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Abstract: Wearable electronics is a rapidly growing field that recently started to introduce successful
commercial products into the consumer electronics market. Employment of biopotential signals
in wearable systems as either biofeedbacks or control commands are expected to revolutionize
many technologies including point of care health monitoring systems, rehabilitation devices,
human–computer/machine interfaces (HCI/HMIs), and brain–computer interfaces (BCIs). Since
electrodes are regarded as a decisive part of such products, they have been studied for almost a decade
now, resulting in the emergence of textile electrodes. This study presents a systematic review of
wearable textile electrodes in physiological signal monitoring, with discussions on the manufacturing
of conductive textiles, metrics to assess their performance as electrodes, and an investigation of their
application in the acquisition of critical biopotential signals for routine monitoring, assessment, and
exploitation of cardiac (electrocardiography, ECG), neural (electroencephalography, EEG), muscular
(electromyography, EMG), and ocular (electrooculography, EOG) functions.

Keywords: biopotential monitoring; biosignal acquisition; conductive textile; eHealth; e-textile; IoT;
long-term monitoring; health monitoring; mHealth; smart textile; textile electrodes; dry electrode;
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1. Introduction

A new trend in electronics is towards the miniaturization and integration of devices into wearable
formats such as smart watches, garments, and goggles, where the technology is collectively referred
to as wearable electronics or wearable computing [1]. The emerging wearable electronics market is
expected to grow 15.5% annually from 2016 to 2022 [2]. This has created a new venue for researchers to
investigate novel approaches and develop robust, compact, reliable, and cost-effective solutions to
meet the growing demand for wearable devices. Hence, a thorough investigation of suitable materials,
fabrication methodologies, and sensing elements needs to be carried out.

Electronic textile (e-textile) or “smart textile” is an evolving technological platform in the field of
wearable electronics that studies the integration of functional materials with ordinary clothing to realize
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devices including sensors, energy harvesters (e.g., photovoltaic cells [3] or piezoelectric materials [4]),
antennas [5], advanced textiles for self-heating and cooling [6], and even fashion applications [7]. These
are achieved by embedding materials with electrical, mechanical, and/or thermal properties into textiles
to add desired functionalities for a given application. For instance, materials with unique properties
have been used for chemical sensing of sweat [8,9], temperature [10], and pressure and strain [11,12].
Moreover, internet of things (IoT)-friendly applications are also possible by the integration of wireless
transmission modules into textiles to allow continuous transfer of physiological information to a
remote medical unit or to the cloud [13,14]. The usage of electroconductive textiles promises to add
several other advantages including flexibility, permeability to air and moisture, and easy integration to
daily clothing [15]. Flexibility is important primarily to enable skin-compatible devices by matching
with the natural contours of the body, to provide wearability, and to achieve better skin–electrode
coupling, whereas permeability to air and moisture alleviates the possibility of skin irritations.

One important application of e-textiles within the sensor domain is in the acquisition of biopotential
signals for personal and routine health monitoring. Conventionally, biopotential signals are measured
by disposable, “wet” silver/silver chloride (Ag/AgCl) electrodes [16]. Wet electrodes are comprised of
a gel layer to reduce the skin–electrode contact impedance and adhesive padding to improve contact
with the skin. The performance of wet electrodes, however, degrades with time as the gel layer dries,
which further results in degradation of the signal fidelity. In addition, wet electrodes usually require
skin preparation, which can involve abrasion of the outer skin layer [17]. On the other hand, the gel
can cause allergic reactions and irritation, while the adhesive layer causes added discomfort both while
wearing the electrode and at the time of removal, due to the need for mechanical peeling for electrode
detachment [18,19].

Although wet electrodes are standard in clinical environments, gel-free, “dry” electrodes can serve
as good candidates for wearable, long-term, point-of-care personal health monitoring applications and
many other similar systems. To this end, wearable conductive textiles provide a viable alternative.
Therefore, it is the aim of this study to survey and critically review the state-of-art wearable textile
technologies, with a specific focus on the acquisition of biopotentials including cardiac, neural,
muscular, and ocular signals, and to discuss some of the emerging applications enabled by their
detection and processing.

In alignment with this goal, this paper is organized in three main sections: first, manufacturing
technology for e-textiles is presented, followed by a discussion on the critical performance metrics
of textile electrodes. The acquisition of various biopotentials with e-textiles is then discussed, along
with the different wearable electronics applications. The challenges from fundamental material
development to high-level integration are emphasized to highlight areas that need development and
suggest future directions.

2. Materials and Methods

While the materials and methods to realize conductive textiles do not directly affect the performance
of the textile electrode, they are among the most important, if not the primary, aspects of e-textile
technology since manufacturing cost and reliability tend to be a direct function of the manufacturing
technology. In this section, a comprehensive survey of the various techniques and materials used to
realize electroconductive textiles is provided. Fabrication of e-textiles essentially relies on the stable
integration of conductive materials with fabrics and fibers. Commonly used conductive materials
include metals, conductive polymers, and carbon allotropes (i.e., graphene and carbon nanotubes).
These materials can be used either with mainstream fabric manufacturing/decoration approaches (e.g.,
knitting, weaving, embroidery) [20], or can be applied onto finished textiles with various techniques
like electroplating [21,22], physical vapor deposition (PVD) [23,24], chemical polymerization [25],
dip-coating [26], and printing methods [27] to coat the surface of the textile (Figure 1).
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traditional method, with knitting, an entire garment can be formed on one machine. 

Meanwhile, knitting enables the processing of a wide variety of natural yarns and filaments. For 
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compatible fabric for a garment [32]. On the other hand, knitted structures exhibit many intermittent 
contacts in between the yarns, which leads to fluctuations in electrical resistivity especially in 
dynamic conditions [33]. Although resistance variation is undesirable for biopotential measurements 
as it causes larger signal artifacts, it is preferable in sensor applications such as pressure and strain 
monitoring. 

Since conductive yarns are placed above the fabric surface, it was suggested that embroidery 
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it can be argued that embroidery is an ideal choice for prototyping. In contrast, weaving and knitting 
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Figure 1. Primary methods of realizing conductive textiles [3,26–30].

2.1. Knitting, Weaving, and Embroidery

Knitting, weaving, and embroidery are well-established techniques in textile manufacturing and
decoration. By using various conductive fibers and yarns, e-textiles can be directly produced through
knitting or weaving, while embroidery could be used to create conductive patterns on finished textile
surfaces. Woven textiles are produced by interlacing two perpendicular sets of yarns. In contrast,
knitting uses a needle to continuously connect a series of chains of yarn together. Embroidery is a
decoration method for a finished fabric surface involving different forms of stitches. Knitted textiles
provide skin comfort, low weight, and high elasticity for users [31]. Since it is a well-established
traditional method, with knitting, an entire garment can be formed on one machine.

Meanwhile, knitting enables the processing of a wide variety of natural yarns and filaments.
For this reason, it has been considered the most suitable method for preparing an unobtrusive,
compatible fabric for a garment [32]. On the other hand, knitted structures exhibit many intermittent
contacts in between the yarns, which leads to fluctuations in electrical resistivity especially in dynamic
conditions [33]. Although resistance variation is undesirable for biopotential measurements as it causes
larger signal artifacts, it is preferable in sensor applications such as pressure and strain monitoring.

Since conductive yarns are placed above the fabric surface, it was suggested that embroidery
offers better electrode contact with the skin [28]. For the positioning of textile electrodes on garments,
it can be argued that embroidery is an ideal choice for prototyping. In contrast, weaving and knitting
become more useful when mass production of a smart garment is desired.

2.1.1. Metallic Fibers

An effective way to impart conductivity to fabrics for biopotential measurements is by adding
conductive “elements” inside them. A common strategy is based on combining metallic fibers with
regular yarns or fibers by following established textile manufacturing processes like knitting [34],
weaving [35] or embroidery [28,36]. Metallic fibers can be realized by creating fine metal wires [20]
or through the deposition of metals on regular yarns via methods like physical vapor deposition
(PVD) [37] and electrodeposition [22].
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Among metals, silver provides the highest conductivity and is one of the most preferred materials
due to its biocompatibility and stability [38]. In a number of different studies, silver was incorporated
into fabrics made out of cotton [39], nylon [40], or polyester threads [41]. Another metal that is used
for producing conductive textiles is stainless steel [42]. Likewise, copper is a good candidate due
to its high electrical conductivity; however, especially in contact with water, it is prone to corrosion.
To address this issue, the coating of copper surfaces with silver has been suggested [32].

Apart from the choice of metal, the type of yarn (e.g., cotton, polyester, and lycra) and fiber
styles (either single filament or multifilament) along with the structure of the textile can also affect the
functionality of the electrodes. Textiles comprised of metallic yarns are relatively easy to manufacture,
are flexible, and are adaptable to existing textile manufacturing environments. Nevertheless, they
usually compromise the texture and natural feel of the textile, which causes discomfort especially
when the percentage of metallic fiber is above a certain level [43]. This inherent trade-off between
the conductivity of the textile versus the texture and wearability, therefore, requires careful balance
in design.

2.1.2. Conductive Polymer Fibers

Another way of realizing conductive fibers is by creating polymer fibers that possess bulk
conductivity. It is possible to categorize these as intrinsic conductive polymer fibers and extrinsic
conductive polymer fibers [44].

Intrinsic conductive polymer fibers are produced by spinning conjugated polymers, also known
as intrinsic conductive polymers (ICPs), such as polyaniline (PANI) [45], polypyrrole (PPy) [46], and
poly(3,4-ethylenedioxythiophene) (PEDOT) [47]. Techniques such as melt spinning, wet spinning, and
electrospinning are used to produce conductive polymer fibers. Most of the ICPs start to decay in
temperatures lower than their melting point, which makes the use of melt spinning unfavorable [48].
In addition, the relative characteristics of ICPs such as poor solubility, rigid backbone structure, and
low molecular weight makes them harder to electrospin [48]. To increase processability, blending with
a polymer with good spinnability is suggested, but this decreases the conductivity of the polymer
fibers [49]. Thus, wet spinning turns out to be the most suitable method for fiber fabrication from ICPs.

Extrinsically conductive polymers (ECPs), or conductive polymer composites, can be obtained
by blending insulating polymers with conductive fillers [44]. Melt and wet spinning are common
methods to produce composite polymer fibers. Wet spinning can produce fibers with better electrical
and mechanical properties, whereas melt spinning is faster and free of chemical solvents [44]. As in the
case of metallic fibers, conductive polymer fibers can be used to create textile electrodes with weaving,
knitting, and embroidery.

Even though creating conductive fibers with electrospinning is challenging, decreasing the polymer
fiber diameter down to nanometers results in a high surface area and advantageous mechanical
behaviors [50]. Additionally, electrospinning is regarded as the most reliable method to create
continuous polymer nanofibers [49]. It is possible to use these fibers to produce conductive nonwoven
textiles, which are a good candidate for biopotential electrodes since a large contact area is a desired.
Nonetheless, it is not necessary to first create conductive nanofibers and then produce a nonwoven textile
to take advantage of the large surface area. It is simpler and more efficient to first fabricate a nonwoven
textile with electrospinning and bestow conductivity on it with conductive fillers afterwards [51]. With
this approach, researchers were able to fabricate textile electrodes and validate their performance in
biopotential recordings against Ag/AgCl electrodes.

2.2. Electrodeposition

Electroless plating is a technique that involves spontaneous reactions in an aqueous solution
without requiring the application of an external electric field [52], unlike electroplating, which uses
an electrode current to reduce the metal cations for the coating. Electrodeposition techniques along
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with physical vapor deposition are the most prominent techniques to perform metal coating on
non-conductive yarns and textiles.

Electroless plating on polymer fibers is an appealing choice to realize conductive fibers since it
enables conductivity in all surface directions and is an acceptable way to obtain the uniform deposition
of metals on complex geometries [3]. Usually, metal coating on synthetic fibers is preferred rather than
natural fibers. This trend is mostly because of the low cost of synthetic yarns. The preferred metals in
electroless plating are usually silver, copper, and nickel [21,22,53].

Despite the various fabric–metal combinations, metal-plated fabrics face durability issues when
worn or washed since they can be easily peeled off from regions exposed to air or water. One of the
methods that are practiced to enhance the adhesion of metals to polymeric fibers is increasing the
surface roughness either with mechanical abrasion or chemical etching [54]. Performing electroless
plating followed by electroplating is an appealing coating method where electroless plating allows
deposition of a more uniform coating between the starting yarn/fiber, whereas electroplating provides
a larger window for thickness control [55]. To prevent wearing out of the surface coating, lamination
of metal-coated polyester fabrics with a polyurethane sealing layer was also suggested [15].

2.3. Physical Vapor Deposition

PVD techniques such as thermal/e-beam evaporation and sputtering are well-established in the
microelectronics process industry [56]. Similar to electrodeposition, the performance of a PVD-deposited
conductive layer depends both on the nature of the textile and on the deposited layer. Its conductivity
can be controlled by selection of the thin-film coating material and film thickness. So far, there have been
several attempts that utilized PVD to evaporate metals and deposit thin conductive films on a variety
of textiles [57,58]. Sputtering has been used to deposit layers of silver [23,59] and copper [24,29] on
textiles made from polyethylene terephthalate (PET) yarns and polyurethane (PU)-coated nylon fabrics.

For PVD, like other coating techniques, adhesion of the conductive materials on the surface of
the fibers is critical. Removal of potential residues like oil from fiber surfaces can promote adhesion,
which can be achieved by plasma cleaning or chemical treatments [60]. Metals like chromium [23]
and titanium [59] have also been sputtered onto fabrics to either improve the adhesion of silver or
passivate it to limit potential cytotoxicity when used in direct contact with the skin in low humidity
conditions. As for the film thickness, it was shown that sputtered fibers generally require a smaller
thickness of metal deposition compared to electroless-plated ones, due to the greater adhesion and
smoother coating of metals via PVD [37,54].

On the other hand, a disadvantage is that during PVD, a significant portion of the source material
is lost in spots other than the desired substrate. This issue, combined with the need for dedicated
equipment and a vacuum deposition environment, potentially increases the cost of the conductive
textile. While there have been few attempts to produce e-textiles based on PVD, this approach is still
among the less preferred techniques, fundamentally due to the elevated cost and limited or non-trivial
scalability of vacuum processing.

2.4. Dip Coating

Dip coating is one of the simplest methods to coat yarns or fabrics, and it is still used in the
textile industry [61]. The process consists of the immersion of the substrate in a solution containing
conductive materials such as metallic particles [62], conductive polymers [63], or carbon derivatives
such as graphene [26] and carbon nanotubes (CNTs) [64]. Upon application of a conductive solution to
textiles, excess material is removed [65] and a drying step, known as curing, is performed to evaporate
the solvent and fixate the conductive particles on fiber surfaces. To realize a stable coating, surface
properties of the textile such as wettability and hydrophilicity are important [65]. Care should also be
taken to limit the drying/curing temperatures to avoid potential damage to the textile [66].

Conductive solutions or pastes are the only feasible way to utilize graphene/CNTs in textile coating.
Although multiple techniques such as chemical vapor deposition (CVD), mechanical exfoliation,
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epitaxial growth on silicon carbide, and chemical reduction of graphene oxide (GO) exist for preparing
graphene [67], the latter approach (i.e., chemical reduction) is the most suitable and applicable for
textile surfaces due to low-temperature processing and scalability [68]. In graphene-coated textile
preparation, the desired piece of textile is dipped in a GO solution, and subsequent drying provides
fixation on fiber surfaces. As for post-processing, a chemical reduction procedure is performed to
convert GO flakes into graphene, allowing electrical conductivity to be imparted [26,69]. Carbon
nanotube (CNT) powders have also been used to create conductive fabrics [70]. For instance, textile
electrodes were fabricated by cladding cotton fabrics with multi-walled CNTs (MWNT). To ensure
their adhesion, a conductive paste made from tapioca starch and MWNT powder was applied to the
surface and cured afterward [71]. Another aspect of wearable monitoring was looked into with the
creation of conductive cotton yarns to use in biosignal transmission [64]. Regular cotton yarns became
conductive with dipping in a single-walled carbon nanotube (SWNT) solution and drying afterward,
which fixated SWNTs to cotton microfibrils.

Regarding the biocompatibility of CNTs, while there is some concern regarding their cytotoxicity,
the purity of the carbon nanotube (i.e., elimination of trace metals such as iron that get incorporated
into CNTs during manufacturing) has been shown to be a critical factor, especially for the case of
dermal administration and exposure to CNTs [72]. Arguably, with better control of purity, it may be
possible to reduce or eliminate the potential toxicity of CNTs when used as part of conductive textile
electrodes placed in direct contact with the skin. Graphene, on the other hand, has been shown to have
minimal effects on skin as long as the concentration and exposure duration is moderate [73].

The simple and scalable nature of dip-coating allows the manufacturing of rolls of conductive
fabrics with lower fabrication cost, and after cutting and sewing of the desired patch, it is also possible
to attach textile electrodes onto an existing garment [74].

2.5. Printing

Printing techniques such as ink-jet and screen printing are widely used to create conductive
patterns on textile substrates, and these are already used on a large scale to print decals/images
onto textiles [75]. Some advantages of printing techniques include: (a) site-specific, localized, and
direct deposition of conductive materials on finished roll-to-roll (R2R) fabrication textiles; (b) reduced
consumption of chemicals/inks; (c) ability for adaptation to both desktop scale R&D and commercial
manufacturing environments with the potential to be combined into or allow further reduction of
e-textile production costs.

Screen printing uses a fine mesh or stencil with openings to enable preferential passage of viscous,
conductive inks/pastes, while ink-jet printing is a well-known maskless technology that can interface
with numerous ink–substrate combinations to address both daily applications as well as advanced
areas such as biomolecular patterning [76]. In a single pass, screen printing can deliver higher amounts
of ink compared to ink-jet printing. Therefore, screen printing requires fewer printing cycles to achieve
a stable conductive pattern on textile surfaces. Another aspect is regarding the contact and non-contact
nature of the printings. Applied pressure in screen printing promotes adhesion, penetration of the
ink to the substrate, and facilitates the formation of connected patterns. Conversely, non-contact
ink-jet printing relies on the spread of the ink to achieve the merging of successive ink droplets and
form electrically-connected structures, which requires careful engineering of the ink diffusion and
printing process, especially on rough textiles where yarn-to-yarn spacing may be on the order of tens of
microns [77]. Inkjet printing’s flexibility in pattern creation and available materials makes it versatile
for e-textile research [78]. On the other hand, screen printing seems to be ahead of ink-jet printing
for the creation of e-textiles for consumer products. It is faster since it allows the transfer of larger
amounts of ink at one time, and it is a mature technology already used in industry, which makes screen
printing a cheaper alternative.

Printing technique, nonetheless, is not the only consideration for achieving optimal conductive
pattern transfer. Ink properties such as viscosity and curing temperature, and surface properties such
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as surface roughness and surface energy, affect the accuracy of pattern transfer [79]. Using an ink with
high enough viscosity is important to contain the ink on the desirable pattern after deposition. This calls
for the addition of binders to engineer the ink viscosity, which often affect the conductivity negatively.

It is not easy to control the surface properties of woven fabrics; the resolution achievable by
printing on them depends on both the yarn diameter and inter-yarn distance. As an alternative,
the surface texture, density, porosity, and thickness of nonwoven fabrics can be controlled during
fabrication. They are also cheaper and faster to fabricate, which makes them better substrates on
which to print [79]. Nevertheless, woven textiles are known to be more flexible and breathable than
nonwoven ones, which makes them more comfortable to wear. Moreover, it was suggested that the
creation of a high surface energy interface layer on top of the fabric can provide a desired substrate on
which to print, while conserving the comfortable wear of the woven fabrics [80]. The extra interface
layer is not expected to affect comfort since it can also be printed on only the desired areas, such as
electrodes and their interconnections.

Metallic inks/pastes can be produced by using metallic nanoparticles, metallo-organic complexes,
or metallic salts as precursors [81]. Even though there are commercial metallic inks (mostly
silver-based), their curing temperatures should be lowered to be compatible with textile substrates,
and their cost should be decreased so that they can be used in the mass fabrication of textile
electrodes. Conductive polymers are also studied to create alternative conductive solutions. Their
conductivity is typically lower than their metallic counterparts, but their adhesion and mechanical
stability are better, and they do not usually require post-treatment steps. To this end, poly
(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS)-based solutions are regarded as the
most promising material to enter the market, due to their flexible processing and durable electrical
conductivity [82,83]. Dispersions of graphene or CNTs can also be used in printing to create conductive
patterns [84,85]. The effect of pretreating the fabric to increase its printability was also shown with
ink-jet printing a hydrophobic layer prior to application of GO solution [85]. This helped to improve
the continuity of the conductive layer by three orders of magnitude compared with untreated coating.

2.6. Chemical Solution/Vapor Polymerization

Vapor deposition, electrochemical deposition, and in situ solution polymerizations are techniques
that allow the formation and deposition of intrinsically conductive polymers in a single step.

Vapor deposition allows uniform coating for any surface morphology or roughness, and coating
can be thin enough to not change the mechanical properties of the fibers. Two main ingredients used
in vapor polymerization are conjugated monomers and iron salts as oxidant agents [86]. They are used
to create conductive polymers in two distinct ways: impregnation of the oxidant solvent to textile
with dipping/printing followed by monomer vapor feeding, and the simultaneous application of both
the oxidant and conjugated monomer vapor. A closed chamber is required for the application of
vapors. This process, however, is not solvent-free since oxidant residues need to be rinsed after vapor
deposition, and they require vapor chambers, which limit the scalability of the process. Nonetheless,
with the advancements made in the past, the textile industry recently started to adopt this technique [86]
because vapor-deposited films inherently show wash and wear resistance, as opposed to the need for
binders in the dip-coating method. Additionally, vapor-deposited textiles show higher conductivity
compared to the conductive textiles created with commercial polymer inks [86]. For instance, coating of
polyester fabrics with PEDOT by vapor polymerization revealed a sheet conductivity as low as 10 Ω/sq,
which is claimed to be among the best in any kind of synthesis of PEDOT and its dispersions [30].

Polymerization can also be done by placing the textile substrate in a solution containing the
monomer and adding an oxidant to the solution, which starts the deposition; this is called in situ
solution polymerization. Even though it is a relatively simple process, polymerization is hard to
control. It is possible to degrade the textile substrate with acidic reaction conditions, which can harm
the mechanical characteristics of the textile [86].
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Electrochemical polymerization happens with an application of varying voltage on an electrode in
a solution including a monomer and electrolyte salt; polymer coating occurs on the electrode. Textile
fibers are natural insulators, and to be able to use electrochemical deposition for coating, it is first
necessary to create a conductive seed layer on the fibers with other polymer deposition techniques.
Not surprisingly, the final morphology of the coating is mainly determined by the previously coated
seed layer. Electrochemical polymerization can be regarded as a technique to increase the thickness of
the polymer coating in a more controllable fashion [87]. For example, textile electrodes were created by
coating PPy on cotton fabrics via initial in situ solution polymerization followed by electrochemical
polymerization [25].

Like the rest of the fabrication methods, the choice of technique for conductive polymer coating
boils down to a trade-off between desired quality and cost. Vapor polymerization is an apparent
example, which promises the best quality with possibly the highest cost. Optimization can be achieved
by improving existing techniques or using them in combination, which requires knowledge of the
whole palette of techniques.

3. Performance Characteristics

Understanding the major performance characteristics for wearable biopotential monitoring
system is important to assess their utility in recording and for the development of electrodes with
better performance. Some key performance metrics include skin–electrode contact impedance, noise
immunity or susceptibility to motion artifacts, stability, and lifetime of the electrodes. Even though the
system’s “wearability”, user comfort, and seamless integration are not numerical metrics, they are
some of the most important points to be considered in system-level development.

3.1. Skin–Electrode Contact Impedance

In biopotential recordings, skin–electrode contact impedance is critical as it directly affects the
received signal at the amplifier output. The effect is analogous to the filtering of the actual biopotentials
emanating from the body [88]. If we assume the skin–electrode contact impedance of both electrodes
to be equal (Z1 (w) = Z2 (w)) and name it as Z (w), and similarly, the amplifier input impedance is
seen by each electrode to be the same (Ri1 = Ri2), then the transfer function of the system H(s) can be
expressed as the ratio of the amplifier output (Vo) to the biosignals V1 and V2 emanating from the
body, as shown in Figure 2.
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Figure 2. Schematic representation of the path of biopotential signals starting from the skin surface
until acquisition and display at the circuit output (adapted from [88]).

An electrode–electrolyte interface can be modeled by a parallel RC network [89]. However, skin is
more complex; understanding skin–electrode impedance and its frequency-dependent characteristics
requires investigation of the skin itself, which consists of three main layers: epidermis, dermis, and
hypodermis or subcutaneous tissue.
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The outermost layer, the epidermis, plays a significant role in the skin–electrode interface since it
has direct contact with the electrode, besides the fact that it constantly renews itself. The deeper layers
involve the vascular tissues and the nerves along with sweat glands, sweat ducts, and hair follicles [90].

The equivalent circuit of the skin–electrode interface (Figure 3a) starts with an electrode half-cell
potential Ehc followed by the electrode–electrolyte interface between the electrode and the gel, which is
represented by capacitance due to electrical double layer formation Cd and charge transfer resistance
Rd. The gel medium is modeled by a series resistance Rs. The upper layer of the epidermis behaves as
a semipermeable membrane that causes the difference in ion concentration and a potential difference,
which is shown with Ehc. Ce and Re model the impedance of the epidermal layer and Ra models the
dermis, which behaves as a pure resistance.
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Moreover, Ep, Cp, and Rp stand for the effect of sweat glands as a parallel conduction path through
the epidermis [36]. The half-cell potential appears as a DC baseline on the biopotential signals and
is a particularly important factor in design decisions for any physiological signal acquisition unit
development. This is due to its fluctuation, as it varies even with a relatively insignificant movement
in between the electrode and the skin, which is interpreted as a noise-like artifact.

Textile electrodes were believed to show a strong capacitive behavior compared to conventional
electrodes, owing to the absence of electrolytes. Figure 3b illustrates this effect with capacitance Ct

parallel to Rs, herein which Ct is in inverse proportion with sweat and the moisture over the skin [90].
Additionally, ambient humidity or applied pressure can be used to change moisture intensity [91].
Parallel RC blocks on the equivalent circuit imply that skin–electrode impedance decreases with
increased frequency. The relation between acquired output signal and in-body biosignal means that
lower frequency components of the biosignal will deviate more than the original. Decreasing the
skin–electrode impedance, therefore, improves the signal quality.

One way to decrease the skin–electrode impedance is by moisturizing the interface either with a
hydrogel membrane or salty water. Since a membrane interface improves the comfortability of the
electrode, instead of salty water, a hydrogel membrane seems more preferable. The only drawback
of such a technique, however, is the bactericide/fungicide effect, which causes skin irritation, but by
optimizing a hydrogel membrane’s pH value to between 3.5 and 9, this issue could be avoided [92].
The other ingredient that affects the skin–electrode interface is the electrode’s overall size, which
presents an inverse relation with skin–electrode impedance [80]. In this manner, different sewing
patterns affect skin–electrode impedance since they result in diverse contact areas. A comparison of
knitted and woven textile electrodes showed that knitted textiles express lower impedance. Since
sewing patterns directly affect density, their thread diameter ought to change the skin–electrode
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interface impedance [80]. Research has illustrated this fact, finding that in knitted structures, electrodes
produced with a plain stitch had less impedance than electrodes produced with a honeycomb stitch
since pits existing in honeycomb patterns represent non-contact areas [93]. In addition, studies have
suggested that the pressure applied to the skin leads to lower skin–electrode impedance by providing
better skin–electrode coupling [94].

It is, however, not an easy task to accurately compare skin–electrode impedance for different
electrodes since people’s skin characteristics vary and can change with time [89]. Repeatable
measurement setups are therefore desirable. It was suggested that the skin’s electrolytes can be
simulated with an electrolyte cell, and electrochemical impedance spectroscopy can be used in
electrode characterization [95]. A more comprehensive setup was suggested that uses a skin dummy
made out of agar-agar [90]. It enabled contact impedance analysis at different frequencies and at
different pressure levels.

3.2. Susceptibility to Motion Artifacts

Motion artifacts, identified as an undesirable signal in biopotential monitoring systems, occurs by
any sort of motion due to movement of one part of a section with respect to another (e.g., movement of
connecting cables, a patient’s head) and can be categorized in relation to five different sources [94]:

1. Measurement of an unrelated biopotential signal, for instance, electromyography (EMG)
interferences in an electrocardiography (ECG) recording. Proper electrode placement can
usually avoid such interference [96].

2. Stretching of the skin leading to variations in the skin potential. In the textile electrode-based
system, fixation of the electrodes relies on the applied pressure, which is in direct translation to
the skin stretch. To reduce such motion artifacts, the applied force could be distributed to a bigger
area than the electrode through the use of a supporting structure surrounding the electrode [97].

3. Motion between the electrical double layer of metal and electrolyte, which causes a voltage
difference in its electrochemical cell. Reducing the electrolyte resistance, polarization potential,
and the movement of the electrode are believed to decrease such motion artifacts.

4. Cable bending generating friction and deformation on the cable isolator, resulting in triboelectric
noise [98]. To reduce this effect, a wearable garment or clothing could be designed in such a way
as to secure cables and the acquisition system into the garment and provide wireless streaming
of information.

5. Static electricity storage and discharge caused by patient or nurse-staff localization and/or
movement [99].

Besides all of this, placing preamplifiers subsequently after the electrodes (i.e., active electrodes)
is a recommended technique for reducing motion artifacts. A preamplifier block functions as an
impedance converter that converts the high-impedance signal to a low-impedance one, lowering noise
susceptibility and impedance mismatch before differential amplifiers [100]. Additionally, it is possible
to use digital signal processing (DSP) algorithms for motion artifact reduction, including blind source
separation and adaptive filters [94,95]. Similarly, a multiscale mathematical morphology and finite
impulse response bandpass filters were also shown to reduce the effects of motion artifacts [93].

3.3. Stability and Lifetime

The other expected requirement from textile electrodes is their stability and reusability, which
directly affect their lifetime. In the literature, a few studies have looked into this issue and characterize
stability by subjecting their textile electrodes to “wash tests” with detergent, either by using a washing
machine with respect to the ISO 6330 standard [101] or simply them dipping into detergent.

One of the factors that the washability of textile electrodes depends on is the adhesion of conductive
material is on textile fibers. This issue will not occur for bulk conductive fibers like metal wires;
however, they eventually create unwanted wrinkles and loops after cleaning in a washing machine [54].
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Washing temperature, speed, and time are thought to have an effect on the adhesion of the conductive
material. Therefore, an optimal washing range needed to be determined for the reusability of a textile
electrode. Different groups have reported washing tests on textile electrodes, such as ones coated with
Cu/Ni plating [15], PEDOT:PSS [77], graphene [26], and silver-based ink [102], which were reported to
maintain their optimum stability even after multiple washing cycles.

4. Conductive e-Textiles for the Acquisition of Biopotentials

Among the various applications of e-textiles, biopotential monitoring (cardiac, muscular, neural,
and ocular biopotentials) is growing steadily and shows large parallelism to the developments in
wearable technologies and the internet of things (IoT) [103,104]. Applications from mobile health
monitoring (mHealth) to brain–computer interfaces (BCI) and human–machine/computer interaction
(HMI/HCI) are greatly facilitated by developments in wearable technologies, and in this respect, textile
electronics is a key technology enabler. Since a critical signal “source” in wearable applications is the
human body itself, in this section, we focus on providing an overview of the different biopotentials
that have been acquired by conductive textiles and discuss the relevant applications (Table 1).

Table 1. Summary of the various integrated textile system solutions categorized based on the acquired
biopotentials to show the different manufacturing techniques and conductive materials used in their
realization and the active sensing regions on the body.

Biopotential
Signal

Manufacturing
Technique Conductive Material System

Integration
Electrode
Location

[22] ECG Electroless plating Silver nanoparticles Smart garment Lead 1 and 2

[24] ECG
Sputtering, electroless
plating, knitting, and

embroidering

Cu, Ni, stainless steel
filament, nylon fabric T-shirt Chest

[26,74] ECG Graphene-coated
textile Graphene Wristband Left and right

arms

[27] ECG Printing PEDOT:PSS Kimono Chest and
wrists

[28] ECG Weaving and knitting Silver yarns Chest band Chest

[29] ECG Knitting Silver, stainless steel
yarn, copper filaments Garment band Lead 1

[31] ECG
Knitting,

embroidering, and
weaving

Silver Elastic belt Chest

[41] ECG Knitting Stainless steel Belt Chest
[57] ECG PVD Ag/Ti-PET yarn Belt Chest
[63] ECG Conductive thread Silver, PEDOT: PSS Bras Lead 1 to 3
[80] ECG Printing Silver Chest band Chest
[85] ECG Ink-jet printing Graphene T-shirt Finger
[105] ECG Commercial textile Silver T-shirt Lead 1 to 3
[106] ECG Screen printing Silver paste Band-Aid Chest
[107] ECG Knitting Silver coated yarns Swimsuit Chest
[108] ECG Commercial textile Silver and gold Smart jacket Chest
[109] ECG Knitting and woven Stainless steel Baby suit Back

[110] ECG Knitting Stainless steel threads T-shirt RA, LA, LL, RL,
V1–V6

[111] EEG Seamless knitting Ag/AgCl-coated thread Headband Forehead
[112] EEG Screen printing Carbon-loaded rubber Headband Forehead

[113] EEG Screen printing Ag-particle/fluoropolymer
composite ink Stand-alone Behind the ears

[114] EMG Knitting Silver-plated yarn Band Flexor carpi
ulnaris

[115] EMG Knitting Silver plated nylon Shirt Biceps and
triceps
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Table 1. Cont.

Biopotential
Signal

Manufacturing
Technique Conductive Material System

Integration
Electrode
Location

[116] EMG Knitting Stainless Steel Sleeve Upper arm and
forearm

[117] EMG Knitting Silver Fabric Hand
exoskeleton

Interossei
muscles

[118] EMG Weaving Silver-plated copper
yarn Eyeglasses Temporalis

muscle

[80] EOG Screen and stencil
printing Silver Paste Headband Forehead

[119] EOG Coating Silver Headband Forehead

[120] EOG Commercial textile Silver/polyamide
(20%/80%) compound Eye mask Forehead and

around eyes
[121] EOG Dip coating Graphene Headband Forehead

4.1. Electrocardiography (ECG)

With the increase in cardiovascular diseases, there has been a growing interest in developing
wearable devices that can continuously monitor cardiac activity. According to the World Health
Organization, heart problems are the number one killer worldwide, accounting for 31% of total deaths
each year (~17.9 million) [122]. Cardiovascular diseases assessed through abnormalities in heart
rhythm such as atrial fibrillation, ventricular fibrillation, and atrioventricular block require long-term
monitoring [123]. As people diagnosed with cardiovascular diseases have a higher rate of mortality in
comparison with healthy people, the need for wearable devices that enable continuous heart monitoring
is critical for a quick emergency response and earlier detection of heart malfunctioning [124].

ECG is a biopotential signal acquisition method by which the variation in heart potential is
measured by utilizing surface electrodes across the body. It is a non-invasive method and gives a
thorough indication of any abnormalities in heart rhythm. Its main components (i.e., P-QRS-T complex)
can be used to diagnose various cardiac disorders. For instance, missing P-waves is an indication
of atrial fibrillation and can lead to stroke; arterial diseases can be revealed by the morphology of
the ST segment duration; variation in RR intervals leads to sleep apnea; abnormality of QT intervals
is attributed to ventricular fibrillation and causes sudden cardiac arrest [125]. While some of these
abnormalities are not immediately fatal and can be detected over longer diagnostic periods, others are
characterized by sudden changes in ECG signal (e.g., ventricular fibrillation) and cannot be detected
unless continuous monitoring is practiced [123]. A wearable routine monitoring system can help
resolve this issue without restricting patients to a static ECG monitor.

From the perspective of wearability, textile substrates offer integration between various system
modules such as electrodes, microprocessors, and transceivers. Therefore, they are helpful
for offering a robust solution to realize smart clothing for personalized, point of care health
monitoring. Textile platforms for wearable and continuous monitoring of ECG have been extensively
studied [74,105,106,126,127]. Some of these wearable clothes are waterproof [107], while others
were developed to encourage exercising and fitness through the routine monitoring of daily
activities [128–130]. Among these projects, MagIC Space was a promising work designed to monitor
heart activity and other vital signs while sleeping on space stations [131].

Moreover, conventional electrodes in a neonatal intensive care unit cause possible irritation
and discomfort for neonates and requires separating them from their mother since they need to be
connected to the monitoring system at all times.

It has been shown that a wearable monitoring system with textile electrodes designed for babies
can increase the comfort of both the baby and the mother (Figure 4a,b) [108,109,132]. Moreover, textile
electrodes are implemented in different forms such as belts (Figure 4c) [59], armbands (Figure 4d) [69],
and t-shirts (Figure 4e–g) [110,133,134].
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4.2. Electroencephalography (EEG)

EEG is one of the few non-invasive methods to check brain activity in real-time and is the cheapest
technique due to low-cost hardware [135]. It measures pyramidal neuron postsynaptic potential
activities and picks up biopotential signals through surface electrodes placed on the scalp [136]. In spite
of more powerful examination techniques, EEG is well integrated into clinical diagnostic tests and
still widely used in a large number of applications from the detection of tumors to the confirmation of
brain death, the monitoring of brain status while a patient is fully anesthetized, and the diagnosis of
neuropsychological disorders, as well as BCI [135,137]. Especially for the diagnosis of epilepsy and
seizure monitoring, extended EEG recordings over a number of days are needed. Long EEG recordings
can be performed either in a clinical setting (inpatient) with bulky EEG acquisition systems, or at home
(outpatient), otherwise known as ambulatory EEG, with portable devices that do not disrupt a patient’s
daily routine.

To advance EEG technology for use in clinical environments as well as outside of lab settings [138],
further developments to realize mobile, low-cost, and wearable EEG monitoring devices that offer
minimal discomfort to the user will be necessary. Such devices will have a significant impact on many
of EEG’s current applications, especially seizure prediction devices [139], event-related potential-based
applications like P300 writing systems [140], and image reconstruction using EEG mind-reading
algorithms [141]. Besides these, wearable EEG instruments are also anticipated to empower new
applications in the future, potentially in the areas of augmented reality [142] and robotics [143].

A fundamental challenge in recording EEG waves with textile electrodes is the likely presence of
hair on the scalp [144]. Hence, textile electrodes for EEG recording are usually placed on the forehead
where there is no hair, and signals from the frontal lobe (e.g., alpha and beta waves) are measured. Alpha
waves increase and decrease by the opening and closing of the eyes, respectively; beta waves occur
when the subject is actively thinking or performing reasoning tasks like solving mental math questions.
Therefore, the monitoring of alpha and beta waves would be useful for a variety of applications
including cognitive neuroscience and perception. For instance, a headband with conductive fabrics
and a custom-designed EEG amplifier was developed that detects drowsiness by measuring both alpha
and beta waves [145]. Similarly, as illustrated in Figure 5a, Ag/AgCl-coated threads were integrated
into a nylon headband through a seamless knitting technique, and its functionality was tested by
monitoring alpha and beta waves; Figure 5b illustrates the associated power spectra plots [111]. In a
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different electrode placement where electrodes were placed on approximate locations of F3, C3, and P3
according to the international 10–20 system, conductive fabric-based textile electrodes were padded in a
tight-fitting headband and used for EEG measuring of five participants who had thin hair. Two different
composites of conductive fabric were reported; Figure 5c (inset A) illustrates a standard electrode;
Figure 5c (inset B) shows the type I electrode composed of 78% polyamide and 22% elastomer, which
was plated with 99% pure silver. The type II electrode (Figure 5c, inset C) was composed of 15% nylon,
30% silver-plated conductive fibers, 20% spandex, and 35% polypropylene. Feasibility of the design
was further investigated for applications in neonatal EEG monitoring (Figure 5e) [146]. Furthermore, a
headband with integrated active electrodes, which were realized by screen printing using composite
materials, was developed and the system powered by a flexible solar panel. It achieved a correlation
reaching 70% in comparison to commercial passive electrodes [112]. In addition, a novel electrically
conductive polymer fabric, which has 0.07 Ω/square of conductivity, was coated on a 0.2 mm thick
taffeta material and benchmarked against standard electrodes, showing a high correlation of ~96% and
~90% from the forehead and hairy sites on the head, respectively [147]. Most recently, textile electrodes
fabricated by jet-printing using Ag-powder/fluoropolymer-based nanocomposite ink with two-layer
e-textiles were developed, and their functionality was demonstrated in EEG monitoring experiments
including activities of closing and opening the eyes for a duration up to 15 minutes, with the electrodes
mounted behind the ears on hairless regions [113].
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Surface electrodes can be employed to measure the myoelectric potentials of skeletal muscles 
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Figure 5. (a) Seamless knitted Ag/AgCl electrodes in a nylon headband along with electrode
configuration on forehead; (b) associated power spectra for the relaxation and mental math
conditions [111]; (c) standard electrode (A), textile electrode type I (B), and type II (C); (d) schematic
structure of type I and II textile electrodes; (e) an experimental setup where the white leads are
connected to standard electrodes, whereas the black leads are connected to the textile electrodes [146].

4.3. Electromyography (EMG)

Surface electrodes can be employed to measure the myoelectric potentials of skeletal muscles
throughout a recording technique called EMG [148]. Its applications include prosthetic devices,
neuromuscular diagnostic tests, rehabilitation, ergonomics, and sports science [149–152]. Unlike ECG
biopotentials, myoelectric signals are quite localized on the skin surface over the muscle of interest.
This makes recordings more prone to motion artifacts due to muscle movements beneath the electrodes,
which places a larger burden on the constraints of the electrode area to avoid possible crosstalk from
neighboring muscles [153]. Typically, EMG electrodes are smaller in size, which results in higher
skin–electrode impedance, and the signal quality of textile electrodes suffers even more since they do
not incorporate electrolyte gel and adhesives. One strategy has been to implement active electrodes
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or use electrode support structures to acquire EMG signals with the desired fidelity [154,155]. As a
different performance metric than other biosignals, pattern recognition/classification accuracies are
also important to evaluate and characterize the performance of textile electrodes used specifically in
EMG acquisition for prosthetics applications [114].

EMG could benefit from the advantages of textile platforms since they enable data acquisition
in more realistic, casual, and out-of-lab settings. Research on EMG recording with textile electrodes
either focuses on showing the feasibility of new electrode designs for the desired application or studies
the proof-of-concept of an embedded textile electrode in wearable smart garments. Some of the
popular application areas enabled by the acquisition of EMG with textile electrodes include muscle
status monitoring [115,156,157], prosthetics [116,158], and rehabilitation [117]. Other possible uses of
wearable EMG platforms with integrated textile electrodes have also been demonstrated, including
running leggings for muscle fatigue detection (Figure 6a–c) [153]; shorts for energy expenditure
analysis [159] and ventilatory threshold estimation [160]; eyeglasses for the analysis of chewing
cycle [118]; and a shirt for athlete training (Figure 6d–f) [115].
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Figure 6. Wearable electromyography (EMG) acquisition garments: running leggings and a sports
shirt. Electrode placement in the (a) exterior; and (b) interior of leggings; (c) actual view of leggings
when worn by a subject [153]; (d) shirt as worn by a subject; (e) location of electrodes on the shirt;
(f) close-up view of the acquisition unit attached to the shirt [115].

The concept of a compression garment with integrated EMG textile electrodes was recently
commercialized by two companies: Athos (Mad Apparel Inc., CA, US) and Myontec (Myontec Ltd.,
Kuopio, Finland). Both are mainly focused on athlete training, with Myontec also advertising their
products for rehabilitation and ergonomic studies. We anticipate that, with the advances in wearable
computing, similar products will emerge at a competitive price in the near future and possibly offering
additional capabilities.

4.4. Electrooculography (EOG)

EOG is a well-known ocular activity monitoring technique that measures the electric potential
differences between the cornea and retina by placing electrodes around the eyes [161]. Essential
EOG signal attributes (i.e., blinking and saccadic movements) have many potential applications in
somnolence studies, activity monitoring, assistive technology, and HCI/HMI, as well as cognitive
neuroscience and mental disorder diagnosis [162]. Despite the growth of EOG-based eye tracking
systems, their full potential is yet to be recognized and there is still space for improvement both in the
existing devices and in the rise of new applications combining EOG and e-textile technologies.

EOG signals are highly sensitive to electrode placement, and different electrode placements and
configurations have been investigated. Despite the existence of various wearable accessories and
electrode configuration approaches (e.g., vertical and horizontal EOG acquisition with glasses [163]),
considering overall comfort and operability by everybody (i.e., including bespectacled individuals),
placing the electrodes on the forehead, known as “forehead EOG” is preferred. This can be achieved
by embedding electrodes on a wearable elastic headband [164]. For instance, using screen and stencil
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printing processes, an electrode network was fabricated and embedded on a headband and used for
horizontal EOG acquisition (Figure 7a) [119]. Similarly, conductive fabrics used in a headband to
measure EOG have been capitalized on in a drowsiness detection application [145]. Additionally,
a silver-coated nylon textile was integrated into a headband and adapted for gesture recognition
(Figure 7b) [80]. Silver/polyamide compound textiles have also been employed to develop a wearable
eye mask for sleep monitoring and automatic sleep staging (Figure 7c) [120]. Moreover, graphene-based
textile electrodes were fabricated through a simple dip-dry-reduce cycle and used in EOG recordings.
Their performance was benchmarked against clinical electrodes in a set of experiments with multiple
participants that revealed ~80% correlation over durations exceeding ~90 s (Figure 7d–f) [121].
Furthermore, novel self-wetting electrodes composed of PEDOT:PSS fibers were integrated into a thin
layer of a membrane by dip-coating and then tested in a short (~8 s) EOG experiment where results
showed 93% correlation with those of wet electrodes [165]. Finally, a novel conductive polymer foam
with a conductivity of about 0.07 Ω/square was fabricated and tested in forehead EOG and displayed
~84% correlation against standard electrodes [147].
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Figure 7. Wearable elastic garments; (a) headband developed for gesture recognition [119]; (b)
headband used for horizontal electrooculography (EOG) acquisition [80]; (c) eye mask developed for
sleep monitoring [120]; (d) subset of electrooculography recordings obtained using graphene textile
and Ag/AgCl electrodes that displayed the highest correlation of 87% for a 95 s recording in 2 trials on
8 different participants. Zoom-in view of EOG signals showing the unique eye movement patterns
acquired from participant 1 using (e) graphene textile electrodes; and (f) Ag/AgCl electrodes [121].

Compared to other biopotentials, EOG signals are less complex to process and easy to detect due
to their high amplitude and linearity in certain eye movement ranges [166]. This property could be
harnessed to further advance wearable EOG devices based on textile electrodes.

5. Conclusions

Wearable textile electronics and their application to biopotential signal acquisition is an emerging
trend in the broader field of wearable or ubiquitous computing, which aims to develop and improve
personalized routine health monitoring, rehabilitation devices, brain–computer interfaces (BCIs),
human–computer/machine interfaces (HCI/HMIs), prosthetics, and possibly many other applications
that exploit biopotential feedback or control. The development of textile electrodes as a valid alternative
to standard clinical electrodes is therefore critical due to their potential for seamless integration into
daily clothing, the possibility of long-term functionality, breathability, stretchability, and for achieving
“truly wearable” soft electronics. Further developments from fundamental materials and system-level
integration, including embedding of electronics, to strategies for compensating signal artifacts in
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dynamic operation and novel algorithms for a target application will determine the success and
widespread use of wearable e-textile-based devices in the years to follow.
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Ag/AgCl Silver/silver chloride
BCI Brain computer interface
CNT Carbon nanotube
CVD Chemical vapor deposition
DSP Digital signal processing
ECG Electrocardiography
ECP Extrinsically conductive polymers
EEG Electroencephalography
EMG Electromyography
EOG Electrooculography
e-textile Electronic textile
GO Graphene oxide
HCI Human–computer interaction
HMI Human–machine interface
ICP Intrinsically conductive polymers
ISO International Organization of Standardization
mHealth Mobile health
MWNT Multi-walled carbon nanotubes
PANI Polyaniline
PEDOT Poly(3,4-ethylenedioxythiophene)
PEDOT:PSS Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate
PET Polyethyleneterephthalate
PPy Polypyrrole
PU Polyurethane
PVD Physical vapor deposition
R&D Research and development
R2R Roll-to-roll
SWNT Single-walled carbon nanotubes

References

1. Tao, X. Wearable Electronics and Photonics; Elsevier: Amsterdam, The Netherlands, 2005.
2. Wearable Electronics and Technology Market by Applications. Available online: http://www.

marketsandmarkets.com/Market-Reports/wearable-electronics-market-983.html (accessed on 27 April 2019).
3. Lee, S.; Lee, Y.; Park, J.; Choi, D. Stitchable organic photovoltaic cells with textile electrodes. Nano Energy

2014, 9, 88–93. [CrossRef]
4. Khan, A.; Hussain, M.; Nur, O.; Willander, M. Fabrication of zinc oxide nanoneedles on conductive textile for

harvesting piezoelectric potential. Chem. Phys. Lett. 2014, 612, 62–67. [CrossRef]
5. Salvado, R.; Loss, C.; Gonçalves, R.; Pinho, P. Textile Materials for the Design of Wearable Antennas: A Survey.

Sensors 2012, 12, 15841–15857. [CrossRef]
6. Hu, E.; Kaynak, A.; Li, Y. Development of a cooling fabric from conducting polymer coated fibres: Proof of

concept. Synth. Met. 2005, 150, 139–143. [CrossRef]

http://www.marketsandmarkets.com/Market-Reports/wearable-electronics-market-983.html
http://www.marketsandmarkets.com/Market-Reports/wearable-electronics-market-983.html
http://dx.doi.org/10.1016/j.nanoen.2014.06.017
http://dx.doi.org/10.1016/j.cplett.2014.08.009
http://dx.doi.org/10.3390/s121115841
http://dx.doi.org/10.1016/j.synthmet.2005.01.018


Electronics 2019, 8, 479 18 of 25

7. Ostmann, A.; Vieroth, R.; Seckel, M.; Löher, T.; Reichl, H. Stretchable circuit board technology in textile
applications. In Proceedings of the 2009 4th International Microsystems, Packaging, Assembly and Circuits
Technology Conference, Taipei, Taiwan, 21–23 October 2009.

8. Morris, D.; Coyle, S.; Wu, Y.; Lau, K.; Wallace, G.; Diamond, D. Bio-sensing textile based patch with integrated
optical detection system for sweat monitoring. Sens. Actuator B Chem. 2009, 139, 231–236. [CrossRef]

9. Lanatà, A.; Valenza, G.; Scilingo, E. A novel EDA glove based on textile-integrated electrodes for affective
computing. Med. Biol. Eng. Comput. 2012, 50, 1163–1172. [CrossRef]

10. Kim, J.; Cho, G. Thermal Storage/Release, Durability, and Temperature Sensing Properties of Thermostatic
Fabrics Treated with Octadecane-Containing Microcapsules. Text. Res. J. 2002, 72, 1093–1098. [CrossRef]

11. Min, S.D.; Yun, Y.; Shin, H. Simplified Structural Textile Respiration Sensor Based on Capacitive Pressure
Sensing Method. IEEE Sens. J. 2014, 14, 3245–3251.

12. Meyer, J.; Arnrich, B.; Schumm, J.; Troster, G. Design and Modeling of a Textile Pressure Sensor for Sitting
Posture Classification. IEEE Sens. J. 2010, 10, 1391–1398. [CrossRef]

13. Gorgutsa, S.; Bélanger-Garnier, V.; Ung, B.; Viens, J.; Gosselin, B.; LaRochelle, S.; Messaddeq, Y. Novel
Wireless-Communicating Textiles Made from Multi-Material and Minimally-Invasive Fibers. Sensors 2014,
14, 19260–19274. [CrossRef] [PubMed]

14. Lee, Y.-D.; Chung, W.-Y. Wireless sensor network based wearable smart shirt for ubiquitous health and
activity monitoring. Sens. Actuator B Chem. 2009, 140, 390–395. [CrossRef]

15. Cho, J.; Moon, J.; Jeong, K.; Cho, G.J. Application of PU-sealing into Cu/Ni electroless plated polyester fabrics
for e-textiles. Fibers Polym. 2007, 8, 330–334. [CrossRef]

16. Carr, J.J.; Brown, J.M. Introduction to Biomedical Equipment Technology; Prentice Hall: Upper Saddle River, NJ,
USA, 1993.

17. Huigen, E. Noise Characteristics of Surface Electrodes. Master’s Thesis, Section Medical Physics, University
of Amsterdam, Amsterdam, The Netherlands, 2001.

18. Chi, Y.; Jung, T.; Cauwenberghs, G. Dry-Contact and Noncontact Biopotential Electrodes: Methodological
Review. IEEE Rev. Biomed. Eng. 2010, 3, 106–119. [CrossRef] [PubMed]

19. Golparvar, A.J.; Yapici, M.K. Wearable graphene textile-enabled EOG sensing. In Proceedings of the IEEE
SENSORS, Glasgow, UK, 29 October–1 November 2017.

20. Stoppa, M.; Chiolerio, A. Wearable Electronics and Smart Textiles: A Critical Review. Sensors 2014, 14,
11957–11992. [CrossRef] [PubMed]

21. Lee, S.H.; Jung, S.M.; Lee, C.K.; Jeong, K.S.; Cho, G.; Yoo, S.K. Wearable ECG monitoring system using
conductive fabrics and active electrodes. In Proceedings of the International Conference on Human-Computer
Interaction, Las Vegas, NV, USA, 15–20 July 2018.

22. Qin, H.; Li, J.; He, B.; Sun, J.; Li, L.; Qian, L. Novel Wearable Electrodes Based on Conductive Chitosan
Fabrics and Their Application in Smart Garments. Materials 2018, 11, 370. [CrossRef] [PubMed]

23. Alzaidi, A.; Zhang, L.; Bajwa, H. Smart textiles based wireless ECG system. In Proceedings of the Systems,
Applications and Technology Conference (LISAT), Farmingdale, NY, USA, 4 May 2012.

24. Cho, G.; Jeong, K.; Paik, M.J.; Kwun, Y.; Sung, M. Performance evaluation of textile-based electrodes and
motion sensors for smart clothing. IEEE Sens. J. 2011, 11, 3183–3193. [CrossRef]

25. Zhou, Y.; Ding, X.; Zhang, J.; Duan, Y.; Hu, J.; Yang, X.J. Fabrication of conductive fabric as textile electrode
for ECG monitoring. Fibers Polym. 2014, 15, 2260–2264. [CrossRef]

26. Yapici, M.K.; Alkhidir, T.; Samad, Y.A.; Liao, K. Graphene-clad textile electrodes for Enabled electrocardiogram
monitoring. Sens. Actuator B Chem. 2015, 221, 1469–1474. [CrossRef]

27. Takamatsu, S.; Lonjaret, T.; Crisp, D.; Badier, J.-M.; Malliaras, G.G.; Ismailova, E. Direct patterning of organic
conductors on knitted textiles for long-term electrocardiography. Nature 2015, 5, 15003. [CrossRef]

28. Pola, T.; Vanhala, J. Textile electrodes in ECG measurement. In Proceedings of the 2007 3rd International
Conference on Intelligent Sensors, Sensor Networks and Information, Melbourne, QLD, Australia, 3–6
December 2007; pp. 635–639.

29. Jang, S.; Cho, J.; Jeong, K.; Cho, G. Exploring possibilities of ECG electrodes for bio-monitoring smartwear
with Cu sputtered fabrics. In Proceedings of the International Conference on Human-Computer Interaction,
Bijing, China, 22–27 July 2017; pp. 1130–1137.

30. Trindade, I.G.; Martins, F.; Baptista, P. High electrical conductance poly (3, 4-ethylenedioxythiophene)
coatings on textile for electrocardiogram monitoring. Synth. Met. 2015, 210, 179–185. [CrossRef]

http://dx.doi.org/10.1016/j.snb.2009.02.032
http://dx.doi.org/10.1007/s11517-012-0921-9
http://dx.doi.org/10.1177/004051750207201209
http://dx.doi.org/10.1109/JSEN.2009.2037330
http://dx.doi.org/10.3390/s141019260
http://www.ncbi.nlm.nih.gov/pubmed/25325335
http://dx.doi.org/10.1016/j.snb.2009.04.040
http://dx.doi.org/10.1007/BF02877279
http://dx.doi.org/10.1109/RBME.2010.2084078
http://www.ncbi.nlm.nih.gov/pubmed/22275204
http://dx.doi.org/10.3390/s140711957
http://www.ncbi.nlm.nih.gov/pubmed/25004153
http://dx.doi.org/10.3390/ma11030370
http://www.ncbi.nlm.nih.gov/pubmed/29498689
http://dx.doi.org/10.1109/JSEN.2011.2167508
http://dx.doi.org/10.1007/s12221-014-2260-y
http://dx.doi.org/10.1016/j.snb.2015.07.111
http://dx.doi.org/10.1038/srep15003
http://dx.doi.org/10.1016/j.synthmet.2015.09.024


Electronics 2019, 8, 479 19 of 25

31. An, X.; Stylios, G. A Hybrid Textile Electrode for Electrocardiogram (ECG) Measurement and Motion
Tracking. Materials 2018, 11, 1887. [CrossRef]

32. Mestrovic, M.A.; Helmer, R.J.; Kyratzis, L.; Kumar, D. Preliminary study of dry knitted fabric electrodes
for physiological monitoring. In Proceedings of the Intelligent Sensors, Sensor Networks and Information,
Melbourne, QLD, Australia, 3–6 December 2007.

33. Xu, P.; Zhang, H.; Tao, X. Textile-structured electrodes for electrocardiogram. Text. Prog. 2008, 40, 183–213.
[CrossRef]

34. Xie, L.; Yang, G.; Xu, L.; Seoane, F.; Chen, Q.; Zheng, L. Characterization of dry biopotential electrodes.
In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and
Biology Society, EMBC 2013, Osaka, Japan, 3–7 July 2013; pp. 1478–1481.

35. Zhang, H.; Li, W.; Tao, X.; Xu, P.; Liu, H. Textile-structured human body surface biopotential signal acquisition
electrode. In Proceedings of the 2011 4th International Congress on Image and Signal Processing, Shanghai,
China, 15–17 October 2011; pp. 2792–2797.

36. Gong, R.H.; Wright, R.M. Fancy Yarns: Their Manufacture and Application; Woodhead Publishing: Cambridge,
UK, 2002.

37. Apiwattanadej, T.; Zhang, L.; Li, H. Electrospun polyurethane microfiber membrane on conductive textile
for water-supported textile electrode in continuous ECG monitoring application. In Proceedings of the 2018
Symposium on Design, Test, Integration & Packaging of MEMS and MOEMS (DTIP), Roma, Italy, 22–25 May
2018; pp. 1–5.

38. Poggio, C.; Trovati, F.; Ceci, M.; Chiesa, M.; Colombo, M.; Pietrocola, G. Biological and antibacterial properties
of a new silver fiber post: In vitro evaluation. J. Clin. Exp. Dent. 2017, 9, e387–e393. [CrossRef] [PubMed]

39. Marquez, J.C.; Seoane, F.; Välimäki, E.; Lindecrantz, K. Comparison of dry-textile electrodes for electrical
bioimpedance spectroscopy measurements. J. Phys. Conf. Ser. 2010, 224, 012140. [CrossRef]

40. Ishijima, M.J.M.; Engineering, B. Cardiopulmonary monitoring by textile electrodes without subject-awareness
of being monitored. Med. Biol. Eng. Comput. 1997, 35, 685–690. [CrossRef]

41. Puurtinen, M.M.; Komulainen, S.M.; Kauppinen, P.K.; Malmivuo, J.A.V.; Hyttinen, J.A.K. Measurement of
noise and impedance of dry and wet textile electrodes, and textile electrodes with hydrogel. In Proceedings
of the 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, New York,
NY, USA, 30 August–3 September 2006; pp. 6012–6015.

42. Catrysse, M.; Puers, R.; Hertleer, C.; Van Langenhove, L.; Van Egmond, H.; Matthys, D. Towards the
integration of textile sensors in a wireless monitoring suit. Sens. Actuator A Phys. 2004, 114, 302–311.
[CrossRef]

43. Ali, A.; Nguyen, N.H.; Baheti, V.; Ashraf, M.; Militky, J.; Mansoor, T.; Noman, M.T.; Ahmad, S. Electrical
conductivity and physiological comfort of silver coated cotton fabrics. J. Text. Inst. 2018, 109, 620–628.
[CrossRef]
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