AIEgens-Doped Photonic Crystals for High Sensitivity Fluorescence Detection of Tumor Markers
Abstract
:1. Introduction
2. Results and Discussion
2.1. Fabrication of AIEgens-Doped PCs
2.2. Optical Characterization of PCs
2.3. Fluorescence Enhancement Benefit of AIEgens
2.4. Tumor Marker Detection
2.5. Determination of Cross Reactivity
2.6. Practical Application of AIEgens-Doped PCs
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Buck, B.; Hallgren, K.A.; Campbell, A.T.; Choudhury, T.; Kane, J.M.; Ben-Zeev, D. mHealth-assisted detection of precursors to relapse in schizophrenia. Front. Psychiatry 2021, 12, 642200. [Google Scholar] [CrossRef]
- Gao, B.; Elbaz, A.; He, Z.; Xie, Z.; Xu, H.; Liu, S.; Su, E.; Liu, H.; Gu, Z. Bioinspired Kirigami Fish-Based Highly Stretched Wearable Biosensor for Human Biochemical–Physiological Hybrid Monitoring. Adv. Mater. Technol. 2018, 3, 1700308. [Google Scholar] [CrossRef]
- Diamantis, I.T.; Hyer, J.M.; Adrian, D.; Fabio, B.; Francesca, R.; Hugo, P.M.; Olivier, S.; Vincent, L.; George, A.P.; Irinel, P.; et al. Synergistic Impact of Alpha-Fetoprotein and Tumor Burden on Long-Term Outcomes Following Curative-Intent Resection of Hepatocellular Carcinoma. Cancers 2021, 13, 147. [Google Scholar] [CrossRef]
- Tang, C.-Y.; Lin, W.-Z.; Tan, Y.-C. An Active Clamp Flyback Converter with High Precision Primary-Side Regulation Strategy. IEEE Trans. Power Electron. 2022, 37, 10281–10289. [Google Scholar] [CrossRef]
- Zheng, M.; Kang, Y.; Liu, D.; Li, C.; Zheng, B.; Tang, H. Detection of ATP from “fluorescence” to “enhanced fluorescence” based on metal-enhanced fluorescence triggered by aptamer nanoswitch. Sens. Actuators B Chem. 2020, 319, 128263. [Google Scholar] [CrossRef]
- Tang, J.; Ren, J.; Han, K.Y. Fluorescence imaging with tailored light. Nanophotonics 2019, 8, 2111–2128. [Google Scholar] [CrossRef]
- Zhou, S.; Tu, D.; Liu, Y.; You, W.; Zhang, Y.; Zheng, W.; Chen, X. Ultrasensitive Point-of-Care Test for Tumor Marker in Human Saliva Based on Luminescence-Amplification Strategy of Lanthanide Nanoprobes. Adv. Sci. 2021, 8, 2002657. [Google Scholar] [CrossRef]
- Gao, B.; Liu, H.; Gu, Z. Patterned Photonic Nitrocellulose for Pseudo-Paper Microfluidics. Anal. Chem. 2016, 88, 5424–5429. [Google Scholar] [CrossRef]
- Zhang, S.; Li, L.; Zhu, J.; Mu, X.; Yan, L.; Wu, X. A Dual Spectroscopic Probe Based on Benzothiazole for Detection of Hydrazine. ChemistrySelect 2021, 6, 7551–7556. [Google Scholar] [CrossRef]
- Dou, L.; Li, Q.; Wang, Z.; Shen, J.; Yu, W. AIEgens: Next Generation Signaling Source for Immunoassays? ACS Sens. 2022, 7, 3243–3257. [Google Scholar] [CrossRef]
- Liu, J.; Xu, S.; Sun, L.; Hu, S.; Sun, J.; Liu, M.; Ma, C.; Liu, H.; Wang, Z.; Yang, Y.; et al. Up-conversion fluorescence biosensor for sensitive detection of CA-125 tumor markers. J. Rare Earths 2019, 37, 943–948. [Google Scholar] [CrossRef]
- Pan, M.; Yang, J.; Liu, K.; Yin, Z.; Ma, T.; Liu, S.; Xu, L.; Wang, S. Noble Metal Nanostructured Materials for Chemical and Biosensing Systems. Nanomaterials 2020, 10, 209. [Google Scholar] [CrossRef] [Green Version]
- Mai, H.; Cuihuan, G.; Kai, B.; Lanyu, H.; Xin, Y.; Hepeng, Z.; Alfred, J.M.; Xiao, W.; Anlian, P. Room Temperature Fluorescence Blinking in MoS2 Atomic Layers by Single Photon Energy Transfer. Laser Photonics Rev. 2022, 16, 2200144. [Google Scholar] [CrossRef]
- Gao, B.; He, Z.; He, B.; Gu, Z. Wearable eye health monitoring sensors based on peacock tail-inspired inverse opal carbon. Sens. Actuators B Chem. 2019, 288, 734–741. [Google Scholar] [CrossRef]
- Suman, G.R.; Pandey, M.; Chakravarthy, A.S.J. Review on new horizons of aggregation induced emission: From design to development. Mater. Chem. Front. 2020, 5, 1541–1584. [Google Scholar] [CrossRef]
- Xing, H.; Yu, Y.; Liu, J.; Qin, P.; Lam, J.W.Y.; Shi, B.; Xie, G.; Tang, B.Z. A Discrete Platinum(II) Metallacycle Harvesting Triplet Excitons for Solution-Processed Deep-Red Organic Light-Emitting Diodes. Adv. Opt. Mater. 2021, 10, 2101925. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Y.; Wang, P.; Yu, L.; An, J.; Deng, G.; Sun, Y.; Seung Kim, J. Reactive oxygen species, thiols and enzymes activable AIEgens from single fluorescence imaging to multifunctional theranostics. Coord. Chem. Rev. 2020, 427, 213559. [Google Scholar] [CrossRef]
- Alifu, N.; Dong, X.; Li, D.; Sun, X.; Zebibula, A.; Zhang, D.; Zhang, G.; Qian, J. Aggregation-induced emission nanoparticles as photosensitizer for two-photon photodynamic therapy. Mater. Chem. Front. 2017, 1, 1746–1753. [Google Scholar] [CrossRef]
- Zegadi, R.; Zegadi, A.; Zebiri, C.; Mosbah, S.; Mekki, S.; Bouknia, M.L.; Bendjedi, H. Enhanced 2D Photonic Crystal Sensor for High Sensitivity Sulfuric Acid (H2SO4) and Hydrogen Peroxide (H2O2) Detection. Silicon 2022, 14, 11001–11006. [Google Scholar] [CrossRef]
- Gong, Y.; Bi, X.; Chen, N.; Forconi, M.; Kuthirummal, N.; Teklu, A.; Gao, B.; Koenemann, J.; Harris, N.; Brennan, C.; et al. Significant Enhancement of Two-Photon Excited Fluorescence in Water-Soluble Triphenylamine-Based All-Organic Compounds. J. Phys. Chem. B 2022, 126, 5513–5522. [Google Scholar] [CrossRef]
- Tang, M.; Zhang, L.; Song, B.; Ji, X.; Wang, C.; Wang, H.; Xu, H.; Su, Y.; He, Y. Long-term fundus fluorescence angiography and real-time diagnosis of retinal diseases in non-human primate-animal models. Nano Res. 2021, 14, 3840–3847. [Google Scholar] [CrossRef]
- Yueshuang, X.; Xiaoping, Z.; Chengxin, L.; Huan, W.; Baoan, C.; Yuanjin, Z. Hybrid hydrogel photonic barcodes for multiplex detection of tumor markers. Biosens. Bioelectron. 2016, 87, 264–270. [Google Scholar]
- Luan, C.; Xu, Y.; Fu, F.; Wang, H.; Xu, Q.; Chen, B.; Zhao, Y. Responsive photonic barcodes for sensitive multiplex bioassay. Nanoscale 2017, 9, 14111–14117. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, G.; Bian, F.; Cai, L.; Zhao, Y. Encoded Microneedle Arrays for Detection of Skin Interstitial Fluid Biomarkers. Adv. Mater. 2019, 31, e1902825. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Pang, J.; Xu, S.; He, H.; Ma, Y.; Liu, Z. A Glycoform-Resolved Dual-Modal Ratiometric Immunoassay Improves the Diagnostic Precision for Hepatocellular Carcinoma. Angew. Chem. Int. Ed. 2022, 61, e202113528. [Google Scholar] [CrossRef]
- Li, H.; Li, M.; Yang, Y.; Wang, F.; Wang, F.; Li, C. Aptamer-Linked CRISPR/Cas12a-Based Immunoassay. Anal. Chem. 2021, 93, 3209–3216. [Google Scholar] [CrossRef] [PubMed]
- Rui, L.; Zhi-Yuan, F.; Donghao, L.; Biao, J.; Yan, L.; Long-Yue, M. Recent trends in carbon-based microelectrodes as electrochemical sensors for neurotransmitter detection: A review. Trends Anal. Chem. 2022, 148, 116541. [Google Scholar] [CrossRef]
- Gao, B.; Tang, L.; Zhang, D.; Xie, Z.; Su, E.; Liu, H.; Gu, Z. Transpiration-Inspired Fabrication of Opal Capillary with Multiple Heterostructures for Multiplex Aptamer-Based Fluorescent Assays. ACS Appl. Mater. Interfaces 2017, 9, 32577–32582. [Google Scholar] [CrossRef]
- Ciccioli, M.; Bravo-Santano, N.; Davis, A.; Lewis, J.; Malcolm, R.; Pailhes-Jimenez, A.-S. Abstract 588: Mesenchymal markers: The new avenue for circulating tumor cells detection. Cancer Res. 2021, 81, 588. [Google Scholar] [CrossRef]
- Pace, N.A.; Hennelly, S.P.; Goodwin, P.M. Immobilization of Cyanines in DNA Produces Systematic Increases in Fluorescence Intensity. J. Phys. Chem. Lett. 2021, 12, 8963–8971. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, Z.; Zhou, Q.; Gao, B. AIEgens-Doped Photonic Crystals for High Sensitivity Fluorescence Detection of Tumor Markers. Biosensors 2023, 13, 276. https://doi.org/10.3390/bios13020276
Liao Z, Zhou Q, Gao B. AIEgens-Doped Photonic Crystals for High Sensitivity Fluorescence Detection of Tumor Markers. Biosensors. 2023; 13(2):276. https://doi.org/10.3390/bios13020276
Chicago/Turabian StyleLiao, Zhijun, Qian Zhou, and Bingbing Gao. 2023. "AIEgens-Doped Photonic Crystals for High Sensitivity Fluorescence Detection of Tumor Markers" Biosensors 13, no. 2: 276. https://doi.org/10.3390/bios13020276
APA StyleLiao, Z., Zhou, Q., & Gao, B. (2023). AIEgens-Doped Photonic Crystals for High Sensitivity Fluorescence Detection of Tumor Markers. Biosensors, 13(2), 276. https://doi.org/10.3390/bios13020276