. Nat. Med. 2022, 28, 2207–2215. [Google Scholar] [CrossRef]
- Nakamura, T.; Goverdovsky, V.; Morrell, M.J.; Mandic, D.P. Automatic Sleep Monitoring Using Ear-EEG. IEEE J. Transl. Eng. Health Med. 2017, 5, 2800108. [Google Scholar] [CrossRef]
- Da Silva Souto, C.F.; Patzold, W.; Wolf, K.I.; Paul, M.; Matthiesen, I.; Bleichner, M.G.; Debener, S. Flex-Printed Ear-EEG Sensors for Adequate Sleep Staging at Home. Front. Digit. Health 2021, 3, 688122. [Google Scholar] [CrossRef]
- Silversmith, D.B.; Abiri, R.; Hardy, N.F.; Natraj, N.; Tu-Chan, A.; Chang, E.F.; Ganguly, K. Plug-and-play control of a brain-computer interface through neural map stabilization. Nat. Biotechnol. 2021, 39, 326–335. [Google Scholar] [CrossRef]
- Serruya, M.D.; Napoli, A.; Satterthwaite, N.; Kardine, J.; McCoy, J.; Grampurohit, N.; Talekar, K.; Middleton, D.M.; Mohamed, F.; Kogan, M.; et al. Neuromotor prosthetic to treat stroke-related paresis: N-of-1 trial. Commun. Med. 2022, 2, 37. [Google Scholar] [CrossRef]
- Vansteensel, M.J.; Branco, M.P.; Leinders, S.; Freudenburg, Z.F.; Schippers, A.; Geukes, S.H.; Gaytant, M.A.; Gosselaar, P.H.; Aarnoutse, E.J.; Ramsey, N.F. Methodological Recommendations for Studies on the Daily Life Implementation of Implantable Communication-Brain-Computer Interfaces for Individuals With Locked-in Syndrome. Neurorehabil. Neural Repair 2022, 36, 666–677. [Google Scholar] [CrossRef]
- Ji, B.; Liang, Z.; Yuan, X.; Xu, H.; Wang, M.; Yin, E.; Guo, Z.; Wang, L.; Zhou, Y.; Feng, H.; et al. Recent advances in wireless epicortical and intracortical neuronal recording systems. Sci. China Inf. Sci. 2022, 65, 140401. [Google Scholar] [CrossRef]
- Topchiy, I.; Fink, A.M.; Maki, K.A.; Calik, M.W. Validation of PiezoSleep Scoring Against EEG/EMG Sleep Scoring in Rats. Nat. Sci. Sleep 2022, 14, 1877–1886. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.H.; Park, T.; Yoo, H. Biodegradable Polymer Composites for Electrophysiological Signal Sensing. Polymers 2022, 14, 2875. [Google Scholar] [CrossRef] [PubMed]
- Fontana, P.; Martins, N.R.A.; Camenzind, M.; Rossi, R.M.; Baty, F.; Boesch, M.; Schoch, O.D.; Brutsche, M.H.; Annaheim, S. Clinical Applicability of a Textile 1-Lead ECG Device for Overnight Monitoring. Sensors 2019, 19, 2436. [Google Scholar] [CrossRef] [Green Version]
- Kishimoto, Y.; Kutsuna, Y.; Oguri, K. Detecting motion artifact ECG noise during sleeping by means of a tri-axis accelerometer. In Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, 22–26 August 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 2669–2672. [Google Scholar]
- Huang, Y.; Jin, T.; Sun, C.; Li, X.; Yang, S.; Zhang, Z. Efficient J Peak Detection From Ballistocardiogram Using Lightweight Convolutional Neural Network. In Proceedings of the 43rd Annual International Conference of the IEEE-Engineering-in-Medicine-and-Biology-Society (IEEE EMBC), Guadalajara, Mexico, 1–5 November 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 269–272. [Google Scholar]
- Kumar, D.; Puthusserypady, S.; Dominguez, H.; Sharma, K.; Bardram, J.E. CACHET-CADB: A Contextualized Ambulatory Electrocardiography Arrhythmia Dataset. Front. Cardiovasc. Med. 2022, 9, 893090. [Google Scholar] [CrossRef]
- Zhang, S.P.; Chhetry, A.; Abu Zahed, M.; Sharma, S.; Park, C.; Yoon, S.; Park, J.Y. On-skin ultrathin and stretchable multifunctional sensor for smart healthcare wearables. NPJ Flex. Electron. 2022, 6, 11. [Google Scholar] [CrossRef]
- Baty, F.; Boesch, M.; Widmer, S.; Annaheim, S.; Fontana, P.; Camenzind, M.; Rossi, R.M.; Schoch, O.D.; Brutsche, M.H. Classification of Sleep Apnea Severity by Electrocardiogram Monitoring Using a Novel Wearable Device. Sensors 2020, 20, 286. [Google Scholar] [CrossRef] [Green Version]
- Yeo, M.; Byun, H.; Lee, J.; Byun, J.; Rhee, H.Y.; Shin, W.; Yoon, H. Robust Method for Screening Sleep Apnea With Single-Lead ECG Using Deep Residual Network: Evaluation With Open Database and Patch-Type Wearable Device Data. IEEE J. Biomed. Health Inf. 2022, 26, 5428–5438. [Google Scholar] [CrossRef]
- Hammour, G.; Yarici, M.; von Rosenberg, W.; Mandic, D.P. Hearables: Feasibility and Validation of In-Ear Electrocardiogram. In Proceedings of the 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 5777–5780. [Google Scholar]
- Li, M.; Xiong, W.; Li, Y. Wearable Measurement of ECG Signals Based on Smart Clothing. Int. J. Telemed. Appl. 2020, 2020, 6329360. [Google Scholar] [CrossRef] [Green Version]
- Lim, Y.G.; Kim, K.K.; Park, K.S. ECG recording on a bed during sleep without direct skin-contact. IEEE Trans. Biomed. Eng. 2007, 54, 718–725. [Google Scholar] [CrossRef]
- Klum, M.; Urban, M.; Tigges, T.; Pielmus, A.G.; Feldheiser, A.; Schmitt, T.; Orglmeister, R. Wearable Cardiorespiratory Monitoring Employing a Multimodal Digital Patch Stethoscope: Estimation of ECG, PEP, LVETand Respiration Using a 55 mm Single-Lead ECG and Phonocardiogram. Sensors 2020, 20, 2033. [Google Scholar] [CrossRef] [Green Version]
- Alvarez-Estevez, D.; van Velzen, I.; Ottolini-Capellen, T.; Kemp, B. Derivation and modeling of two new features for the characterization of rapid and slow eye movements in electrooculographic sleep recordings. Biomed. Signal Process. Control 2017, 35, 87–99. [Google Scholar] [CrossRef]
- Virkkala, J.; Toppila, J.; Maasilta, P.; Bachour, A. Electro-oculography-based detection of sleep-wake in sleep apnea patients. Sleep Breath. 2015, 19, 785–789. [Google Scholar] [CrossRef]
- Mascia, A.; Collu, R.; Spanu, A.; Fraschini, M.; Barbaro, M.; Cosseddu, P. Wearable System Based on Ultra-Thin Parylene C Tattoo Electrodes for EEG Recording. Sensors 2023, 23, 766. [Google Scholar] [CrossRef]
- Liu, H.C.; Dong, W.; Li, Y.F.; Li, F.Q.; Geng, J.J.; Zhu, M.L.; Chen, T.; Zhang, H.M.; Sun, L.N.; Lee, C.K. An epidermal sEMG tattoo-like patch as a new human-machine interface for patients with loss of voice. Microsyst. Nanoeng. 2020, 6, 16. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.S.; Liu, N.; Yin, J.J.; Tian, H.; Yang, Y.; Ren, T.L. Understanding the Origin of Tensile Response in a Graphene Textile Strain Sensor with Negative Differential Resistance. ACS Nano 2022, 16, 14230–14238. [Google Scholar] [CrossRef]
- Li, J.; Ma, Y.; Huang, D.; Wang, Z.; Zhang, Z.; Ren, Y.; Hong, M.; Chen, Y.; Li, T.; Shi, X.; et al. High-Performance Flexible Microneedle Array as a Low-Impedance Surface Biopotential Dry Electrode for Wearable Electrophysiological Recording and Polysomnography. Nano-Micro Lett. 2022, 14, 132. [Google Scholar] [CrossRef]
- Magosso, E.; Ursino, M.; Zaniboni, A.; Provini, F.; Montagna, P. Visual and computer-based detection of slow eye movements in overnight and 24-h EOG recordings. Clin. Neurophysiol. 2007, 118, 1122–1133. [Google Scholar] [CrossRef]
- Pai, Y.S.; Bait, M.L.; Lee, J.; Xu, J.; Peiris, R.L.; Woo, W.; Billinghurst, M.; Kunze, K. NapWell: An EOG-based Sleep Assistant Exploring the Effects of Virtual Reality on Sleep Onset. Virtual Real. 2021, 26, 437–451. [Google Scholar] [CrossRef]
- Iranzo, A.; Frauscher, B.; Santos, H.; Gschliesser, V.; Ratti, L.; Falkenstetter, T.; Sturner, C.; Salamero, M.; Tolosa, E.; Poewe, W.; et al. Usefulness of the SINBAR electromyographic montage to detect the motor and vocal manifestations occurring in REM sleep behavior disorder. Sleep Med. 2011, 12, 284–288. [Google Scholar] [CrossRef]
- Maeda, M.; Yamaguchi, T.; Mikami, S.; Yachida, W.; Saito, T.; Sakuma, T.; Nakamura, H.; Saito, M.; Mizuno, M.; Yamada, K.; et al. Validity of single-channel masseteric electromyography by using an ultraminiature wearable electromyographic device for diagnosis of sleep bruxism. J. Prosthodont. Res. 2020, 64, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Yeung, J.; Burke, P.G.R.; Knapman, F.L.; Patti, J.; Brown, E.C.; Gandevia, S.C.; Eckert, D.J.; Butler, J.E.; Bilston, L.E. Task-dependent neural control of regions within human genioglossus. J. Appl. Physiol. 2022, 132, 527–540. [Google Scholar] [CrossRef] [PubMed]
- Rebelo, J.; Gaspar, P.D.; Soares, V.N.G.J.; Caldeira, J.M.L.P. A Novel mHealth Approach for the Monitoring and Assisted Therapeutics of Obstructive Sleep Apnea. Appl. Sci. 2022, 12, 257. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Mikami, S.; Saito, M.; Okada, K.; Gotouda, A. A newly developed ultraminiature wearable electromyogram system useful for analyses of masseteric activity during the whole day. J. Prosthodont. Res. 2018, 62, 110–115. [Google Scholar] [CrossRef]
- Prasad, S.; Paulin, M.; Cannon, R.D.; Palla, S.; Farella, M. Smartphone-assisted monitoring of masticatory muscle activity in freely moving individuals. Clin. Oral Investig. 2019, 23, 3601–3611. [Google Scholar] [CrossRef]
- Tasker, D.I.; Kinel, S.G.; Tredici, T.J. Use of the ERG and EOG in evaluating the effect of sleep deprivation on visual function in flying personnel. Aviat. Space Environ. Med. 1975, 46, 943–945. [Google Scholar]
- Galambos, R.; Juhasz, G.; Kekesi, A.K.; Nyitrai, G.; Szilagyi, N. Natural sleep modifies the rat electroretinogram. Proc. Natl. Acad. Sci. USA 1994, 91, 5153–5157. [Google Scholar] [CrossRef] [Green Version]
- Amis, T.C.; Perri, R.; Lee, S.; Wickens, M.; Liew, G.; Mitchell, P.; Kairaitis, K.; Wheatley, J.R. Retinal abnormalities, although relatively common in sleep clinic patients referred for polysomnography, are largely unrelated to sleep-disordered breathing. Sleep Breath. 2022, 1–8. [Google Scholar] [CrossRef]
- Kim, K.; Kim, H.J.; Zhang, H.; Park, W.; Meyer, D.; Kim, M.K.; Kim, B.; Park, H.; Xu, B.; Kollbaum, P.; et al. All-printed stretchable corneal sensor on soft contact lenses for noninvasive and painless ocular electrodiagnosis. Nat. Commun. 2021, 12, 1544. [Google Scholar] [CrossRef]
- Kim, M.J.; Choi, K.S. Clinical Efficacy of Portable Electroretinograms. J. Korean Ophthalmol. Soc. 2021, 62, 524–530. [Google Scholar] [CrossRef]
- Moroto, N.; Nakakura, S.; Tabuchi, H.; Mochizuki, K.; Manabe, Y.; Sakaguchi, H. Use of multifocal electroretinograms to determine stage of glaucoma. PLoS ONE 2023, 18, e0278234. [Google Scholar] [CrossRef]
- Kireev, D.; Sel, K.; Ibrahim, B.; Kumar, N.; Akbari, A.; Jafari, R.; Akinwande, D. Continuous cuffless monitoring of arterial blood pressure via graphene bioimpedance tattoos. Nat. Nanotechnol. 2022, 17, 864–870. [Google Scholar] [CrossRef]
- Korany, B.; Mostofi, Y. Nocturnal Seizure Detection Using Off-the-Shelf WiFi. IEEE Internet Things J. 2022, 9, 6996–7008. [Google Scholar] [CrossRef]
- Liu, W.; Chang, S.; Liu, Y.; Zhang, H. Wi-PSG: Detecting Rhythmic Movement Disorder Using COTS WiFi. IEEE Internet Things J. 2021, 8, 4681–4696. [Google Scholar] [CrossRef]
- Yu, B.; Wang, Y.; Niu, K.; Zeng, Y.; Gu, T.; Wang, L.; Guan, C.; Zhang, D. WiFi-Sleep: Sleep Stage Monitoring Using Commodity Wi-Fi Devices. IEEE Internet Things J. 2021, 8, 13900–13913. [Google Scholar] [CrossRef]
- Liu, Q.; Yang, L.T.; Zhang, Z.L.; Yang, H.; Zhang, Y.; Wu, J.L. The Feature, Performance, and Prospect of Advanced Electrodes for Electroencephalogram. Biosensensors 2023, 13, 101. [Google Scholar] [CrossRef]
- Beppler, E.C.; Dieffenderfer, J.P.; Hood, C.D.; Bozkurt, A. Accelerometer based Active Snore Detection for Behavioral Modification. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; pp. 2881–2884. [Google Scholar] [CrossRef]
- Spanu, A.; Botter, A.; Zedda, A.; Cerone, G.L.; Bonfiglio, A.; Pani, D. Dynamic Surface Electromyography Using Stretchable Screen-Printed Textile Electrodes. IEEE Trans. Neural Syst. Rehabil. Eng. 2021, 29, 1661–1668. [Google Scholar] [CrossRef]
- Benovitski, Y.B.; Lai, A.; Saunders, A.; McGowan, C.C.; Burns, O.; Nayagam, D.A.X.; Millard, R.; Harrison, M.; Rathbone, G.D.; Williams, R.A.; et al. Preclinical safety study of a fully implantable, sub-scalp ring electrode array for long-term EEG recordings. J. Neural Eng. 2022, 19, 036027. [Google Scholar] [CrossRef]
- Druijff-van de Woestijne, G.B.; McConchie, H.; de Kort, Y.A.W.; Licitra, G.; Zhang, C.; Overeem, S.; Smolders, K.C.H.J. Behavioural biometrics: Using smartphone keyboard activity as a proxy for rest-activity patterns. J. Sleep Res. 2021, 30, e13285. [Google Scholar] [CrossRef]
- Evans, M.A.; Buysse, D.J.; Marsland, A.L.; Wright, A.G.C.; Foust, J.; Carroll, L.W.; Kohli, N.; Mehra, R.; Jasper, A.; Srinivasan, S.; et al. Meta-analysis of age and actigraphy-assessed sleep characteristics across the lifespan. Sleep 2021, 44, zsab088. [Google Scholar] [CrossRef]
- Suzuki, K. Current Update on Clinically Relevant Sleep Issues in Parkinson’s Disease: A Narrative Review. J. Park. Dis. 2021, 11, 971–992. [Google Scholar] [CrossRef] [PubMed]
- Chun, K.S.; Kang, Y.J.; Lee, J.Y.; Nguyen, M.; Lee, B.; Lee, R.; Jo, H.H.; Allen, E.; Chen, H.; Kim, J.; et al. A skin-conformable wireless sensor to objectively quantify symptoms of pruritus. Sci. Adv. 2021, 7, eabf9405. [Google Scholar] [CrossRef] [PubMed]
- Brooks, J.; Feltch, C.; Lam, J.; Earley, C.; Robucci, R.; Agarwal, S.; Banerjee, N. RestEaze: An Emerging Technology to Characterize Leg Movements During Sleep. J. Med. Devices 2022, 16, 021010. [Google Scholar] [CrossRef]
- Agrawal, R.P.; Sharma, A.; Dua, A.S.; Chandershekhar; Kochar, D.K.; Kothari, R.P. A randomized placebo controlled trial of Inolter (herbal product) in the treatment of type 2 diabetes. J. Assoc. Physicians India 2002, 50, 391–393. [Google Scholar] [PubMed]
- Woo, S.I.; Lee, M.; Yeom, H. A Study of Simple Sleep Apnea Predictive Device Using SpO₂ and Acceleration Sensor. Int. J. Internet Broadcast. Commun. 2019, 11, 71–75. [Google Scholar] [CrossRef]
- Katori, M.; Shi, S.; Ode, K.L.; Tomita, Y.; Ueda, H.R. The 103,200-arm acceleration dataset in the UK Biobank revealed a landscape of human sleep phenotypes. Proc. Natl. Acad. Sci. USA 2022, 119, e2116729119. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, Y.; Wen, D. Fabrication and Characteristics of a SOI Three-Axis Acceleration Sensor Based on MEMS Technology. Micromachines 2019, 10, 238. [Google Scholar] [CrossRef] [Green Version]
- Yong, L.; Changsheng, L.; Guanhua, H. Influence of the failure effect of MEMS capacitive high g acceleration sensor on the limit range and sensitivity. J. Phys. Conf. Ser. 2020, 1635, 012053. [Google Scholar] [CrossRef]
- Trevenen, M.L.; Turlach, B.A.; Eastwood, P.R.; Straker, L.M.; Murray, K. Using hidden Markov models with raw, triaxial wrist accelerometry data to determine sleep stages. Aust. N. Z. J. Stat. 2019, 61, 273–298. [Google Scholar] [CrossRef]
- Walch, O.; Huang, Y.; Forger, D.; Goldstein, C. Sleep stage prediction with raw acceleration and photoplethysmography heart rate data derived from a consumer wearable device. Sleep 2019, 42, zsz180. [Google Scholar] [CrossRef] [Green Version]
- Ode, K.L.; Shi, S.; Katori, M.; Mitsui, K.; Takanashi, S.; Oguchi, R.; Aoki, D.; Ueda, H.R. A jerk-based algorithm ACCEL for the accurate classification of sleep-wake states from arm acceleration. iScience 2022, 25, 103727. [Google Scholar] [CrossRef]
- Razjouyan, J.; Lee, H.; Parthasarathy, S.; Mohler, J.; Sharafkhaneh, A.; Najafi, B. Improving Sleep Quality Assessment Using Wearable Sensors by Including Information From Postural/Sleep Position Changes and Body Acceleration: A Comparison of Chest-Worn Sensors, Wrist Actigraphy, and Polysomnography. J. Clin. Sleep Med. 2017, 13, 1301–1310. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Wu, M.; Gao, K.; Wu, J.; Ding, J.; Zeng, Z.; Li, X. A Novel Ensemble Deep Learning Approach for Sleep-Wake Detection Using Heart Rate Variability and Acceleration. IEEE Trans. Emerg. Top. Comput. Intell. 2021, 5, 803–812. [Google Scholar] [CrossRef]
- Jeon, S.; Park, T.; Paul, A.; Lee, Y.-S.; Son, S.H. A Wearable Sleep Position Tracking System Based on Dynamic State Transition Framework. IEEE Access 2019, 7, 135742–135756. [Google Scholar] [CrossRef]
- Sunderam, S.; Chernyy, N.; Peixoto, N.; Mason, J.P.; Weinstein, S.L.; Schiff, S.J.; Gluckman, B.J. Improved sleep-wake and behavior discrimination using MEMS accelerometers. J. Neurosci. Methods 2007, 163, 373–383. [Google Scholar] [CrossRef] [Green Version]
- Yoshihi, M.; Okada, S.; Wang, T.; Kitajima, T.; Makikawa, M. Estimating Sleep Stages Using a Head Acceleration Sensor. Sensors 2021, 21, 952. [Google Scholar] [CrossRef]
- Umetani, T.; Ishii, M.; Tamura, Y.; Saiwaki, N.; Yokoyama, K. Change Detection of Sleeping Conditions based on Multipoint Ambient Sensing of Comforter on Bed. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Honolulu, HI, USA, 18–21 July 2018; pp. 4997–5001. [Google Scholar] [CrossRef]
- Xin, Y.; Xu, Y.; Guo, C.; Sun, H.; Zhu, J.; Liu, T. Study on Sleep Monitoring Pillow Based on Piezoelectric Film Sensors. Piezoelectrics Acoustooptics 2018, 40, 283–287. [Google Scholar]
- Jiyong, X.; Yan, W.; Bin, L.; Lipan, B. Vital signs monitoring system based on piezoelectric film sensors. J. Phys. Conf. Ser. 2020, 1633, 012137. [Google Scholar] [CrossRef]
- Yoon, H.; Hwang, S.; Jung, D.; Choi, S.; Joo, K.; Choi, J.; Lee, Y.; Jeong, D.-U.; Park, K. Estimation of Sleep Posture using a Patch-type Accelerometer based Device. In Proceedings of the 37th Annual International Conference of the IEEE-Engineering-in-Medicine-and-Biology-Society (EMBC), Milan, Italy, 25–29 August 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 4942–4945. [Google Scholar]
- Jeng, P.Y.; Wang, L.C.; Hu, C.J.; Wu, D. A Wrist Sensor Sleep Posture Monitoring System: An Automatic Labeling Approach. Sensors 2021, 21, 258. [Google Scholar] [CrossRef]
- Suk, O.Y.; Hwan, K.J.; Zhaoqian, X.; Seokjoo, C.; Hyeonseok, H.; Woo, J.S.; Minsu, P.; Myeong, N.; Raudel, A.; Zhen, S.; et al. Battery-free, wireless soft sensors for continuous multi-site measurements of pressure and temperature from patients at risk for pressure injuries. Nat. Commun. 2021, 12, 5008. [Google Scholar]
- Park, I.; Suzuki, C.; Suzuki, Y.; Kawana, F.; Yajima, K.; Fukusumi, S.; Kokubo, T.; Tokuyama, K.; Yanagisawa, M.; Satoh, M. Effects of Body Pillow Use on Sleeping Posture and Sleep Architecture in Healthy Young Adults. Sleep Med. Res. 2021, 12, 57–63. [Google Scholar] [CrossRef]
- Cheung, J.C.; Tam, E.W.; Mak, A.H.; Chan, T.T.; Zheng, Y.P. A Night-Time Monitoring System (eNightLog) to Prevent Elderly Wandering in Hostels: A Three-Month Field Study. Int. J. Environ. Res. Public Health 2022, 19, 2103. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Wang, Y. Sleep Monitoring using an Infrared Thermal Array Sensor. In Proceedings of the Conference on Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, Denver, CO, USA, 4–7 March 2019. [Google Scholar]
- Yoon, Y.S.; Hahm, J.; Kim, K.K.; Park, S.K.; Oh, S.W. Non-contact home-adapted device estimates sleep stages in middle-aged men: A preliminary study. Technol. Health Care 2020, 28, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xiao, A.; Zheng, T.; Xiao, H.; Huang, R. The Relationship between Sleeping Position and Sleep Quality: A Flexible Sensor-Based Study. Sensors 2022, 22, 6220. [Google Scholar] [CrossRef]
- Zhou, Z.; Padgett, S.; Cai, Z.; Conta, G.; Wu, Y.; He, Q.; Zhang, S.; Sun, C.; Liu, J.; Fan, E.; et al. Single-layered ultra-soft washable smart textiles for all-around ballistocardiograph, respiration, and posture monitoring during sleep. Biosens. Bioelectron. 2020, 155, 112064. [Google Scholar] [CrossRef]
- Lavigne, G.J.; Khoury, S.; Abe, S.; Yamaguchi, T.; Raphael, K. Bruxism physiology and pathology: An overview for clinicians. J. Oral Rehabil. 2008, 35, 476–494. [Google Scholar] [CrossRef]
- Ohayon, M.M.; Li, K.K.; Guilleminault, C. Risk factors for sleep bruxism in the general population. Chest 2001, 119, 53–61. [Google Scholar] [CrossRef] [Green Version]
- Lavigne, G.J.; Rompre, P.H.; Montplaisir, J.Y. Sleep bruxism: Validity of clinical research diagnostic criteria in a controlled polysomnographic study. J. Dent. Res. 1996, 75, 546–552. [Google Scholar] [CrossRef]
- Lobbezoo, F.; Ahlberg, J.; Raphael, K.G.; Wetselaar, P.; Glaros, A.G.; Kato, T.; Santiago, V.; Winocur, E.; De Laat, A.; De Leeuw, R.; et al. International consensus on the assessment of bruxism: Report of a work in progress. J. Oral Rehabil. 2018, 45, 837–844. [Google Scholar] [CrossRef]
- Lee, S.-J.; Jeong, I.-D.; Kim, E.-B.; Park, J.-Y.; Jo, I.-H.; Han, J.-H.; Jung, T.-Y. s-Guard: Multisensor Embedded Obstructive Sleep Apnea and Bruxism Real-Time Data Transmission Intraoral Appliance Device. Appl. Sci. 2021, 11, 4182. [Google Scholar] [CrossRef]
- D’Addona, D.M.; Merenda, M.; Della Corte, F.G. Electronic sensors for intraoral force monitoring: State-of-the-art and comparison. In Proceedings of the 12th CIRP Conference on Intelligent Computation in Manufacturing Engineering (CIRP ICME), Naples, Italy, 18–20 July 2019; pp. 730–733. [Google Scholar]
- Coimbra, W.; Oliveira, P.; Marques, C.; Leal-Junior, A. Chirped Fiber Bragg Grating Sensors for Force Intensity and Location Assessment in Occlusal Splints: A Proof-of-Concept. IEEE Trans. Biomed. Eng. 2022, 1–8. [Google Scholar] [CrossRef]
- Jucevicius, M.; Oziunas, R.; Mazeika, M.; Marozas, V.; Jegelevicius, D. Accelerometry-Enhanced Magnetic Sensor for Intra-Oral Continuous Jaw Motion Tracking. Sensors 2021, 21, 1409. [Google Scholar] [CrossRef]
- O’Hare, E.; Cogan, J.A.; Dillon, F.; Lowery, M.; O’Cearbhaill, E.D. An Intraoral Non-Occlusal MEMS Sensor for Bruxism Detection. IEEE Sens. J. 2022, 22, 153–161. [Google Scholar] [CrossRef]
- Gao, J.; Liu, L.; Gao, P.; Zheng, Y.; Hou, W.; Wang, J. Intelligent Occlusion Stabilization Splint with Stress-Sensor System for Bruxism Diagnosis and Treatment. Sensors 2019, 20, 89. [Google Scholar] [CrossRef] [Green Version]
- Atanasov, A.T.; Dimov, P.D. Nasal and sleep cycle—Possible synchronization during night sleep. Med. Hypotheses 2003, 61, 275–277. [Google Scholar] [CrossRef]
- Adekolu, O.; Zinchuk, A. Sleep Deficiency in Obstructive Sleep Apnea. Clin. Chest Med. 2022, 43, 353–371. [Google Scholar] [CrossRef]
- Kohler, M.; Thurnheer, R.; Bloch, K.E. Side-selective, unobtrusive monitoring of nasal airflow and conductance. J. Appl. Physiol. 2006, 101, 1760–1765. [Google Scholar] [CrossRef] [Green Version]
- Teichtahl, H.; Cunnington, D.; Cherry, G.; Wang, D. Scoring polysomnography respiratory events: The utility of nasal pressure and oro-nasal thermal sensor recordings. Sleep Med. 2003, 4, 419–425. [Google Scholar] [CrossRef]
- Moshizi, S.A.; Abedi, A.; Sanaeepur, M.; Pastras, C.J.; Han, Z.J.; Wu, S.; Asadnia, M. Polymeric piezoresistive airflow sensor to monitor respiratory patterns. J. R. Soc Interface 2021, 18, 20210753. [Google Scholar] [CrossRef]
- Jiang, P.; Zhu, R.; Dong, X.; Chang, Y. Combination mode of physiological signals for diagnosis of OSAS using portable monitor. Sleep Breath. 2018, 22, 123–129. [Google Scholar] [CrossRef]
- Vernon, J.; Canyelles-Pericas, P.; Torun, H.; Binns, R.; Ng, W.P.; Wu, Q.; Fu, Y.-Q. Breath monitoring, sleep disorder detection, and tracking using thin-film acoustic waves and open-source electronics. Nanotechnol. Precis. Eng. 2022, 5, 033002. [Google Scholar] [CrossRef]
- Dehkordi, P.K.; Marzencki, M.; Tavakolian, K.; Kaminska, M.; Kaminska, B. Validation of Respiratory Signal Derived from Suprasternal Notch Acceleration for Sleep Apnea Detection. In Proceedings of the 33rd Annual International Conference of the IEEE Engineering-in-Medicine-and-Biology-Society (EMBS), Boston, MA, USA, 30 August–3 September 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 3824–3827. [Google Scholar]
- Jortberg, E.; Silva, I.; Bhatkar, V.; McGinnis, R.S.; Sen-Gupta, E.; Morey, B.; Wright, J.A., Jr.; Pindado, J.; Bianchi, M.T. A novel adhesive biosensor system for detecting respiration, cardiac, and limb movement signals during sleep: Validation with polysomnography. Nat. Sci. Sleep 2018, 10, 397–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yüzer, A.H.; Sümbül, H.; Polat, K. A Novel Wearable Real-Time Sleep Apnea Detection System Based on the Acceleration Sensor. IRBM 2020, 41, 39–47. [Google Scholar] [CrossRef]
- Montazeri Ghahjaverestan, N.; Kabir, M.M.; Saha, S.; Gavrilovic, B.; Zhu, K.; Taati, B.; Alshaer, H.; Yadollahi, A. Relative tidal volume and respiratory airflow estimation using tracheal sound and movement during sleep. J. Sleep Res. 2021, 30, e13279. [Google Scholar] [CrossRef] [PubMed]
- Stubbe, L.; Houel, N.; Cottin, F. Accuracy and reliability of the optoelectronic plethysmography and the heart rate systems for measuring breathing rates compared with the spirometer. Sci. Rep. 2022, 12, 19255. [Google Scholar] [CrossRef]
- Azza, Y.; Grueschow, M.; Karlen, W.; Seifritz, E.; Kleim, B. How stress affects sleep and mental health: Nocturnal heart rate increases during prolonged stress and interacts with childhood trauma exposure to predict anxiety. Sleep 2020, 43, zsz310. [Google Scholar] [CrossRef]
- Purcell, H.J.; Gibbs, J.S.; Coats, A.J.; Fox, K.M. Ambulatory blood pressure monitoring and circadian variation of cardiovascular disease; clinical and research applications. Int. J. Cardiol. 1992, 36, 135–149. [Google Scholar] [CrossRef]
- Garpestad, E.; Ringler, J.; Parker, J.A.; Remsburg, S.; Weiss, J.W. Sleep stage influences the hemodynamic response to obstructive apneas. Am. J. Respir. Crit. Care Med. 1995, 152, 199–203. [Google Scholar] [CrossRef]
- Dimsdale, J.E.; Loredo, J.S.; Profant, J. Effect of continuous positive airway pressure on blood pressure: A placebo trial. Hypertension 2000, 35, 144–147. [Google Scholar] [CrossRef] [Green Version]
- Kaniusas, E.; Pfutzner, H.; Mehnen, L.; Kosel, J.; Tellez-Blanco, C.; Varoneckas, G.; Alonderis, A.; Meydan, T.; Vazquez, M.; Rohn, M.; et al. Method for continuous nondisturbing monitoring of blood pressure by magnetoelastic skin curvature sensor and ECG. IEEE Sens. J. 2006, 6, 819–828. [Google Scholar] [CrossRef]
- Kwon, Y.; Stafford, P.L.; Lim, D.C.; Park, S.; Kim, S.H.; Berry, R.B.; Calhoun, D.A. Blood pressure monitoring in sleep: Time to wake up. Blood Press. Monit. 2020, 25, 61–68. [Google Scholar] [CrossRef]
- Downing, D.T.; Stranieri, A.M. Correction for Deviation from The Lambert-Beer Law in the Quantitation of Thin-Layer Chromatograms by Photodensitometry. J. Chromatogr. 1980, 192, 208–211. [Google Scholar] [CrossRef]
- Pereira, T.; Tran, N.; Gadhoumi, K.; Pelter, M.M.; Do, D.H.; Lee, R.J.; Colorado, R.; Meisel, K.; Hu, X. Photoplethysmography based atrial fibrillation detection: A review. NPJ Digit. Med. 2020, 3, 3. [Google Scholar] [CrossRef] [Green Version]
- Zhai, B.; Perez-Pozuelo, I.; Clifton, E.A.D.; Palotti, J.; Guan, Y. Making Sense of Sleep: Multimodal Sleep Stage Classification in a Large, Diverse Population Using Movement and Cardiac Sensing. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.—Imwut 2020, 4, 1–33. [Google Scholar] [CrossRef]
- Dowling, G.B. Pityriasis Lichenoides et Varioliformis Acuta. Proc. R. Soc. Med. 1945, 38, 342–344. [Google Scholar] [CrossRef] [Green Version]
- Habib, A.; Motin, M.A.; Penzel, T.; Palaniswami, M.; Yearwood, J.; Karmakar, C. Performance of a Convolutional Neural Network Derived from PPG Signal in Classifying Sleep Stages. IEEE Trans. Biomed. Eng. 2022, 1–15. [Google Scholar] [CrossRef]
- Cano, J.; Facila, L.; Gracia-Baena, J.M.; Zangroniz, R.; Alcaraz, R.; Rieta, J.J. The Relevance of Calibration in Machine Learning-Based Hypertension Risk Assessment Combining Photoplethysmography and Electrocardiography. Biosensors 2022, 12, 289. [Google Scholar] [CrossRef]
- Fortin, J.; Rogge, D.E.; Fellner, C.; Flotzinger, D.; Grond, J.; Lerche, K.; Saugel, B. A novel art of continuous noninvasive blood pressure measurement. Nat. Commun. 2021, 12, 1387. [Google Scholar] [CrossRef]
- Shahrbabaki, S.S.; Ahmed, B.; Penzel, T.; Cvetkovic, D. Photoplethysmography Derivatives and Pulse Transit Time in Overnight Blood Pressure Monitoring. In Proceedings of the 38th Annual International Conference of the IEEE-Engineering-in-Medicine-and-Biology-Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 2855–2858. [Google Scholar]
- Soltan Zadi, A.; Alex, R.; Zhang, R.; Watenpaugh, D.E.; Behbehani, K. Arterial blood pressure feature estimation using photoplethysmography. Comput. Biol. Med. 2018, 102, 104–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobs, D.K.; Gates, R.D. Developmental genes and the reconstruction of metazoan evolution-implications of evolutionary loss, limits on inference of ancestry and type 2 errors. Integr. Comp. Biol. 2003, 43, 11–18. [Google Scholar] [CrossRef] [PubMed]
- England, J.L.; Pande, V.S. Potential for modulation of the hydrophobic effect inside chaperonins. Biophys. J. 2008, 95, 3391–3399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yen, H.Y.; Huang, W.H. The efficacy of commercial smartwatches with a blood pressure-monitoring feature: A pilot randomized controlled trial. J. Nurs. Sch. 2022, 54, 324–331. [Google Scholar] [CrossRef] [PubMed]
- Xin, Y.; Guo, C.; Ling, Z.; Tian, H.; Li, X.; Dai, Q. Wearable health monitoring body area network system based on piezoelectric film sensors. J. Natl. Univ. Def. Technol. 2016, 38, 161–167. [Google Scholar] [CrossRef]
- Fan, W.; He, Q.; Meng, K.; Tan, X.; Zhou, Z.; Zhang, G.; Yang, J.; Wang, Z.L. Machine-knitted washable sensor array textile for precise epidermal physiological signal monitoring. Sci. Adv. 2020, 6, eaay2840. [Google Scholar] [CrossRef] [Green Version]
- Morillo, D.; Rojas Ojeda, J.L.; Crespo Foix, L.F.; Jimenez, A. An accelerometer-based device for sleep apnea screening. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 491–499. [Google Scholar] [CrossRef]
- Van Gastel, M.; Stuijk, S.; Overeem, S.; van Dijk, J.P.; van Gilst, M.M.; de Haan, G. Camera-Based Vital Signs Monitoring During Sleep—A Proof of Concept Study. IEEE J. Biomed. Health Inf. 2021, 25, 1409–1418. [Google Scholar] [CrossRef]
- Lee, K.; Ni, X.; Lee, J.Y.; Arafa, H.; Pe, D.J.; Xu, S.; Avila, R.; Irie, M.; Lee, J.H.; Easterlin, R.L.; et al. Mechano-acoustic sensing of physiological processes and body motions via a soft wireless device placed at the suprasternal notch. Nat. Biomed. Eng. 2020, 4, 148–158. [Google Scholar] [CrossRef]
- Dafna, E.; Tarasiuk, A.; Zigel, Y. Sleep-Quality Assessment from Full Night Audio Recordings of Sleep Apnea Patients. In Proceedings of the 34th Annual International Conference of the IEEE Engineering-in-Medicine-and-Biology-Society (EMBS), San Diego, CA, USA, 28 August–1 September 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 3660–3663. [Google Scholar]
- Sowho, M.; Sgambati, F.; Guzman, M.; Schneider, H.; Schwartz, A. Snoring: A source of noise pollution and sleep apnea predictor. Sleep 2020, 43, zsz305. [Google Scholar] [CrossRef]
- Shin, H.; Choi, W.; Kim, Y.-G.; Cho, J. Preliminary Study for the Personal Handheld Device based Snoring Detection in Ordinary Sleep Situation. In Proceedings of the 36th Annual International Conference of the IEEE-Engineering-in-Medicine-and-Biology-Society (EMBC), Chicago, IL, USA, 26–30 August 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 3687–3690. [Google Scholar]
- Chen, L.C.L.; Kuan-Wen, C. A sleep monitoring system with sleep-promoting functions in noise detection and sound generation. Int. J. Adv. Comput. Sci. Appl. 2015, 6, 175–184. [Google Scholar]
- Parker, C.J.; Baker, P.J.; Rosse, W.F. Comparison of binding characteristics of factors B and H to C3b on normal and paroxysmal nocturnal hemoglobinuria erythrocytes. J. Immunol. 1983, 131, 2484–2489. [Google Scholar] [CrossRef]
- Jovanovic, U.J. Periodicity of Erection during Sleep in Healthy Men. Electroencephalogr. Clin. Neurophysiol. 1969, 27, 626. [Google Scholar]
- Zhang, F.; Xiong, Y.; Qin, F.; Yuan, J. Short Sleep Duration and Erectile Dysfunction: A Review of the Literature. Nat. Sci. Sleep 2022, 14, 1945–1961. [Google Scholar] [CrossRef]
- Jankowski, J.T.; Seftel, A.D.; Strohl, K.P. Erectile dysfunction and sleep related disorders. J. Urol. 2008, 179, 837–841. [Google Scholar] [CrossRef]
- Raff, L.S.R.; Andreev, U.G.A.; Notov, I.K.N.; Khabarova, O.I.K.; Demidenko, E.S.D.; Nasedkina, T.V.N.; Aliev, R.T.A.; Erkovich, A.A.E. Monitoring of nocturnal penile tumescence in healthy volunteers by the “Androscan MIT” registrar to establish reliable normal physiological values in a multicenter study. Urologiia 2021, 4, 61–67. [Google Scholar] [CrossRef]
- Edgar, R.; Trip, E.J.; Wolterink, G.J.W.; Veltink, P.H.; Beck, J.J.H. New methods for the monitoring of nocturnal erections. Int. J. Impot. Res. 2022, 34, 1–7. [Google Scholar] [CrossRef]
- Heo, Y.; Kim, J.; Cha, C.; Shin, K.; Roh, J.; Jo, J. Wearable E-Textile and CNT Sensor Wireless Measurement System for Real-Time Penile Erection Monitoring. Sensors 2021, 22, 231. [Google Scholar] [CrossRef]
- Wu, M.; Chen, J.; Ma, Y.; Yan, B.; Pan, M.; Peng, Q.; Wang, W.; Han, L.; Liu, J.; Zeng, H. Ultra elastic, stretchable, self-healing conductive hydrogels with tunable optical properties for highly sensitive soft electronic sensors. J. Mater. Chem. A 2020, 8, 24718–24733. [Google Scholar] [CrossRef]
- Dang, B.; Dicarlo, J.; Lukashov, S.; Hinds, N.; Reinen, J.; Wen, B.; Hao, T.; Bilal, E.; Rogers, J. Development of a Smart Sleep Mask with Multiple Sensors. In Proceedings of the 43rd Annual International Conference of the IEEE-Engineering-in-Medicine-and-Biology-Society (IEEE EMBC), Guadalajara, Mexico, 1–5 November 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 7058–7062. [Google Scholar]
- Zhang, J.; Kim, K.; Kim, H.J.; Meyer, D.; Park, W.; Lee, S.A.; Dai, Y.; Kim, B.; Moon, H.; Shah, J.V.; et al. Smart soft contact lenses for continuous 24-h monitoring of intraocular pressure in glaucoma care. Nat. Commun. 2022, 13, 5518. [Google Scholar] [CrossRef]
- Liqiong, C.; Jiaqi, L.; Ju, W.; Xiaojiang, C.; Dingyi, F.; Zhanyong, T.; Nurmi, P.; Zheng, W. SleepGuard: Capturing Rich Sleep Information Using Smartwatch Sensing Data. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2018, 2, 1–34. [Google Scholar] [CrossRef] [Green Version]
- Teymourian, H.; Parrilla, M.; Sempionatto, J.R.; Montiel, N.F.; Barfidokht, A.; Van Echelpoel, R.; De Wael, K.; Wang, J. Wearable Electrochemical Sensors for the Monitoring and Screening of Drugs. ACS Sens. 2020, 5, 2679–2700. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, W.; Xin, S.; Yu, X.; Zhang, X. Effect of CPAP on blood glucose fluctuation in patients with type 2 diabetes mellitus and obstructive sleep apnea. Sleep Breath. 2022, 26, 1875–1883. [Google Scholar] [CrossRef] [PubMed]
- Griggs, S.; Pignatiello, G.; Hickman, R.L., Jr. A composite measure of sleep health is associated with glycaemic target achievement in young adults with type 1 diabetes. J. Sleep Res. 2022, e13784, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Tipparaju, V.V.; Mora, S.J.; Yu, J.; Tsow, F.; Xian, X. Wearable Transcutaneous CO(2) Monitor Based on Miniaturized Nondispersive Infrared Sensor. IEEE Sens. J. 2021, 21, 17327–17334. [Google Scholar] [CrossRef] [PubMed]
- Polat, E.O.; Mercier, G.; Nikitskiy, I.; Puma, E.; Galan, T.; Gupta, S.; Montagut, M.; Piqueras, J.J.; Bouwens, M.; Durduran, T.; et al. Flexible graphene photodetectors for wearable fitness monitoring. Sci. Adv. 2019, 5, eaaw7846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zangheri, M.; Cevenini, L.; Anfossi, L.; Baggiani, C.; Simoni, P.; Di Nardo, F.; Roda, A. A simple and compact smartphone accessory for quantitative chemiluminescence-based lateral flow immunoassay for salivary cortisol detection. Biosens. Bioelectron. 2015, 64, 63–68. [Google Scholar] [CrossRef]
- Elizur, A.; Maliar, A.; Shpirer, I.; Buchs, A.E.; Shiloah, E.; Rapoport, M.J. Decreased nocturnal glucose variability in non-diabetic patients with sleep apnea: A pilot study. Isr. Med. Assoc. J. 2013, 15, 465–469. [Google Scholar]
- Metz, A.J.; Pugin, F.; Huber, R.; Achermann, P.; Wolf, M. Changes of Cerebral Tissue Oxygen Saturation at Sleep Transitions in Adolescents. In Oxygen Transport to Tissue XXXVI; Swartz, H.M., Harrison, D.K., Bruley, D.F., Eds.; Springer: New York, NY, USA, 2014; Volume 812, pp. 279–285. [Google Scholar]
- Elmenhorst, E.M.; Rooney, D.; Benderoth, S.; Wittkowski, M.; Wenzel, J.; Aeschbach, D. Sleep-Induced Hypoxia under Flight Conditions: Implications and Countermeasures for Long-Haul Flight Crews and Passengers. Nat. Sci. Sleep 2022, 14, 193–205. [Google Scholar] [CrossRef]
- Nuhr, M.; Hoerauf, K.; Joldzo, A.; Frickey, N.; Barker, R.; Gorove, L.; Puskas, T.; Kober, A. Forehead SpO2 monitoring compared to finger SpO2 recording in emergency transport. Anaesthesia 2004, 59, 390–393. [Google Scholar] [CrossRef]
- Davies, H.J.; Williams, I.; Peters, N.S.; Mandic, D.P. In-Ear SpO2: A Tool for Wearable, Unobtrusive Monitoring of Core Blood Oxygen Saturation. Sensors 2020, 20, 4879. [Google Scholar] [CrossRef]
- Martin-Escudero, P.; Cabanas, A.M.; Fuentes-Ferrer, M.; Galindo-Canales, M. Oxygen Saturation Behavior by Pulse Oximetry in Female Athletes: Breaking Myths. Biosensors 2021, 11, 391. [Google Scholar] [CrossRef]
- Cakmak, D.D.; Eyuboglu, B.M. Portable obstructive sleep apnea detection and mobile monitoring. In Proceedings of the Conference on Smart Biomedical and Physiological Sensor Technology XIV, Anaheim, CA, USA, 9–10 April 2017. [Google Scholar]
- Zhang, Q.; Arney, D.; Goldman, J.M.; Isselbacher, E.M.; Armoundas, A.A. Design Implementation and Evaluation of a Mobile Continuous Blood Oxygen Saturation Monitoring System. Sensors 2020, 20, 6581. [Google Scholar] [CrossRef]
- Tran, V.P.; Al-Jumaily, A.A. A Novel Oxygen-Hemoglobin Model for Non-Contact Sleep Monitoring of Oxygen Saturation. IEEE Sens. J. 2019, 19, 12325–12332. [Google Scholar] [CrossRef]
- Senn, O.; Clarenbach, C.F.; Kaplan, V.; Maggiorini, M.; Bloch, K.E. Monitoring carbon dioxide tension and arterial oxygen saturation by a single earlobe sensor in patients with critical illness or sleep apnea. Chest 2005, 128, 1291–1296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venema, B.; Schiefer, J.; Blazek, V.; Blanik, N.; Leonhardt, S. Evaluating Innovative In-Ear Pulse Oximetry for Unobtrusive Cardiovascular and Pulmonary Monitoring During Sleep. IEEE J. Transl. Eng. Health Med. 2013, 1, 2700208. [Google Scholar] [CrossRef] [PubMed]
- Metz, A.J.; Pugin, F.; Huber, R.; Achermann, P.; Wolf, M. Brain Tissue Oxygen Saturation Increases During the Night in Adolescents. In Oxygen Transport to Tissue XXXV; VanHuffel, S., Naulaers, G., Caicedo, A., Bruley, D.F., Harrison, D.K., Eds.; Springer: New York, NY, USA, 2013; Volume 789, pp. 113–119. [Google Scholar]
- Zhang, Z.; Qi, M.; Hugli, G.; Khatami, R. Can Oxygen Desaturation Measured by Wearable Optical Sensor at the Arm Be Used to Measure Obstructive Sleep Apnea? Sleep Med. 2022, 100, S240. [Google Scholar] [CrossRef]
- Nabavi, S.; Debbarma, S.; Bhadra, S. A Smart Mandibular Advancement Device for Intraoral Cardiorespiratory Monitoring. In Proceedings of the 42nd Annual International Conference of the IEEE-Engineering-in-Medicine-and-Biology-Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 4079–4084. [Google Scholar]
- O’Donoghue, F.J.; Catcheside, P.G.; Ellis, E.E.; Grunstein, R.R.; Pierce, R.J.; Rowland, L.S.; Collins, E.R.; Rochford, S.E.; McEvoy, R.D.; for the Australian Trial of Noninvasive Ventilation in Chronic Airflow Limitation (AVCAL) Investigators. Sleep hypoventilation in hypercapnic chronic obstructive pulmonary disease: Prevalence and associated factors. Eur. Respir. J. 2003, 21, 977–984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramos, J.; Belo, J.; Silva, D.; Diogo, C.; Almeida, S.M.; Canha, N. Influence of indoor air quality on sleep quality of university students in Lisbon. Atmos. Pollut. Res. 2022, 13, 101301. [Google Scholar] [CrossRef]
- Rauhala, E.; Himanen, S.L.; Saastamoinen, A.; Polo, O. Prolonged spiking in the Emfit sensor in patients with sleep-disordered breathing is characterized by increase in transcutaneous carbon dioxide. Physiol. Meas. 2007, 28, 1163–1173. [Google Scholar] [CrossRef]
- Kang, S.W.; Chang, K.S. Development of an integrated sensor module for a non-invasive respiratory monitoring system. Rev. Sci. Instrum. 2013, 84, 095004. [Google Scholar] [CrossRef] [Green Version]
- Chhajed, P.N.; Gehrer, S.; Pandey, K.V.; Vaidya, P.J.; Leuppi, J.D.; Tamm, M.; Strobel, W. Utility of Transcutaneous Capnography for Optimization of Non-Invasive Ventilation Pressures. J. Clin. Diagn. Res. 2016, 10, OC06–OC09. [Google Scholar] [CrossRef]
- Pevet, P.; Challet, E.; Felder-Schmittbuhl, M.P. Melatonin and the circadian system: Keys for health with a focus on sleep. Handb Clin. Neurol. 2021, 179, 331–343. [Google Scholar] [CrossRef]
- Biggio, G.; Biggio, F.; Talani, G.; Mostallino, M.C.; Aguglia, A.; Aguglia, E.; Palagini, L. Melatonin: From Neurobiology to Treatment. Brain. Sci. 2021, 11, 1121. [Google Scholar] [CrossRef]
- Reiter, A.M.; Roach, G.D.; Sargent, C. The night before night shift: Chronotype impacts total sleep and rapid eye movement sleep during a strategically delayed sleep. J. Sleep Res. 2022, 32, e13683. [Google Scholar] [CrossRef]
- Moderie, C.; Boudreau, P.; Shechter, A.; Lesperance, P.; Boivin, D.B. Effects of exogenous melatonin on sleep and circadian rhythms in women with premenstrual dysphoric disorder. Sleep 2021, 44, zsab171. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, L.; Yang, F.; Xi, W. Neural Circuits for Sleep-Wake Regulation. In Neural Circuits of Innate Behaviors; Wang, H., Ed.; Springer: Singapore, Singapore, 2020; Volume 1284, pp. 91–112. [Google Scholar]
- Sanchez, R.E.A.; Kalume, F.; de la Iglesia, H.O. Sleep timing and the circadian clock in mammals: Past, present and the road ahead. Semin. Cell Dev. Biol. 2022, 126, 3–14. [Google Scholar] [CrossRef]
- Massey, R.; Bebe, S.; Prakash, R. Aptamer-Enhanced Organic Electrolyte-Gated FET Biosensor for High-Specificity Detection of Cortisol. IEEE Sens. Lett. 2020, 4, 1–4. [Google Scholar] [CrossRef]
- Shahub, S.; Upasham, S.; Ganguly, A.; Prasad, S. Machine learning guided electrochemical sensor for passive sweat cortisol detection. Sens. Bio-Sens. Res. 2022, 38, 100527. [Google Scholar] [CrossRef]
- Dornbierer, D.A.; Yerlikaya, F.; Wespi, R.; Boxler, M.I.; Voegel, C.D.; Schnider, L.; Arslan, A.; Baur, D.M.; Baumgartner, M.R.; Binz, T.M.; et al. A novel bedtime pulsatile-release caffeine formula ameliorates sleep inertia symptoms immediately upon awakening. Sci. Rep. 2021, 11, 19734. [Google Scholar] [CrossRef]
- Julia, B.; Mathias, G.; Laura, N.; Benjamin, N.; Andrea, B.; Astrid, S.; Lennart, F.M.; Clemens, L.; Lukas, J.; Jürgen, Z.; et al. Finger sweat analysis enables short interval metabolic biomonitoring in humans. Nat. Commun. 2021, 12, 5993. [Google Scholar]
- Akiyo, N.; Tomomi, T.; Akihiro, K.; Hiromi, I.; Naoya, K.; Andrea, T.; Johannes, H.; Tohru, K.; Tomomi, S.; Kazuto, M.; et al. Intracellular ATP levels in mouse cortical excitatory neurons varies with sleep-wake states. Commun. Biol. 2020, 3, 491. [Google Scholar]
- Liang, Z.; Chapa Martell, M.A. Validity of Consumer Activity Wristbands and Wearable EEG for Measuring Overall Sleep Parameters and Sleep Structure in Free-Living Conditions. J. Healthc. Inf. Res. 2018, 2, 152–178. [Google Scholar] [CrossRef] [PubMed]
- Al Mahmud, A.; Wu, J.; Mubin, O. A scoping review of mobile apps for sleep management: User needs and design considerations. Front. Psychiatry 2022, 13, 1037927. [Google Scholar] [CrossRef]
- Miller, D.J.; Roach, G.D.; Lastella, M.; Scanlan, A.T.; Bellenger, C.R.; Halson, S.L.; Sargent, C. A Validation Study of a Commercial Wearable Device to Automatically Detect and Estimate Sleep. Biosensensors 2021, 11, 185. [Google Scholar] [CrossRef] [PubMed]
- Hamill, K.; Jumabhoy, R.; Kahawage, P.; de Zambotti, M.; Walters, E.M.; Drummond, S.P.A. Validity, potential clinical utility and comparison of a consumer activity tracker and a research-grade activity tracker in insomnia disorder II: Outside the laboratory. J. Sleep Res. 2020, 29, e12944. [Google Scholar] [CrossRef] [PubMed]
- Casaccia, S.; Braccili, E.; Scalise, L.; Revel, G.M. Experimental Assessment of Sleep-Related Parameters by Passive Infrared Sensors: Measurement Setup, Feature Extraction, and Uncertainty Analysis. Sensors 2019, 19, 3773. [Google Scholar] [CrossRef] [Green Version]
- Sharma, M.; Patel, V.; Tiwari, J.; Acharya, U.R. Automated Characterization of Cyclic Alternating Pattern Using Wavelet-Based Features and Ensemble Learning Techniques with EEG Signals. Diagnostics 2021, 11, 1380. [Google Scholar] [CrossRef]
- Proniewska, K.; Pregowska, A.; Malinowski, K.P. Identification of Human Vital Functions Directly Relevant to the Respiratory System Based on the Cardiac and Acoustic Parameters and Random Forest. IRBM 2021, 42, 174–179. [Google Scholar] [CrossRef]
- Nonoue, S.; Mashita, M.; Haraki, S.; Mikami, A.; Adachi, H.; Yatani, H.; Yoshida, A.; Taniike, M.; Kato, T. Inter-scorer reliability of sleep assessment using EEG and EOG recording system in comparison to polysomnography. Sleep Biol. Rhythm. 2016, 15, 39–48. [Google Scholar] [CrossRef]
- Qiu, C.; Yuce, M.R. A Wearable Bioimpedance Chest Patch for IoHT-Connected Respiration Monitoring. In Proceedings of the 43rd Annual International Conference of the IEEE-Engineering-in-Medicine-and-Biology-Society (IEEE EMBC), Guadalajara, Mexico, 1–5 November 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 6924–6927. [Google Scholar]
- Lachenmeier, W.; Lachenmeier, D.W. Home Monitoring of Oxygen Saturation Using a Low-Cost Wearable Device with Haptic Feedback to Improve Sleep Quality in a Lung Cancer Patient: A Case Report. Geriatrics 2022, 7, 43. [Google Scholar] [CrossRef]
- Fedorin, I.; Slyusarenko, K. Consumer Smartwatches As a Portable PSG: LSTM Based Neural Networks for a Sleep-Related Physiological Parameters Estimation. In Proceedings of the 43rd Annual International Conference of the IEEE-Engineering-in-Medicine-and-Biology-Society (IEEE EMBC), Electronic Network, Guadalajara, Mexico, 1–5 November 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 849–852. [Google Scholar]
- Rosler, L.; van der Lande, G.; Leerssen, J.; Vandegriffe, A.G.; Lakbila-Kamal, O.; Foster-Dingley, J.C.; Albers, A.; van Someren, E. Combining cardiac monitoring with actigraphy aids nocturnal arousal detection during ambulatory sleep assessment in insomnia. Sleep 2022, 45, zsac031. [Google Scholar] [CrossRef]
- Toedebusch, C.D.; McLeland, J.S.; Schaibley, C.M.; Banks, I.R.; Boyd, J.; Morris, J.C.; Holtzman, D.M.; Lucey, B.P. Multi-Modal Home Sleep Monitoring in Older Adults. J. Vis. Exp. 2019, 143, e58823. [Google Scholar] [CrossRef]
- Gashi, S.; Alecci, L.; Lascio, E.D.; Debus, M.E.; Gasparini, F.; Santini, S. The Role of Model Personalization for Sleep Stage and Sleep Quality Recognition Using Wearables. IEEE Pervasive Comput. 2022, 21, 69–77. [Google Scholar] [CrossRef]
- He, C.; Tan, J.; Jian, X.; Zhong, G.; Cheng, L.; Lin, J. A Smart Flexible Vital Signs and Sleep Monitoring Belt Based on MEMS Triaxial Accelerometer and Pressure Sensor. IEEE Internet Things J. 2022, 9, 14126–14136. [Google Scholar] [CrossRef]
- Thurston, R.C.; Wu, M.; Aizenstein, H.J.; Chang, Y.; Mitchell, E.B.; Derby, C.A.; Maki, P.M. Sleep characteristics and white matter hyperintensities among midlife women. Sleep 2020, 43, zsz298. [Google Scholar] [CrossRef]
Type | Contact Resistance | Electrode Size | Correlation | Feature | Ref. |
---|---|---|---|---|---|
Wet/semi-dry Electrode | 1.5–130 kΩ | mm–cm | 60–100% | Most commonly used in clinical practice. | [56,75,121] |
Dry electrode | 2.5 kΩ–5 MΩ | mm–cm | 60–98% | Easiest to use. | [121,122] |
Conductive fabrics | 3.4 kΩ–34 kΩ | cm–dm | 50–95.6% | The maximum contact resistance min. The same experience as regular eye masks and pillowcases. | [62,95,104,121,123] |
Microneedle array | 14.16–378.18 kΩ cm2 | mm–cm | 60–95% | Minimum contact resistance of in vitro electrodes. | [102,121] |
Implantable electrodes | 100 Ω–34 kΩ | μm | / | Best signal quality. Surgery is required. | [80,81,82,83,124] |
Contact lens electrodes | / | mm–cm | / | Dedicated to ERG | [114] |
Methods/Technology | Monitoring Objects | Sleep Stage | Accuracy (Error) | Feature | Ref. |
---|---|---|---|---|---|
Record the usage time of cell phone keyboard | / | Sleep–awake | (9.83 + 5.40 min) | Related to cell phone usage habits. Does not require any new devices | [125] |
Wristband accelerometers | 7 types of insomnia | Sleep–awake | / | / | [132] |
Wrist accelerometer | / | NREMS | 96.90% | Accuracy for REMS is low, comparing different classification algorithms | [135] |
Wrist accelerometer (apple watch) | / | 3 stages | 72% | Exercise alone is better than HR alone. The combination can be improved to a certain extent | [136] |
Wrist accelerometer | / | Sleep–awake | 91.71% | The algorithm takes into account the tic behavior | [137] |
Wrist accelerometer | / | Sleep–awake | 95.80% | Use commercial products, add HR analysis | [139] |
Chest acceleration | Sleep position | / | 99.16% | / | [146] |
Chest acceleration | / | Sleep–awake | 85.80% | 6% higher than wrist under the same conditions | [138] |
Wrist and chest orientation sensors | Sleep position | 95% | The combination of different positions was compared | [140] | |
Head accelerometer | / | 3 stages | (2.0–5.2%) with EEG | Help EEG improve accuracy | [141] |
Head accelerometer | / | 4 stages | 74.6% | [142] | |
Quilt accelerometer | Accidental falls | / | / | There is no need to wear | [143] |
Smart watches | Posture, movement, sound | / | 87–98% | / | [214] |
Piezoelectric film mattress | Abnormal sleep in the elderly | / | / | / | [142] |
Chest and wrist accelerometers | Sleep position | / | 85% | / | [147] |
Infrared camera | In bed state | / | 99.80% | Non-contact | [150] |
Infrared array | Sleep position | / | 95% | Non-contact | [151] |
Microwave sensor, infrared sensor | / | 4 stages | 98.65% + 0.05% | Non-contact | [152] |
Capacitive, accelerometer | Restless legs syndrome | Sleep–awake | 83.72% | / | [129] |
Ultra-thin smart textiles | Sleep position | / | / | Non-contact | [154] |
Intraoral accelerometer | AS, Sleep position | / | / | / | [159] |
Intraoral magnetic sensors | Teeth grinding | / | (0.260 + 0.004 mm) | / | [162] |
Intraoral pressure sensor | Teeth grinding | / | 82.20% | Close to EMG results | [163] |
Nasal pressure and oro-nasal thermal sensor | Respiratory events | / | Up to 94% | / | [168] |
Airflow, activity | OSAS | / | 96.50% | / | [170] |
Chest acceleration | Spirometry, RR | / | −1.50% | / | [172] |
Chest acceleration | RR | / | (0.26 bpm) | / | [173] |
Accelerometer near the diaphragm | SA | / | 100% | Vibrations stimulate the body to change posture | [174] |
Tracheal sound sensor | Breath airflow | / | / | / | [175] |
OEP | RR | / | −0.40% | / | [176] |
Skin curvature sensor | BP | / | (4 mmHg) | Poor correlation | [181] |
PPG | BP, HR | Sleep–awake | Up to 93% | / | [185,187] |
PTT | BP | / | (3.2 mmHg) | / | [117,190,191] |
Chest acceleration | HR | / | 95% | / | [197] |
Infrared camera | HR | / | 92% | Non-contact | [198] |
Microphone | Sleep–awake | 82.10% | Non-contact | [200] | |
Microphone | Snoring | / | 89% | Non-contact | [201] |
Electronic fabric strain sensors | Nocturnal erection | / | (1.44%) | / | [209] |
Sensors on contact lenses | Eye pressure | / | / | Can warn of high eye pressure problems during sleep | [213] |
Objectives | Sensors | Accuracy (Error) | Feature | Ref. |
---|---|---|---|---|
Sleep Apnea | Nasal airflow sensor, body activity sensor, SpO2 sensor | 96.5% | Specificity of 100% | [170] |
Sleep Apnea | Utilizing thermocouple; pulse oximeter | 100% | Wireless data sharing | [227] |
SRBD | ECG, microphone | 89% | [257] | |
Sleep Stages | EEG EOG | 89.2% | The recognition rate of non-REM sleep stage 1 is low | [258] |
Sleep Stages | 3-axis accelerometers, respiratory acoustic sensor, four infrared optical sensors | / | Integrated into the eye mask | [212] |
Breathing rate | Bioimpedance sensor, temperature sensor | (0.71 bpm) | Effectively in different postures and dynamic environments | [259] |
Grinding | Masseter pressure sensor, masseter EMG | 82.8% | Pressure sensors are less accurate than combined sensing | [163] |
Restless Leg Syndrome | Capacitive sensors; six-axis inertial measurement sensor | 93.65% | Effectively improve diagnosis rates | [129] |
Ventricular Bigeminy | ECG, microphone | / | The delay was reduced by up to 88% | [93] |
Sensor | Outputs | Accuracy (Error) | Feature | Ref. |
---|---|---|---|---|
Infrared camera | Pulse rate, respiratory rate, blood oxygen | 92% | No contact | [198] |
Optical Blood Oximeter | Pulse rate, blood oxygen | / | Vibration makes people adjust their posture when breathing is not good | [260] |
Optical Blood Oximeter | Pulse rate, blood oxygen | 99% | [227] | |
Intraoral photoplethysmography | Pulse rate, respiration rate, respiration pattern, blood oxygen | 96% | [234] | |
Acoustic sensor | Pulse rate, respiration rate | (2.6–3.9 bpm) | Mild with anatomical structure-based interpretation | [199] |
Piezoelectric film | Movement, pulse rate, respiratory rate, blood pressure | (3 mm Hg) | [195] | |
Conductive textile | Posture, pulse rate, sleep apnea | (1.33%) | Can be washed repeatedly | [154] |
Textile electronics | Pulse rate, respiration rate, PTT, SAS | / | Can be fixed in any position, washable | [196] |
Sensors | Output | Indicators | Feature | Ref. |
---|---|---|---|---|
Infrared depth sensor, camera, four-microphone array | Sleep quality analysis | / | Automatic play of white noise to improve sleep quality | [203] |
Acceleration sensor, temperature sensor, humidity sensor | The movement of the person and bedding | / | No need to wear wearable devices | [143] |
Passive infrared sensor, bed sensor (Nokia sleep bed sensor) | Sleep latency, sleep interruptions, time to wake, sleep efficiency | 4.7% robust statistic confidence | Sleep quality can be effectively assessed | [255] |
Galaxy Watch (PSG sensor, PPG sensor, 3-axic accelerometer) | Sleep stages, epoch-by-epoch respiratory events classification, snore events classification, blood oxygen | 77% accuracy in sleep stages prediction, 80% accuracy in epoch-by-epoch respiratory events classification, 60% accuracy in snore events classification 70% accuracy in SpO2 level classification | Commercial integrated wearable devices | [261] |
ECG, accelerometry, | Heart rate and 5 ECG characteristics, posture, sleep quality | / | Cardiac changes start earlier and last longer than movement | [262] |
Single-channel EEG; nasal pressure transducer and thermistor; thoracic and abdominal respiratory inductance plethysmograph belts; pulse oximetry; EMG | Sleep-disordered breathing and periodic leg movements | Failure rate was reduced to 19% | / | [263] |
EDA; ACC; skin temperature sensor | Sleep/wake; high/low sleep quality | 92.2% accuracy of sleep–wake, 61.51% accuracy of low sleep quality | / | [264] |
Accelerometer, gyroscope, orientation sensor; microphone; ambient light sensor | Sleep posture and habits, environment, sleep quality | 98% accuracy of event detection | Identify causes for sleep problems compared to prior work | [214] |
MEMS triaxial accelerometer, pressure sensor | Vital signs, snore events, and sleep stages | 97.2% accuracy of snoring, 95.1% accuracy of sleep stage | / | [265] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, J.; Xu, J.; Ren, T.-L. Recent Progress in Long-Term Sleep Monitoring Technology. Biosensors 2023, 13, 395. https://doi.org/10.3390/bios13030395
Yin J, Xu J, Ren T-L. Recent Progress in Long-Term Sleep Monitoring Technology. Biosensors. 2023; 13(3):395. https://doi.org/10.3390/bios13030395
Chicago/Turabian StyleYin, Jiaju, Jiandong Xu, and Tian-Ling Ren. 2023. "Recent Progress in Long-Term Sleep Monitoring Technology" Biosensors 13, no. 3: 395. https://doi.org/10.3390/bios13030395
APA StyleYin, J., Xu, J., & Ren, T. -L. (2023). Recent Progress in Long-Term Sleep Monitoring Technology. Biosensors, 13(3), 395. https://doi.org/10.3390/bios13030395