Biosensors Based on Stanniocalcin-1 Protein Antibodies Thin Films for Prostate Cancer Diagnosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Developed Sensors
2.2. Cushion’s Preparation
2.2.1. Cushion’s Materials
2.2.2. Polyelectrolyte Solutions
2.2.3. Layer-by-Layer Thin Films
2.3. Antibody Layer
2.3.1. Immobilization of Protein A
2.3.2. Immobilization of Antibody
2.3.3. Antigen Solutions
2.4. Methods of Characterization
2.4.1. Optical and Electrical Characterization
2.4.2. Data Treatment
3. Results
3.1. Development of Antibody’s Cushions
3.1.1. Cushion’s Characterization
3.1.2. Desorption Study on PBS Solution
3.2. Electrical Characterization of Cushions in PBS Aqueous Solutions
3.3. Adsorption Kinetics of Antigen on the Sensors’ Surfaces
3.4. Testing of Sensors at Different Antigen Concentrations
3.5. Electronic Tongue Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dejous, C.; Krishnan, U.M. Sensors for Diagnosis of Prostate Cancer: Looking Beyond the Prostate Specific Antigen. Biosens. Bioelectron. 2021, 173, 112790. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- DeSantis, C.E.; Lin, C.C.; Mariotto, A.B.; Siegel, R.L.; Stein, K.D.; Kramer, J.L.; Alteri, R.; Robbins, A.S.; Jemal, A. Cancer Treatment and Survivorship Statistics 2014. CA Cancer J. Clin. 2014, 64, 252–271. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics 2016. CA Cancer J. Clin. 2016, 66, 7–30. [Google Scholar] [CrossRef]
- Miller, K.D.; Siegel, R.L.; Lin, C.C.; Mariotto, A.B.; Kramer, J.L.; Rowland, J.H.; Stein, K.D.; Alteri, R.; Jemal, A. Cancer Treatment and Survivorship Statistics 2016. CA Cancer J. Clin. 2016, 66, 271–289. [Google Scholar] [CrossRef] [PubMed]
- Makarov, D.V.; Loeb, S.; Getzenberg, R.H.; Partin, A.W. Biomarkers for Prostate Cancer. Annu. Rev. Med. 2009, 60, 139–151. [Google Scholar] [CrossRef] [PubMed]
- O’Reilly, J.-A. Prostate Cancer Detection: Complexities and Strategies. J. Cancer Treat. Diagn. 2017, 2, 18–25. [Google Scholar] [CrossRef]
- Bruno, S.M.; Falagario, U.G.; d’Altilia, N.; Recchia, M.; Mancini, V.; Selvaggio, O.; Sanguedolce, F.; Del Giudice, F.; Maggi, M.; Ferro, M.; et al. PSA Density Help to Identify Patients with Elevated PSA Due to Prostate Cancer Rather Than Intraprostatic Inflammation: A Prospective Single Center Study. Front. Oncol. 2021, 11, 693684. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.S.; Wang, S.S.; Li, J.R.; Cheng, C.L.; Yang, C.R.; Chen, W.M.; Ou, Y.C.; Ho, H.C.; Chiu, K.Y.; Yang, C.K. PSA Density as a Better Predictor of Prostate Cancer than Percent-Free PSA in a Repeat Biopsy. J. Chin. Med. Assoc. 2011, 74, 552–555. [Google Scholar] [CrossRef]
- Greenberg, A.K.; Lee, M.S. Biomarkers for Lung Cancer: Clinical Uses. Curr. Opin. Pulm. Med. 2007, 13, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Biomarkers Definitions Working Group. Biomarkers and Surrogate endpoints: Preferred Definitions and Conceptual FrameWork. Clin. Pharmacol. Ther. 2001, 69, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Chu, S.-J.; Zhang, J.; Zhang, R.; Lu, W.-W.; Zhu, J.-S. Evolution and Functions of Stanniocalcins in Cancer. Int. J. Immunopathol. Pharmacol. 2015, 28, 14–20. [Google Scholar] [CrossRef]
- Zhao, F.; Yang, G.; Feng, M.; Cao, Z.; Liu, Y.; Qiu, J.; You, L.; Zheng, L.; Zhang, T.; Zhao, Y. Expression, Function and Clinical Application of Stanniocalcin-1 in Cancer. J. Cell Mol. Med. 2020, 24, 7686–7696. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, Z.; Pu, F. Role of Stanniocalcin 1 in Breast Cancer (Review). Oncol. Lett. 2019, 18, 3946–3953. [Google Scholar] [CrossRef]
- Magro, C.; Mateus, E.P.; Raposo, M.; Ribeiro, A.B. Overview of Electronic Tongue Sensing in Environmental Aqueous Matrices: Potential for Monitoring Emerging Organic Contaminants. Environ. Rev. 2019, 27, 202–214. [Google Scholar] [CrossRef]
- Magro, C.; Zagalo, P.; Pereira-Da-Silva, J.; Mateus, E.P.; Ribeiro, A.B.; Ribeiro, P.; Raposo, M. Polyelectrolyte Based Sensors as Key to Achieve Quantitative Electronic Tongues: Detection of Triclosan on Aqueous Environmental Matrices. Nanomaterials 2020, 10, 640. [Google Scholar] [CrossRef]
- Zagalo, P.M.; Ribeiro, P.A.; Raposo, M. Detecting Traces of 17α-Ethinylestradiol in Complex Water Matrices. Sensors 2020, 20, 7324. [Google Scholar] [CrossRef] [PubMed]
- Sivaselvi, K.; Ghosh, P. Characterization of Modified Chitosan Thin Film. Mater. Today Proc. 2017, 4, 442–451. [Google Scholar] [CrossRef]
- Jang, W.-S.; Rawson, I.; Grunlan, J.C. Layer-by-Layer Assembly of Thin Film Oxygen Barrier. Thin Solid. Film. 2008, 516, 4819–4825. [Google Scholar] [CrossRef]
- la Belle, J.T.; Gerlach, J.Q.; Svarovsky, S.; Joshi, L. Label-Free Impedimetric Detection of Glycan−Lectin Interactions. Anal. Chem. 2007, 79, 6959–6964. [Google Scholar] [CrossRef]
- Jilani, A.; Abdel-wahab, M.S.; Hammad, A.H. Advance Deposition Techniques for Thin Film and Coating. In Modern Technologies for Creating the Thin-Film Systems and Coatings; Nikitenkov, N.N., Ed.; InTech, IntechOpen: Rijeka, Croatia, 2017. [Google Scholar] [CrossRef]
- Love, J.C.; Estroff, L.A.; Kriebel, J.K.; Nuzzo, R.G.; Whitesides, G.M. Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology. Chem. Rev. 2005, 105, 1103–1170. [Google Scholar] [CrossRef]
- Shen, M.; Rusling, J.F.; Dixit, C.K. Site-Selective Orientated Immobilization of Antibodies and Conjugates for Immunodiagnostics Development. Methods 2017, 116, 95–111. [Google Scholar] [CrossRef]
- Welch, N.G.; Scoble, J.A.; Muir, B.W.; Pigram, P.J. Orientation and Characterization of Immobilized Antibodies for Improved Immunoassays (Review). Biointerphases 2017, 12, 02D301. [Google Scholar] [CrossRef]
- Caroselli, R.; García Castelló, J.; Escorihuela, J.; Bañuls, M.; Maquieira, Á.; García-Rupérez, J. Experimental Study of the Oriented Immobilization of Antibodies on Photonic Sensing Structures by Using Protein A as an Intermediate Layer. Sensors 2018, 18, 1012. [Google Scholar] [CrossRef]
- Fowler, J.M.; Stuart, M.C.; Wong, D.K.Y. Self-Assembled Layer of Thiolated Protein G as an Immunosensor Scaffold. Anal. Chem. 2007, 79, 350–354. [Google Scholar] [CrossRef]
- Schein, V.; Cardoso, J.C.; Pinto, P.I.; Anjos, L.; Silva, N.; Power, D.M.; Canário, A.V. Four Stanniocalcin Genes in Teleost Fish: Structure, Phylogenetic Analysis, Tissue Distribution and Expression During Hypercalcemic Challenge. Gen. Comp. Endocrinol. 2012, 175, 344–356. [Google Scholar] [CrossRef] [PubMed]
- Palma, P.F.S.; Bock, C.; Silva, T.S.; Guerreiro, P.M.; Power, D.M.; Pörtner, H.-O.; Canário, A.V.M. STC1 and PTHrP Modify Carbohydrate and Lipid Metabolism in Liver of a Teleost Fish. Sci. Rep. 2019, 9, 723. [Google Scholar] [CrossRef] [PubMed]
- dos Santos-Neto, I.S.; Carvalho, C.D.; Filho, G.B.A.; Andrade, C.D.S.S.; Santos, G.C.d.O.; Barros, A.K.; Neto, J.V.d.F.; Casas, V.L.P.; Alencar, L.M.R.; Lopes, A.J.O.; et al. Interdigitated Electrode for Electrical Characterization of Commercial Pseudo-Binary Biodiesel–Diesel Blends. Sensors 2021, 21, 7288. [Google Scholar] [CrossRef] [PubMed]
- Zagalo, P.M.; Ribeiro, P.A.; Raposo, M. Effect of Applied Electrical Stimuli to Inter-digitated Electrode Sensors While Detecting 17α-Ethinylestradiol in Water Samples. Chemosensors 2022, 10, 114. [Google Scholar] [CrossRef]
- Wold, S.; Esbensen, K.; Geladi, P. Principal Component Analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52. [Google Scholar] [CrossRef]
- Jolliffe, I.T.; Cadima, J. Principal Component Analysis: A Review and Recent Developments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, Q.; Gomes, P.J.; Ribeiro, P.A.; Jones, N.C.; Hoffmann, S.V.; Mason, N.J.; Oliveira, O.N.; Raposo, M. Determination of Degree of Ionization of Poly(Allylamine Hydrochloride) (PAH) and Poly[1-[4-(3-Carboxy-4 Hydroxyphenylazo)Benzene Sulfonamido]-1,2- ethanediyl, Sodium Salt] (PAZO) in Layer-by-Layer Films Using Vacuum Photoabsorption Spectroscopy. Langmuir 2013, 29, 448–455. [Google Scholar] [CrossRef] [PubMed]
- Alarcón, F.; Pérez, E.; Gama Goicochea, A. “Dissipative Particle Dynamics Simulations of Weak Polyelectrolyte Adsorption on Charged and Neutral Surfaces as a Function of the Degree of Ionization. Soft Matter 2013, 9, 3777–3788. [Google Scholar] [CrossRef]
- Manap, H.; Dooly, G.; O’Keeffe, S.; Lewis, E. Amonia Detection in the UV Region Using an Optical Fiber Sensor. In Sensors; IEEE: Christchurch, New Zealand, 2009; pp. 140–145. [Google Scholar] [CrossRef]
- Zhu, X.; Tang, F.; Suzuki, T.S.; Sakka, Y. Role of the Initial Degree of Ionization of Polyethylenimine in the Dispersion of Silicon Carbide Nanoparticles. Natl. Inst. Mater. Sci. 2003, 86, 189–191. [Google Scholar] [CrossRef]
- Gierszewska, M.; Ostrowska-Czubenko, J. Equilibrium Swelling Study of Crosslinked Chitosan Membranes in Water, Buffer and Salt Solutions. Prog. Chem. Appl. Chitin Deriv. 2016, 21, 55–62. [Google Scholar] [CrossRef]
- Marroquin, J.B.; Rhee, K.Y.; Park, S.J. Chitosan Nanocomposite Films: Enhanced Electrical Conductivity, Thermal Stability, and Mechanical Properties. Carbohydr. Polym. 2013, 92, 1783–1791. [Google Scholar] [CrossRef]
- Hirabayashi, J.; Yamada, M.; Kuno, A.; Tateno, H. Lectin Microarrays: Concept, Princi-ple and Applications. Chem. Soc. Rev. 2013, 42, 4443. [Google Scholar] [CrossRef]
- Zamfir, L.-G.; Puiu, M.; Bala, C. Advances in Electrochemical Impedance Spectroscopy Detection of Endocrine Disruptors. Sensors 2020, 20, 6443. [Google Scholar] [CrossRef]
- Abd Rahman, S.F.; Md Arshad, M.K.; Gopinath, S.C.B.; Fathil, M.F.M.; Sarry, F.; Ibau, C. Glycosylated Biomarker Sensors: Advancements in Prostate Cancer Diagnosis. Chem. Commun. 2021, 57, 9640–9655. [Google Scholar] [CrossRef]
- Sadhasivam, S.; Chen, J.-C.; Savitha, S.; Lin, F.-H.; Yang, Y.-Y.; Lee, C.-H. A Real Time Detection of the Ovarian Tumor associated Antigen 1 (OVTA 1) in Human Serum by Quartz Crystal Microbalance Immobilized with Anti-OVTA 1 Polyclonal Chicken IgY Anti-bodies. Mater. Sci. Eng. C 2012, 32, 2073–2078. [Google Scholar] [CrossRef]
Sensor | Sensitivity (per Concentration Decade) | Resolution (M) |
---|---|---|
S1 | ||
S2 | ||
S3 | 254 | |
S4 | 422 | |
ET with 4 Sensors | ||
ET with 3 Sensors * | 634 |
Study | Immobilization Technique | Transduction Method | Advantages | Disadvantages | Sensitivity/Resolution |
---|---|---|---|---|---|
Lectin microarray [39]. | Lectin and antibodies immobilized using biotin affinity | Fluorescent labels | Fast, minimal reagent consumption, good stability | Low sensitivity and specificity, randomly oriented antibodies | Linear range of 0.5–10μg/mL |
Rapid test for lectin–glycan detection [40]. | Lectin covalently immobilized on copper/nickel/gold electrodes on a PCB board | Impedance spectroscopy (EIS) | Fast test (80 s) and high sensitivity | Use of nanoparticles to amplify the signal due to the presence of noise | Linear range of 0.5 ng/L–50 µg/L with a detection limit of 0.5 ng/L |
Glycosylated biomarker sensors [41]. | Use of gold nanoparticles on electrodes | Amperometry | Increased electron transfer, biocompatibility, ease of lectin immobilization | Use of gold nanoparticles, lacks validation in a clinical context | Detection limit of 0.1 μM |
Quartz microbalance sensor [42]. | Immobilization by physical adsorption | Change in resonance frequency | Low cost, high speed, simple instrumentation, use of polyclonal antibodies | Random orientation of antibodies, which can decrease sensitivity, dependence on the dipole moment of the antibody and the charge on the support surface, and time-long answer | Linear range of 0.5–10μg/mL |
Photonic sensor [25] | Use of protein A | Wavelength changes | Orientation of antibodies ensuring good sensitivity, protein A surface binding by physical adsorption, protein A—reversible antibody binding. Quick, cheap, and easy immobilization. | Extensive adsorption of protein A can lead to denaturation and loss of antibody functionality | Detection of 1 ng/mL |
This work | Use of Protein A and Stanniocalcin-1 protein antibodies | Impedance spectroscopy | The developed sensors can be used with other sensors that allow for matrix detection. | Other several sensors will be necessary for prostate cancer detection | M |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, R.; Ribeiro, P.A.; Canário, A.V.M.; Raposo, M. Biosensors Based on Stanniocalcin-1 Protein Antibodies Thin Films for Prostate Cancer Diagnosis. Biosensors 2023, 13, 981. https://doi.org/10.3390/bios13110981
Ferreira R, Ribeiro PA, Canário AVM, Raposo M. Biosensors Based on Stanniocalcin-1 Protein Antibodies Thin Films for Prostate Cancer Diagnosis. Biosensors. 2023; 13(11):981. https://doi.org/10.3390/bios13110981
Chicago/Turabian StyleFerreira, Renato, Paulo A. Ribeiro, Adelino V. M. Canário, and Maria Raposo. 2023. "Biosensors Based on Stanniocalcin-1 Protein Antibodies Thin Films for Prostate Cancer Diagnosis" Biosensors 13, no. 11: 981. https://doi.org/10.3390/bios13110981
APA StyleFerreira, R., Ribeiro, P. A., Canário, A. V. M., & Raposo, M. (2023). Biosensors Based on Stanniocalcin-1 Protein Antibodies Thin Films for Prostate Cancer Diagnosis. Biosensors, 13(11), 981. https://doi.org/10.3390/bios13110981