2D Metal-Organic Frameworks: Properties, Synthesis, and Applications in Electrochemical and Optical Biosensors
Abstract
:1. Introduction
- Tunable functionalities with varying ligands help to modulate 2D MOF and analyte molecule interaction through different interaction mechanisms such as hydrogen bonding, π-π stacking, electrostatic interactions, etc.
- High surface area and lateral dimension provide better attachment of the molecules on the 2D MOF surface, leading to higher loading of probe molecules.
- Adjustable pores for the targeted analyte through tunable building blocks that enable the high selectivity of 2D MOF.
- Exposed metal sites on the surface of the 2D MOF accelerate the surface catalytic reaction.
- Exposed metal sites on the surface provide excellent quenching properties, making them suitable for optical nucleic acid (NA) and immunosensor.
2. Unique Properties of 2D MOFs
3. Synthesis of 2D MOFs
3.1. Top-Down Synthesis
3.2. Bottom-Up Synthesis
4. 2D MOFs for Electrochemical Biosensor Applications
4.1. 2D MOF as a Nonenzymatic Sensor
4.2. Nucleic Acid-Based Sensor
4.3. Immunosensor
5. 2D MOFs for Optical Biosensors
6. Conclusions and Future Perspectives
- One of the major issues with MOFs is their stability in different solution media. Metal centers and organic linkers in MOF nanosheets are very sensitive to the pH as well as the functional groups present in the analyte solution.
- Although 2D MOFs have shown better conductivity than 3D MOFs, they still suffer from poor conductivity when utilized for sensing without any modifications.
- Despite several reports, the growth mechanism of 2D MOFs is still poorly understood. Apart from this role of MOF sheets in biosensing applications and the interaction between MOF and biomolecules are not well established.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, H.; Cheng, H.M.; Ye, P. 2D Nanomaterials: Beyond Graphene and Transition Metal Dichalcogenides. Chem. Soc. Rev. 2018, 47, 6009–6012. [Google Scholar] [CrossRef]
- Catania, F.; Marras, E.; Giorcelli, M.; Jagdale, P.; Lavagna, L.; Tagliaferro, A.; Bartoli, M. A Review on Recent Advancements of Graphene and Graphene-Related Materials in Biological Applications. Appl. Sci. 2021, 11, 614. [Google Scholar] [CrossRef]
- Xie, H.; Li, Z.; Cheng, L.; Haidry, A.A.; Tao, J.; Xu, Y.; Xu, K.; Ou, J.Z. Recent Advances in the Fabrication of 2D Metal Oxides. iScience 2022, 25, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Fan, Q.; Huang, M.; Cölfen, H. Synthesis of Two-Dimensional Layered Double Hydroxides: A Systematic Overview. CrystEngComm 2022, 24, 4639–4655. [Google Scholar] [CrossRef]
- Yin, X.; Tang, C.S.; Zheng, Y.; Gao, J.; Wu, J.; Zhang, H.; Chhowalla, M.; Chen, W.; Wee, A.T.S. Recent Developments in 2D Transition Metal Dichalcogenides: Phase Transition and Applications of the (Quasi-)Metallic Phases. Chem. Soc. Rev. 2021, 50, 10087–10115. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Meng, X.; Li, X.; Liang, W.; Huang, W.; Chen, K.; Chen, J.; Xing, C.; Qiu, M.; Zhang, B.; et al. Two-Dimensional Borophene: Properties, Fabrication, and Promising Applications. Research 2020, 2020, 2624617. [Google Scholar] [CrossRef]
- Vinoth, S.; Shalini Devi, K.S.; Pandikumar, A. A Comprehensive Review on Graphitic Carbon Nitride Based Electrochemical and Biosensors for Environmental and Healthcare Applications. TrAC-Trends Anal. Chem. 2021, 140, 116274. [Google Scholar] [CrossRef]
- Li, Y.Z.; Fu, Z.H.; Xu, G. Metal-Organic Framework Nanosheets: Preparation and Applications. Coord. Chem. Rev. 2019, 388, 79–106. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y.W. Thermal Properties of Transition-Metal Dichalcogenide. Chin. Phys. B 2018, 27, 034402. [Google Scholar] [CrossRef]
- Ronchi, R.M.; Arantes, J.T.; Santos, S.F. Synthesis, Structure, Properties and Applications of MXenes: Current Status and Perspectives. Ceram. Int. 2019, 45, 18167–18188. [Google Scholar] [CrossRef]
- Butova, V.V.; Soldatov, M.A.; Guda, A.A.; Lomachenko, K.A.; Lamberti, C. Metal-Organic Frameworks: Structure, Properties, Methods of Synthesis and Characterization. Russ. Chem. Rev. 2016, 85, 280–307. [Google Scholar] [CrossRef]
- Deng, H.; Grunder, S.; Cordova, K.E.; Valente, C.; Furukawa, H.; Hmadeh, M.; Gándara, F.; Whalley, A.C.; Liu, Z.; Asahina, S.; et al. Large-Pore Apertures in a Series of Metal-Organic Frameworks. Science 2012, 336, 1018–1023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, S.; Zou, L.; Qin, J.S.; Li, J.; Huang, L.; Feng, L.; Wang, X.; Bosch, M.; Alsalme, A.; Cagin, T.; et al. Construction of Hierarchically Porous Metal-Organic Frameworks through Linker Labilization. Nat. Commun. 2017, 8, 15356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Li, L.; Lin, R.-B.; Zhou, W.; Zhang, Z.; Xiang, S.; Chen, B. Porous Metal-Organic Frameworks for Gas Storage and Separation: Status and Challenges. EnergyChem 2019, 1, 100006. [Google Scholar] [CrossRef]
- Ghosh, A.; Sana Fathima, T.K.; Ramaprabhu, S. Effect of Coordinated Solvent Molecules in Cu-MOF on Enzyme Free Sensing of Glucose and Lactate in Physiological PH. J. Electrochem. Soc. 2022, 169, 057524. [Google Scholar] [CrossRef]
- Yang, D.; Gates, B.C. Catalysis by Metal Organic Frameworks: Perspective and Suggestions for Future Research. ACS Catal. 2019, 9, 1779–1798. [Google Scholar] [CrossRef]
- Zhao, Y.; Song, Z.; Li, X.; Sun, Q.; Cheng, N.; Lawes, S.; Sun, X. Metal Organic Frameworks for Energy Storage and Conversion. Energy Storage Mater. 2016, 2, 35–62. [Google Scholar] [CrossRef]
- Freund, R.; Zaremba, O.; Arnauts, G.; Ameloot, R.; Skorupskii, G.; Dincă, M.; Bavykina, A.; Gascon, J.; Ejsmont, A.; Goscianska, J.; et al. The Current Status of MOF and COF Applications. Angew. Chem. Int. Ed. 2021, 60, 23975–24001. [Google Scholar] [CrossRef]
- Hendon, C.H.; Rieth, A.J.; Korzyński, M.D.; Dincǎ, M. Grand Challenges and Future Opportunities for Metal-Organic Frameworks. ACS Cent. Sci. 2017, 3, 554–563. [Google Scholar] [CrossRef]
- Zhao, M.; Huang, Y.; Peng, Y.; Huang, Z.; Ma, Q.; Zhang, H. Two-Dimensional Metal-Organic Framework Nanosheets: Synthesis and Applications. Chem. Soc. Rev. 2018, 47, 6267–6295. [Google Scholar] [CrossRef]
- Li, H.; Zhang, L.; Mao, Y.; Wen, C.; Zhao, P. A Simple Electrochemical Route to Access Amorphous Co-Ni Hydroxide for Non-Enzymatic Glucose Sensing. Nanoscale Res. Lett. 2019, 14, 135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Ma, Y.; Jiang, X.; Yang, N.; Coffinier, Y.; Belkhalfa, H.; Dokhane, N.; Li, M.; Boukherroub, R.; Szunerits, S. Electrophoretic Deposition of Carbon Nanofibers/Co(OH)2 Nanocomposites: Application for Non-Enzymatic Glucose Sensing. Electroanalysis 2016, 28, 119–125. [Google Scholar] [CrossRef]
- Mohapatra, J.; Ananthoju, B.; Nair, V.; Mitra, A.; Bahadur, D.; Medhekar, N.V.; Aslam, M. Enzymatic and Non-Enzymatic Electrochemical Glucose Sensor Based on Carbon Nano-Onions. Appl. Surf. Sci. 2018, 442, 332–341. [Google Scholar] [CrossRef]
- Wang, F.; Chen, X.; Chen, L.; Yang, J.; Wang, Q. High-Performance Non-Enzymatic Glucose Sensor by Hierarchical Flower-like Nickel(II)-Based MOF/Carbon Nanotubes Composite. Mater. Sci. Eng. C 2019, 96, 41–50. [Google Scholar] [CrossRef]
- Salah, A.; Al-Ansi, N.; Adlat, S.; Bawa, M.; He, Y.; Bo, X.; Guo, L. Sensitive Nonenzymatic Detection of Glucose at PtPd/Porous Holey Nitrogen-Doped Graphene. J. Alloys Compd. 2019, 792, 50–58. [Google Scholar] [CrossRef]
- Gumilar, G.; Kaneti, Y.V.; Henzie, J.; Chatterjee, S.; Na, J.; Yuliarto, B.; Nugraha, N.; Patah, A.; Bhaumik, A.; Yamauchi, Y. General Synthesis of Hierarchical Sheet/Plate-like M-BDC (M = Cu, Mn, Ni, and Zr) Metal-Organic Frameworks for Electrochemical Non-Enzymatic Glucose Sensing. Chem. Sci. 2020, 11, 3644–3655. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Xie, M.; Zhang, X.; Liu, Q.; Lin, D.; Xu, C.; Xie, F.; Sun, X. Co-MOF Nanosheet Array: A High-Performance Electrochemical Sensor for Non-Enzymatic Glucose Detection. Sens. Actuators B Chem. 2019, 278, 126–132. [Google Scholar] [CrossRef]
- Wang, F.; Hu, J.; Liu, Y.; Yuan, G.; Zhang, S.; Xu, L.; Xue, H.; Pang, H. Turning Coordination Environment of 2D Nickel-Based Metal-Organic Frameworks by π-Conjugated Molecule for Enhancing Glucose Electrochemical Sensor Performance. Mater. Today Chem. 2022, 24, 100885. [Google Scholar] [CrossRef]
- Liu, W.; Yin, R.; Xu, X.; Zhang, L.; Shi, W.; Cao, X. Structural Engineering of Low-Dimensional Metal–Organic Frameworks: Synthesis, Properties, and Applications. Adv. Sci. 2019, 6, 1802373. [Google Scholar] [CrossRef]
- Liu, C.; Li, J.; Pang, H. Metal-Organic Framework-Based Materials as an Emerging Platform for Advanced Electrochemical Sensing. Coord. Chem. Rev. 2020, 410, 213222. [Google Scholar] [CrossRef]
- Low, K.H.; Roy, V.A.L.; Chui, S.S.Y.; Chan, S.L.F.; Che, C.M. Highly Conducting Two-Dimensional Copper(i) 4-Hydroxythiophenolate Network. Chem. Commun. 2010, 46, 7328–7330. [Google Scholar] [CrossRef]
- Ohata, T.; Nomoto, A.; Watanabe, T.; Hirosawa, I.; Makita, T.; Takeya, J.; Makiura, R. Uniaxially Oriented Electrically Conductive Metal-Organic Framework Nanosheets Assembled at Air/Liquid Interfaces. ACS Appl. Mater. Interfaces 2021, 13, 54570–54578. [Google Scholar] [CrossRef]
- Sheberla, D.; Sun, L.; Blood-forsythe, M.A.; Er, S.; Wade, C.R.; Brozek, C.K. High Electrical Conductivity in Ni3(2,3,6,7,10,11-Hexaiminotriphenylene)2,a Semiconducting Metal-Organic Graphene Analogue. J. Am. Chem. Soc. 2014, 136, 8859–8862. [Google Scholar] [CrossRef]
- Qiu, Q.; Chen, H.; Ying, S.; Sharif, S.; You, Z.; Wang, Y.; Ying, Y. Simultaneous Fluorometric Determination of the DNAs of Salmonella Enterica, Listeria Monocytogenes and Vibrio Parahemolyticus by Using an Ultrathin Metal-Organic Framework (Type Cu-TCPP). Microchim. Acta 2019, 186, 93. [Google Scholar] [CrossRef]
- Nicks, J.; Sasitharan, K.; Prasad, R.R.R.; Ashworth, D.J.; Foster, J.A. Metal–Organic Framework Nanosheets: Programmable 2D Materials for Catalysis, Sensing, Electronics, and Separation Applications. Adv. Funct. Mater. 2021, 31, 2103723. [Google Scholar] [CrossRef]
- Varsha, M.V.; Nageswaran, G. Review—2D Layered Metal Organic Framework Nanosheets as an Emerging Platform for Electrochemical Sensing. J. Electrochem. Soc. 2020, 167, 136502. [Google Scholar] [CrossRef]
- Han, L.J.; Zheng, D.; Chen, S.G.; Zheng, H.G.; Ma, J. A Highly Solvent-Stable Metal–Organic Framework Nanosheet: Morphology Control, Exfoliation, and Luminescent Property. Small 2018, 14, 1703873. [Google Scholar] [CrossRef]
- He, T.; Ni, B.; Zhang, S.; Gong, Y.; Wang, H.; Gu, L.; Zhuang, J.; Hu, W.; Wang, X. Ultrathin 2D Zirconium Metal–Organic Framework Nanosheets: Preparation and Application in Photocatalysis. Small 2018, 14, 1703929. [Google Scholar] [CrossRef]
- Rodenas, T.; Luz, I.; Prieto, G.; Seoane, B.; Miro, H.; Corma, A.; Kapteijn, F.; Llabrés i Xamena, F.X.; Gascon, J. Metal-Organic Framework Nanosheets in Polymer Composite Materials for Gas Separation. Nat. Mater. 2015, 14, 48–55. [Google Scholar] [CrossRef]
- Hermosa, C.; Horrocks, B.R.; Martínez, J.I.; Liscio, F.; Gómez-Herrero, J.; Zamora, F. Mechanical and Optical Properties of Ultralarge Flakes of a Metal-Organic Framework with Molecular Thickness. Chem. Sci. 2015, 6, 2553–2558. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.; Niu, B.; Liu, B.; Li, J.; Duan, W. Ultra-Stable Two-Dimensional Metal-Organic Frameworks for Photocatalytic H2 Production. Nanoscale 2022, 14, 7146–7150. [Google Scholar] [CrossRef]
- Ma, H.M.; Yi, J.W.; Li, S.; Jiang, C.; Wei, J.H.; Wu, Y.P.; Zhao, J.; Li, D.S. Stable Bimetal-MOF Ultrathin Nanosheets for Pseudocapacitors with Enhanced Performance. Inorg. Chem. 2019, 58, 9543–9547. [Google Scholar] [CrossRef]
- Foster, J.A.; Henke, S.; Schneemann, A.; Fischer, R.A.; Cheetham, A.K. Liquid Exfoliation of Alkyl-Ether Functionalised Layered Metal-Organic Frameworks to Nanosheets. Chem. Commun. 2016, 52, 10474–10477. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Xu, D.; Ma, L.; Qiu, J.; Wang, X.; Dong, Q.; Zhang, Q.; Pan, J.; Liu, Q. Ultrathin ZIF-67 Nanosheets as a Colorimetric Biosensing Platform for Peroxidase-like Catalysis. Anal. Bioanal. Chem. 2018, 410, 7145–7152. [Google Scholar] [CrossRef]
- Zhao, L.; Si, D.; Zhao, Y.; Wang, L.; An, H.; Ye, H.; Xin, Q.; Zhang, Y. Copper Nanocomposite Decorated Two-Dimensional Metal Organic Frameworks of Metalloporphyrin with Peroxidase-Mimicking Activity. Colloids Surf. A Physicochem. Eng. Asp. 2022, 644, 128876. [Google Scholar] [CrossRef]
- Junggeburth, S.C.; Diehl, L.; Werner, S.; Duppel, V.; Sigle, W.; Lotsch, B.V. Ultrathin 2D Coordination Polymer Nanosheets by Surfactant-Mediated Synthesis. J. Am. Chem. Soc. 2013, 135, 6157–6164. [Google Scholar] [CrossRef]
- Zhao, M.; Wang, Y.; Ma, Q.; Huang, Y.; Zhang, X.; Ping, J.; Zhang, Z.; Lu, Q.; Yu, Y.; Xu, H.; et al. Ultrathin 2D Metal-Organic Framework Nanosheets. Adv. Mater. 2015, 27, 7372–7378. [Google Scholar] [CrossRef]
- Liu, X.; Shi, C.; Zhai, C.; Cheng, M.; Liu, Q.; Wang, G. Cobalt-Based Layered Metal-Organic Framework as an Ultrahigh Capacity Supercapacitor Electrode Material. ACS Appl. Mater. Interfaces 2016, 8, 4585–4591. [Google Scholar] [CrossRef]
- Amo-Ochoa, P.; Welte, L.; González-Prieto, R.; Sanz Miguel, P.J.; Gómez-García, C.J.; Mateo-Martí, E.; Delgado, S.; Gómez-Herrero, J.; Zamora, F. Single Layers of a Multifunctional Laminar Cu(i,Ii) Coordination Polymer. Chem. Commun. 2010, 46, 3262–3264. [Google Scholar] [CrossRef] [Green Version]
- Abhervé, A.; Mañas-Valero, S.; Clemente-León, M.; Coronado, E. Graphene Related Magnetic Materials: Micromechanical Exfoliation of 2D Layered Magnets Based on Bimetallic Anilate Complexes with Inserted [FeIII(Acac2-Trien)]+ and [FeIII(Sal2-Trien)]+ Molecules. Chem. Sci. 2015, 6, 4665–4673. [Google Scholar] [CrossRef]
- Liu, Y.; Wei, Y.; Liu, M.; Bai, Y.; Wang, X.; Shang, S.; Chen, J.; Liu, Y. Electrochemical Synthesis of Large Area Two-Dimensional Metal–Organic Framework Films on Copper Anodes. Angew. Chem. Int. Ed. 2021, 60, 2887–2891. [Google Scholar] [CrossRef]
- Liu, X.; Jia, Q.; Fu, Y.; Zheng, T. Exfoliation of Metal-Organic Framework Nanosheets Using Surface Acoustic Waves. Ultrason. Sonochem. 2022, 83, 105943. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Gao, J.; Qian, X.; Wang, J.; He, H.; Cui, Y.; Yang, Y.; Wang, Z.; Qian, G. Metal-Organic Framework Nanosheets for Fast-Response and Highly Sensitive Luminescent Sensing of Fe3+. J. Mater. Chem. A 2016, 4, 10900–10905. [Google Scholar] [CrossRef]
- Ding, Y.; Chen, Y.P.; Zhang, X.; Chen, L.; Dong, Z.; Jiang, H.L.; Xu, H.; Zhou, H.C. Controlled Intercalation and Chemical Exfoliation of Layered Metal-Organic Frameworks Using a Chemically Labile Intercalating Agent. J. Am. Chem. Soc. 2017, 139, 9136–9139. [Google Scholar] [CrossRef] [PubMed]
- Ogihara, N.; Ozawa, Y.; Hiruta, O. A Self-Assembled Intercalated Metal-Organic Framework Electrode with Outstanding Area Capacity for High Volumetric Energy Asymmetric Capacitors. J. Mater. Chem. A 2016, 4, 3398–3405. [Google Scholar] [CrossRef] [Green Version]
- Li, P.Z.; Maeda, Y.; Xu, Q. Top-down Fabrication of Crystalline Metal-Organic Framework Nanosheets. Chem. Commun. 2011, 47, 8436–8438. [Google Scholar] [CrossRef]
- Saines, P.J.; Tan, J.C.; Yeung, H.H.M.; Barton, P.T.; Cheetham, A.K. Layered Inorganic-Organic Frameworks Based on the 2,2-Dimethylsuccinate Ligand: Structural Diversity and Its Effect on Nanosheet Exfoliation and Magnetic Properties. Dalt. Trans. 2012, 41, 8585–8593. [Google Scholar] [CrossRef]
- Cliffe, M.J.; Castillo-Martínez, E.; Wu, Y.; Lee, J.; Forse, A.C.; Firth, F.C.N.; Moghadam, P.Z.; Fairen-Jimenez, D.; Gaultois, M.W.; Hill, J.A.; et al. Metal-Organic Nanosheets Formed via Defect-Mediated Transformation of a Hafnium Metal-Organic Framework. J. Am. Chem. Soc. 2017, 139, 5397–5404. [Google Scholar] [CrossRef]
- Araki, T.; Kondo, A.; Maeda, K. The First Lanthanide Organophosphonate Nanosheet by Exfoliation of Layered Compounds. Chem. Commun. 2013, 49, 552–554. [Google Scholar] [CrossRef]
- Peng, Y.; Li, Y.; Ban, Y.; Jin, H.; Jiao, W.; Liu, X.; Yang, W. Metal-Organic Framework Nanosheets as Building Blocks for Molecular Sieving Membranes. Science 2014, 346, 1356–1359. [Google Scholar] [CrossRef]
- Tan, J.C.; Saines, P.J.; Bithell, E.G.; Cheetham, A.K. Hybrid Nanosheets of an Inorganic-Organic Framework Material: Facile Synthesis, Structure, and Elastic Properties. ACS Nano 2012, 6, 615–621. [Google Scholar] [CrossRef] [PubMed]
- López-Cabrelles, J.; Mañas-Valero, S.; Vitórica-Yrezábal, I.J.; Bereciartua, P.J.; Rodríguez-Velamazán, J.A.; Waerenborgh, J.C.; Vieira, B.J.C.; Davidovikj, D.; Steeneken, P.G.; van der Zant, H.S.J.; et al. Isoreticular Two-Dimensional Magnetic Coordination Polymers Prepared through Pre-Synthetic Ligand Functionalization. Nat. Chem. 2018, 10, 1001–1007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallego, A.; Hermosa, C.; Castillo, O.; Berlanga, I.; Gõmez-García, C.J.; Mateo-Martí, E.; Martínez, J.I.; Flores, F.; Gõmez-Navarro, C.; Gõmez-Herrero, J.; et al. Solvent-Induced Delamination of a Multifunctional Two Dimensional Coordination Polymer. Adv. Mater. 2013, 25, 2141–2146. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Yan, P.; Zhang, S.; Zhang, Y.; Chang, H.; Zheng, X.; Jiang, J.; Xu, Q. CO2 Coordination-Driven Top-down Synthesis of a 2D Non-Layered Metal–Organic Framework. Fundam. Res. 2022, 2, 674–681. [Google Scholar] [CrossRef]
- Liu, Y.L.; Liu, X.Y.; Feng, L.; Shao, L.X.; Li, S.J.; Tang, J.; Cheng, H.; Chen, Z.; Huang, R.; Xu, H.C.; et al. Two-Dimensional Metal–Organic Framework Nanosheets: Synthesis and Applications in Electrocatalysis and Photocatalysis. ChemSusChem 2022, 15, e202102603. [Google Scholar] [CrossRef]
- Nian, P.; Liu, H.; Zhang, X. Bottom-up Synthesis of 2D Co-Based Metal-Organic Framework Nanosheets by an Ammonia-Assisted Strategy for Tuning the Crystal Morphology. CrystEngComm 2019, 21, 3199–3208. [Google Scholar] [CrossRef]
- Dong, R.; Zhang, T.; Feng, X. Interface-Assisted Synthesis of 2D Materials: Trend and Challenges. Chem. Rev. 2018, 118, 6189–6325. [Google Scholar] [CrossRef]
- Li, Y.N.; Wang, S.; Zhou, Y.; Bai, X.J.; Song, G.S.; Zhao, X.Y.; Wang, T.Q.; Qi, X.; Zhang, X.M.; Fu, Y. Fabrication of Metal-Organic Framework and Infinite Coordination Polymer Nanosheets by the Spray Technique. Langmuir 2017, 33, 1060–1065. [Google Scholar] [CrossRef]
- Dong, R.; Pfeffermann, M.; Liang, H.; Zheng, Z.; Zhu, X.; Zhang, J.; Feng, X. Large-Area, Free-Standing, Two-Dimensional Supramolecular Polymer Single-Layer Sheets for Highly Efficient Electrocatalytic Hydrogen Evolution. Angew. Chem. Int. Ed. 2015, 54, 12058–12063. [Google Scholar] [CrossRef]
- Sakaida, S.; Haraguchi, T.; Otsubo, K.; Sakata, O.; Fujiwara, A.; Kitagawa, H. Fabrication and Structural Characterization of an Ultrathin Film of a Two-Dimensional-Layered Metal-Organic Framework, {Fe(Py)2[Ni(CN)4]} (Py = Pyridine). Inorg. Chem. 2017, 56, 7606–7609. [Google Scholar] [CrossRef]
- Schaate, A.; Roy, P.; Godt, A.; Lippke, J.; Waltz, F.; Wiebcke, M.; Behrens, P. Modulated Synthesis of Zr-Based Metal-Organic Frameworks: From Nano to Single Crystals. Chem. A Eur. J. 2011, 17, 6643–6651. [Google Scholar] [CrossRef]
- Choe, M.; Koo, J.Y.; Park, I.; Ohtsu, H.; Shim, J.H.; Choi, H.C.; Park, S.S. Chemical Vapor Deposition of Edge-on Oriented 2D Conductive Metal-Organic Framework Thin Films. J. Am. Chem. Soc. 2022, 144, 16726–16731. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Xiao, J.; Wang, D.; Sun, W.; Gao, X.; Yu, H.; Liu, H.; Liu, Z. Construction and Photocatalytic Activities of a Series of Isostructural Co2+/Zn2+ Metal-Doped Metal-Organic Frameworks. Cryst. Growth Des. 2017, 17, 1096–1102. [Google Scholar] [CrossRef]
- Salcedo-Abraira, P.; Vilela, S.M.F.; Babaryk, A.A.; Cabrero-Antonino, M.; Gregorio, P.; Salles, F.; Navalón, S.; García, H.; Horcajada, P. Nickel Phosphonate MOF as Efficient Water Splitting Photocatalyst. Nano Res. 2021, 14, 450–457. [Google Scholar] [CrossRef]
- Oh, S.; Park, J.; Oh, M. Competitive Formation between 2D and 3D Metal-Organic Frameworks: Insights into the Selective Formation and Lamination of a 2D MOF. IUCrJ 2019, 6, 681–687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaudhari, A.K.; Kim, H.J.; Han, I.; Tan, J.C. Optochemically Responsive 2D Nanosheets of a 3D Metal–Organic Framework Material. Adv. Mater. 2017, 29, 1701463. [Google Scholar] [CrossRef] [Green Version]
- Huo, Y.; Bu, M.; Ma, Z.; Sun, J.; Yan, Y.; Xiu, K.; Wang, Z.; Hu, N.; Li, Y.F. Flexible, Non-Contact and Multifunctional Humidity Sensors Based on Two-Dimensional Phytic Acid Doped Co-Metal Organic Frameworks Nanosheets. J. Colloid Interface Sci. 2022, 607, 2010–2018. [Google Scholar] [CrossRef]
- Nagoor Meeran, M.; Saravanan, S.P.; Shkir, M.; Karthik Kannan, S. Fabrication of Transition-Metal (Zn, Mn, Cu)-Based MOFs as Efficient Sensor Materials for Detection of H2 Gas by Clad Modified Fiber Optic Gas Sensor Technique. Opt. Fiber Technol. 2021, 65, 102614. [Google Scholar] [CrossRef]
- Singha Mahapatra, T.; Dey, A.; Singh, H.; Hossain, S.S.; Mandal, A.K.; Das, A. Two-Dimensional Lanthanide Coordination Polymer Nanosheets for Detection of FOX-7. Chem. Sci. 2020, 11, 1032–1042. [Google Scholar] [CrossRef] [Green Version]
- Lai, H.; Dai, H.; Li, G.; Zhang, Z. Rapid Determination of Pesticide Residues in Fruit and Vegetable Using Au@AgNPs Decorated 2D Ni-MOF Nanosheets as Efficient Surface-Enhanced Raman Scattering Substrate. Sens. Actuators B Chem. 2022, 369, 132360. [Google Scholar] [CrossRef]
- Liu, C.; Wang, T.; Ji, J.; Wang, C.; Wang, H.; Jin, P.; Zhou, W.; Jiang, J. The Effect of Pore Size and Layer Number of Metal-Porphyrin Coordination Nanosheets on Sensing DNA. J. Mater. Chem. C 2019, 7, 10240–10246. [Google Scholar] [CrossRef]
- Hu, S.; Jiang, Y.; Wu, Y.; Guo, X.; Ying, Y.; Wen, Y.; Yang, H. Enzyme-Free Tandem Reaction Strategy for Surface-Enhanced Raman Scattering Detection of Glucose by Using the Composite of Au Nanoparticles and Porphyrin-Based Metal-Organic Framework. ACS Appl. Mater. Interfaces 2020, 12, 55324–55330. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Xu, Y.; Xu, F.; Zhang, Q.; Li, S.; Lu, X. Detection of Hydrogen Peroxide and Glucose with a Novel Fluorescent Probe by the Enzymatic Reaction of Amino Functionalized MOF Nanosheets. Anal. Methods 2021, 13, 4228–4237. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Wang, M.; Sun, Z.; Sha, L.; Yang, J.; Li, G. Colorimetric Immunosensor Constructed Using 2D Metal–Organic Framework Nanosheets as Enzyme Mimics for the Detection of Protein Biomarkers. J. Mater. Chem. B 2022, 10, 450–455. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.W.; Zhao, T.T.; Li, C.M.; Li, Y.F.; Huang, C.Z. 2D MOF-Based Photoelectrochemical Aptasensor for SARS-CoV-2 Spike Glycoprotein Detection. ACS Appl. Mater. Interfaces 2021, 13, 49754–49761. [Google Scholar] [CrossRef]
- Moghzi, F.; Soleimannejad, J.; Janczak, J. Dual-Emitting Barium Based Metal-Organic Nanosheets as a Potential Sensor for Temperature and Anthrax Biomarkers. Nanotechnology 2020, 31, 245706. [Google Scholar] [CrossRef]
- Qin, G.; Cao, D.; Wan, X.; Wang, X.; Kong, Y. Polyvinylpyrrolidone-Assisted Synthesis of Highly Water-Stable Cadmium-Based Metal-Organic Framework Nanosheets for the Detection of Metronidazole. RSC Adv. 2021, 11, 34842–34848. [Google Scholar] [CrossRef]
- Qin, G.; Li, L.; Bai, W.; Liu, Z.; Yuan, F.; Ni, Y. Highly Sensitive and Visualized Sensing of Nitrofurazone on 2D Tb3+@Zn-AIP Ultrathin Nanosheets. Dye. Pigment. 2021, 190, 109309. [Google Scholar] [CrossRef]
- Stolz, R.M.; Kolln, A.F.; Rocha, B.C.; Brinks, A.; Eagleton, A.M.; Mendecki, L.; Vashisth, H.; Mirica, K.A. Epitaxial Self-Assembly of Interfaces of 2D Metal–Organic Frameworks for Electroanalytical Detection of Neurotransmitters. ACS Nano 2022, 16, 13869–13883. [Google Scholar] [CrossRef]
- Chen, S.; Zhao, P.; Jiang, L.; Zhou, S.; Zheng, J.; Luo, X.; Huo, D.; Hou, C. Cu2O-Mediated Assembly of Electrodeposition of Au Nanoparticles onto 2D Metal-Organic Framework Nanosheets for Real-Time Monitoring of Hydrogen Peroxide Released from Living Cells. Anal. Bioanal. Chem. 2020, 413, 613–624. [Google Scholar] [CrossRef]
- Portorreal-Bottier, A.; Gutiérrez-Tarriño, S.; Calvente, J.J.; Andreu, R.; Roldán, E.; Oña-Burgos, P.; Olloqui-Sariego, J.L. Enzyme-like Activity of Cobalt-MOF Nanosheets for Hydrogen Peroxide Electrochemical Sensing. Sens. Actuators B Chem. 2022, 368, 132129. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, F.; Sun, Y.; Yu, K.; Guo, W.; Qu, F. A 2D/2D NiCo-MOF/Ti3C2heterostructure for the Simultaneous Detection of Acetaminophen, Dopamine and Uric Acid by Differential Pulse Voltammetry. Dalt. Trans. 2021, 50, 16593–16600. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Gui, M.; Asif, M.; Yu, Y.; Dong, S.; Wang, H.; Wang, W.; Wang, F.; Xiao, F.; Liu, H. A Facile Modular Approach to the 2D Oriented Assembly MOF Electrode for Non-Enzymatic Sweat Biosensors. Nanoscale 2018, 10, 6629–6638. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, B.; Li, J.; Zhai, Y.; Liu, H.; Li, L.; Wen, H. Conductive 2D Metal-Organic Framework (Co, NiCo, Ni) Nanosheets for Enhanced Non-Enzymatic Detection of Urea. Electroanalysis 2021, 33, 1484–1490. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Y.; Wang, X.; Han, L. Flow-Homogeneous Electrochemical Sensing System Based on 2D Metal-Organic Framework Nanozyme for Successive MicroRNA Assay. Biosens. Bioelectron. 2022, 206, 114120. [Google Scholar] [CrossRef]
- Sakthivel, R.; Lin, L.Y.; Duann, Y.F.; Chen, H.H.; Su, C.; Liu, X.; He, J.H.; Chung, R.J. MOF-Derived Cu-BTC Nanowire-Embedded 2D Leaf-like Structured ZIF Composite-Based Aptamer Sensors for Real-Time In Vivo Insulin Monitoring. ACS Appl. Mater. Interfaces 2022, 14, 28639–28650. [Google Scholar] [CrossRef]
- Zhou, N.; Su, F.; Guo, C.; He, L.; Jia, Z.; Wang, M.; Jia, Q.; Zhang, Z.; Lu, S. Two-Dimensional Oriented Growth of Zn-MOF-on-Zr-MOF Architecture: A Highly Sensitive and Selective Platform for Detecting Cancer Markers. Biosens. Bioelectron. 2019, 123, 51–58. [Google Scholar] [CrossRef]
- Sun, Y.; Jin, H.; Jiang, X.; Gui, R. Black Phosphorus Nanosheets Adhering to Thionine-Doped 2D MOF as a Smart Aptasensor Enabling Accurate Capture and Ratiometric Electrochemical Detection of Target MicroRNA. Sens. Actuators B Chem. 2020, 309, 127777. [Google Scholar] [CrossRef]
- Ahmadi, A.; Khoshfetrat, S.M.; Mirzaeizadeh, Z.; Kabiri, S.; Rezaie, J.; Omidfar, K. Electrochemical Immunosensor for Determination of Cardiac Troponin I Using Two-Dimensional Metal-Organic Framework/Fe3O4–COOH Nanosheet Composites Loaded with Thionine and PCTAB/DES Modified Electrode. Talanta 2022, 237, 122911. [Google Scholar] [CrossRef]
- Dong, L.; Yin, L.; Tian, G.; Wang, Y.; Pei, H.; Wu, Q.; Cheng, W.; Ding, S.; Xia, Q. An Enzyme-Free Ultrasensitive Electrochemical Immunosensor for Calprotectin Detection Based on PtNi Nanoparticles Functionalized 2D Cu-Metal Organic Framework Nanosheets. Sens. Actuators B Chem. 2020, 308, 127687. [Google Scholar] [CrossRef]
- Koyappayil, A.; Yeon, S.H.; Chavan, S.G.; Jin, L.; Go, A.; Lee, M.H. Efficient and Rapid Synthesis of Ultrathin Nickel-Metal Organic Framework Nanosheets for the Sensitive Determination of Glucose. Microchem. J. 2022, 179, 107462. [Google Scholar] [CrossRef]
- Li, W.; Lv, S.; Wang, Y.; Zhang, L.; Cui, X. Nanoporous Gold Induced Vertically Standing 2D NiCo Bimetal-Organic Framework Nanosheets for Non-Enzymatic Glucose Biosensing. Sens. Actuators B Chem. 2019, 281, 652–658. [Google Scholar] [CrossRef]
- Pan, W.; Zheng, Z.; Wu, X.; Gao, J.; Liu, Y.; Yuan, Q.; Gan, W. Facile Synthesis of 2D/3D Hierarchical NiCu Bimetallic MOF for Non-Enzymatic Glucose Sensor. Microchem. J. 2021, 170, 106652. [Google Scholar] [CrossRef]
- Xue, Z.; Jia, L.; Zhu, R.R.; Du, L.; Zhao, Q.H. High-Performance Non-Enzymatic Glucose Electrochemical Sensor Constructed by Transition Nickel Modified Ni@Cu-MOF. J. Electroanal. Chem. 2020, 858, 113783. [Google Scholar] [CrossRef]
- Hu, S.; Lin, Y.; Teng, J.; Wong, W.L.; Qiu, B. In Situ Deposition of MOF-74(Cu) Nanosheet Arrays onto Carbon Cloth to Fabricate a Sensitive and Selective Electrocatalytic Biosensor and Its Application for the Determination of Glucose in Human Serum. Microchim. Acta 2020, 187, 670. [Google Scholar] [CrossRef]
- Wang, C.; Huang, S.; Luo, L.; Zhou, Y.; Lu, X.; Zhang, G.; Ye, H.; Gu, J.; Cao, F. Ultrathin Two-Dimension Metal-Organic Framework Nanosheets/Multi-Walled Carbon Nanotube Composite Films for the Electrochemical Detection of H2O2. J. Electroanal. Chem. 2019, 835, 178–185. [Google Scholar] [CrossRef]
- Shu, Y.; Chen, J.; Xu, Z.; Jin, D.; Xu, Q.; Hu, X. Nickel Metal-Organic Framework Nanosheet/Hemin Composite as Biomimetic Peroxidase for Electrocatalytic Reduction of H2O2. J. Electroanal. Chem. 2019, 845, 137–143. [Google Scholar] [CrossRef]
- Liu, B.; Wang, X.; Zhai, Y.; Zhang, Z.; Liu, H.; Li, L.; Wen, H. Facile Preparation of Well Conductive 2D MOF for Nonenzymatic Detection of Hydrogen Peroxide: Relationship between Electrocatalysis and Metal Center. J. Electroanal. Chem. 2020, 858, 113804. [Google Scholar] [CrossRef]
- Li, Q.; Zheng, S.; Hu, X.; Shao, Z.; Zheng, M.; Pang, H. Ultrathin Nanosheet Ni-Metal Organic Framework Assemblies for High-Efficiency Ascorbic Acid Electrocatalysis. ChemElectroChem 2018, 5, 3859–3865. [Google Scholar] [CrossRef]
- Liu, X.; Hu, M.; Wang, M.; Song, Y.; Zhou, N.; He, L.; Zhang, Z. Novel Nanoarchitecture of Co-MOF-on-TPN-COF Hybrid: Ultralowly Sensitive Bioplatform of Electrochemical Aptasensor toward Ampicillin. Biosens. Bioelectron. 2019, 123, 59–68. [Google Scholar] [CrossRef]
- He, L.; Duan, F.; Song, Y.; Guo, C.; Zhao, H.; Tian, J.Y.; Zhang, Z.; Liu, C.S.; Zhang, X.; Wang, P.; et al. 2D Zirconium-Based Metal-Organic Framework Nanosheets for Highly Sensitive Detection of Mucin 1: Consistency between Electrochemical and Surface Plasmon Resonance Methods. 2D Mater. 2017, 4, 025098. [Google Scholar] [CrossRef]
- Li, Y.; Wang, C.; Li, Z.; Wang, M.; He, L.; Zhang, Z. Zirconium-Porphyrin Complex as Novel Nanocarrier for Label-Free Impedimetric Biosensing Neuron-Specific Enolase. Sens. Actuators B Chem. 2020, 314, 128090. [Google Scholar] [CrossRef]
- Xiao, J.; Hu, X.; Wang, K.; Zou, Y.; Gyimah, E.; Yakubu, S.; Zhang, Z. A Novel Signal Amplification Strategy Based on the Competitive Reaction between 2D Cu-TCPP(Fe) and Polyethyleneimine (PEI) in the Application of an Enzyme-Free and Ultrasensitive Electrochemical Immunosensor for Sulfonamide Detection. Biosens. Bioelectron. 2020, 150, 111883. [Google Scholar] [CrossRef] [PubMed]
- Yan, M.; Ye, J.; Zhu, Q.; Zhu, L.; Huang, J.; Yang, X. Ultrasensitive Immunosensor for Cardiac Troponin i Detection Based on the Electrochemiluminescence of 2D Ru-MOF Nanosheets. Anal. Chem. 2019, 91, 10156–10163. [Google Scholar] [CrossRef]
- Zhang, Y.; Yuan, S.; Day, G.; Wang, X.; Yang, X.; Zhou, H.C. Luminescent Sensors Based on Metal-Organic Frameworks. Coord. Chem. Rev. 2018, 354, 28–45. [Google Scholar] [CrossRef]
- Chen, J.; Shu, Y.; Li, H.; Xu, Q.; Hu, X. Nickel Metal-Organic Framework 2D Nanosheets with Enhanced Peroxidase Nanozyme Activity for Colorimetric Detection of H2O2. Talanta 2018, 189, 254–261. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, Y.; Kaskel, S. Porphyrin-Based Metal–Organic Frameworks for Biomedical Applications. Angew. Chem. Int. Ed. 2021, 60, 5010–5035. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.H.; Park, J.; Kang, S.; Kim, M. Surface Plasmon Resonance: A Versatile Technique for Biosensor Applications. Sensors 2015, 15, 10481–10510. [Google Scholar] [CrossRef] [Green Version]
- Lai, H.; Li, G.; Xu, F.; Zhang, Z. Metal-Organic Frameworks: Opportunities and Challenges for Surface-Enhanced Raman Scattering-a Review. J. Mater. Chem. C 2020, 8, 2952–2963. [Google Scholar] [CrossRef]
- Cui, Y.; Yue, Y.; Qian, G.; Chen, B. Luminescent Functional Metal-Organic Frameworks. Chem. Rev. 2012, 112, 1126–1162. [Google Scholar] [CrossRef] [PubMed]
- Al Lawati, H.A.J.; Hassanzadeh, J. Dual-Function 2D Cobalt Metal-Organic Framework Embedded on Paper as a Point-of-Care Diagnostic Device: Application for the Quantification of Glucose. Anal. Chim. Acta 2020, 1139, 15–26. [Google Scholar] [CrossRef]
- Shu, Y.; Dai, T.; Ye, Q.; Jin, D.; Xu, Q.; Hu, X. A Dual-Emitting Two-Dimensional Nickel-Based Metal-Organic Framework Nanosheets: Eu3+/Ag+ Functionalization Synthesis and Ratiometric Sensing in Aqueous Solution. J. Fluoresc. 2021, 31, 1947–1957. [Google Scholar] [CrossRef] [PubMed]
- Zhu, N.; Gu, L.; Wang, J.; Li, X.; Liang, G.; Zhou, J.; Zhang, Z. Novel and Sensitive Chemiluminescence Sensors Based on 2D-MOF Nanosheets for One-Step Detection of Glucose in Human Urine. J. Phys. Chem. C 2019, 123, 9388–9393. [Google Scholar] [CrossRef]
- Wang, S.; Wang, M.; Li, C.; Li, H.; Ge, C.; Zhang, X.; Jin, Y. A Highly Sensitive and Stable Electrochemiluminescence Immunosensor for Alpha-Fetoprotein Detection Based on Luminol-AgNPs@Co/Ni-MOF Nanosheet Microflowers. Sens. Actuators B Chem. 2020, 311, 127919. [Google Scholar] [CrossRef]
- Wang, Y.; Mao, Z.; Chen, Q.; Koh, K.; Hu, X.; Chen, H. Rapid and Sensitive Detection of PD-L1 Exosomes Using Cu-TCPP 2D MOF as a SPR Sensitizer. Biosens. Bioelectron. 2022, 201, 113954. [Google Scholar] [CrossRef]
- Li, Y.; Li, J.J.; Zhang, Q.; Zhang, J.Y.; Zhang, N.; Fang, Y.Z.; Yan, J.; Ke, Q. The Multifunctional BODIPY@Eu-MOF Nanosheets as Bioimaging Platform: A Ratiometric Fluorescencent Sensor for Highly Efficient Detection of F-, H2O2 and Glucose. Sens. Actuators B Chem. 2022, 354, 131140. [Google Scholar] [CrossRef]
- Ning, D.; Liu, Q.; Wang, Q.; Du, X.M.; Ruan, W.J.; Li, Y. Luminescent MOF Nanosheets for Enzyme Assisted Detection of H2O2 and Glucose and Activity Assay of Glucose Oxidase. Sens. Actuators B Chem. 2019, 282, 443–448. [Google Scholar] [CrossRef]
2D Material | Structure | Surface Area | Electrical Conductivity | Thermal Conductivity | Stability | Other Properties | Ref. |
---|---|---|---|---|---|---|---|
Graphene | sp2 carbon arranged in a hexagonal, honeycomb lattice | High (~2630 m2/g) | Very High | High (~4000 Wm−1K−1) | Stable in most conditions | Excellent mechanical properties (~130 GPa fracture strength). Excellent optical properties. | [2] |
Graphene oxide | Graphene structure rich with oxygen functional groups | Smaller than graphene | Insulating/semiconducting | High; lower than graphene | Stable in water | Bulk synthesis possible. Easily modifiable surface owing to functional groups. | [2] |
TMD | MX2; a layer of transition metal atoms (M) sandwiched between two layers of chalcogen (X) atoms | Low (~16 m2/g for MoS2 nanosheets) | Metallic to semiconducting depending on phase | 2–3 orders lower than graphene | Depends on synthesis and modification | Excellent for optoelectronics. | [5,9] |
MXene | Transition metal atoms (M) arranged in a hexagonal structure, with the octahedral sites filled by carbon or nitrogen (X) | Moderate | High | Moderate | Sensitive to water and oxygen | Excellent mechanical properties. Interesting optical and electrochemical properties. EMI shielding property. | [10] |
LDH | Brucite-like cationic layers with intercalated anions for charge neutralization | Moderate | Low | Low | Dependent on type of component ions | Easy synthesis. Excellent ion exchange capacity, ionic conductivity. | [4] |
MOF | Metal ions or clusters linked by organic ligands | Very high (~1000–10,000 m2/g) | Low; higher than 3D MOF | Low | Depends on type of MOF; more stable than 3D MOF | In-situ and post-synthetic modification possible. Tunable pore size. High porosity. High mechanical strength and flexibility. | [8] |
Catalyst | Medium | Sensitivity (µA mM−1cm−2) | Linearity (mM) | Limit of Detection (µM) | Stability/Real Sample (Recovery) | References |
---|---|---|---|---|---|---|
Amorphous Co-Ni hydroxide | 0.5 NaOH | 1911.5 | 0.00025–5 | 0.12 | 60 days, 102% | [21] |
CNF/Co(OH)2 | 0.1 M NaOH | 68,000 | 0.01–0.12 | 5 | - | [22] |
Pt@CNO | PBS (pH 7.4) | 21.6 | 2–28 | 90 | - | [23] |
Ni(TPA)MOF-SWCNT | 0.1 M KOH | - | 0.02–4.4 | 4.6 | 15 days, human serum | [24] |
Pt-Pd/PHNG | 0.1 M PBS (pH 7) | 52.53 | 0.1–4 | 1.82 | 3 weeks, human blood (101.43%) | [25] |
Hierarchical sheet-like Ni-BDC/GCE | 0.1 M NaOH | 636 | 0.01–0.8 | 6.68 | - | [26] |
Co-MOF nanosheet array/NF | 0.1 M NaOH | 10,886 | 0.001–3 | 0.0013 | 7 days, Fruit juice, human serum | [27] |
Ni-MOF@Ni-HHTP-5 | 0.1 M NaOH | 2124.90 | 0.5–2665.5 | 0.02 | - | [28] |
Sensor | Method | Analyte | Linear Range (µM) | Sensitivity (µA mM−1 cm−2) | LOD | Real Sample/Recovery | Ref. |
---|---|---|---|---|---|---|---|
Ultrathin Ni MOF | CA | Glucose | 25–3160 | 402.3 | 0.6 µM | Human serum (97–104.7%) | [101] |
Vertical 2D NiCo MOF nanosheet | CA | Glucose | 1–8000 | 684.4 | 0.29 µM | Human serum (96–106%) | [102] |
Ni-MOF@HHTP | CV and CA | Glucose | 0.5–2665.5 | 2124.90 | 0.0485 | - | [28] |
2D/3D NiCu MOF-6 | CA | Glucose | 0.02–4.93 | 1832 | 15 | Human serum (94.5–97.3%) | [103] |
Co-MOF nanosheet array/Ni foam | CV and CA | Glucose | 1–3000 | 10,886 | 1.3 nM | Blood serum, fruit juice | [27] |
Ni@Cu-MOF nanosheet | CV | Glucose | 5–2500 | 1703.33 | 1.67 | Human serum (100–104%) | [104] |
2D MOF-74 (Cu) nanosheet | CA | Glucose | 100–1000 | 3810 | 0.41 | Human serum | [105] |
NH2-GP/2D arrays of Cu3(btc)2 | CV and CA | Glucose | 0.05–1775.5 | 5360 | 30 nM | Human sweat sample | [93] |
NH2-GP/2D arrays of Cu3(btc)2 | CV and CA | Lactate | 0.05–22.6 mM | 29 | 5 | Human sweat sample | [93] |
2D Cu-TCPP/MWCNT | CA | H2O2 | 1–8159 | 157 | 0.70 | Human serum (104.7%) Beer sample (103.4%) | [106] |
2D Co-MOF@Nafion | CV and CA | H2O2 | 5–1000 103–105 | 570 ± 5 A mM−1cm−2 395 ± 10 A mM−1cm−2 | - | Commercial lens cleaning (103%) and commercial disinfectant solution (97%) | [91] |
2D Ni-MOF/Hemin | CV and DPV | H2O2 | 1–400 | 38 | 0.2 | Human serum (99.32–101.88%) Disinfectant water sample | [107] |
Co-MOF | CA | H2O2 | 0.5–832.5 | 0.0412 (µA µM−1) | 0.47 | - | [108] |
Ni-MOF | CA | H2O2 | 1–3300 | 0.041 (µA µM−1) | 1.58 | - | [108] |
NiCo-MOF | CA | H2O2 | 1–830 | 0.045 (µA µM−1) | 1.07 | - | [108] |
Au@Cu2O-MIL 53(Fe) | CA | H2O2 | 10–1520 | 351.57 | 1.01 | A549 cells | [90] |
Ni-MOF | CA | Ascorbic Acid | 0.5–8065.5 | 2.4 | 0.25 | - | [109] |
Co-MOF | CV and CA | Urea | 500–7500 | 5 | 414 | - | [94] |
NiCo-MOF | CV and CA | Urea | 0.5–332.5 | 860 | 6.188 | Milk sample | [94] |
Ni-MOF | CV and CA | Urea | 0.5–832.5 | 1960 | 0.471 | Milk sample | [94] |
{100} facets of Ni3(HHTP)2 | CV | Dopamine | - | - | 9.9 ± 2 nM (PBS) 214 ± 48 nM (CSF) | - | [89] |
2D/2D NiCo-MOF/Ti3C2 | DPV | Acetaminophen | 0.01–400 | 0.043 | 0.008 | Serum (98.9%) and urine (99.8%) | [92] |
2D/2D NiCo-MOF/Ti3C2 | DPV | Dopamine | 0.01–300 | 0.1 | 0.004 | Serum (102.2%) and urine (98.3%) | [92] |
2D/2D NiCo-MOF/Ti3C2 | DPV | Uric acid | 0.01–350 | 0.052 | 0.006 | Serum (100.6%) and urine (98.3%) | [92] |
FC labeled ssDNA aptamer/BPNSs/TH/Cu-MOF | SWV | microRNA (miR3123) | 2 pM–2 µM | - | 0.3 pM | Human serum (97.68–104.4%) | [98] |
Cu-BTC/ZIF-L | DPV | Insulin | 0.1 pM–5 µM | - | 0.027 pM | In vivo animal | [96] |
2D Zn MOF on Zr MOF | EIS, DPV | PTK7 | 0.001–1 ng/mL | - | 0.84 pg/mL (EIS) 0.66 pg/mL (DPV) | Human serum (96.6–104.6%) | [97] |
Co-MOF@TPN-COF | EIS | Ampicilin | 0.001–2000 pg/mL | - | 0.217 × 10−3 pg/mL) | Human serum (95.5–99.9%) River water (98.2–103.4%) Milk (96.4–102.6%) | [110] |
Co-MOF/ITO (flow homogeneous assay) | CV and DPV | MicroRNA | 1 pM-1 µM | - | 0.12 pM | Human serum (98.7–109%) | [95] |
2D Zr-MOF (521-MOF) | EIS | Mucin 1 (MUC 1) | 0.001–0.5 ng/mL | - | 0.12 pg/mL | Human serum (94.8–106.8%) | [111] |
Ab1-Zn-MOF/Fe3O4-COOH/Thi signal molecule and Ab2/pCTAB/DES as biosensing device | DPV | Cardiac troponin (CTnI) | 0.04 ng/mL–50 ng/mL | - | 0.0009 ng/mL | Whole blood sample | [99] |
PtNi@Cu-TCPP(Fe) | CA | Calprotectin (CALP) | 200 fg/mL–50 ng/mL | - | 137.7 fg/mL | Human Serum (94–100.9%) | [100] |
AntiNSE/Zr-TAPP | EIS and DPV | Neuron specific enolase (NSE) | 10.0 fg/mL–2.0 ng/mL | - | 7.1 fg/mL | Human serum (93.3–106.9%) | [112] |
GO@Ab2/Ab1/BSA/Ag/Cu-TCPP(Fe)/MWCNT | CA | Sulfonamide | 1.186–28.051 ng/mL | - | 0.395 ng/mL | Water samples (64–118%) | [113] |
2D MOF | Analyte | Method | Linear Range | LOD | Real Sample Test in | Remarks | Ref. |
---|---|---|---|---|---|---|---|
DNA/Au NP/Cu-TCPP(Fe) | Carcinoembryonic antigen | Colorimetric | 1 pg/mL to 1000 ng/mL | 0.742 pg/mL | Human serum | MOF has HRP-like activity | [84] |
BODIPY@Eu-MOF | F− | Ratiometric fluorescence | 0–30 µM | 0.1737 µM | Living cells | Low cytotoxicity. Also used for bioimaging | [126] |
H2O2 | 0–6 µM | 6.22 nM | |||||
Glucose | 0–6 µM | 6.92 nM | |||||
Cu@Cu-FeTCPP | Glucose | Colorimetric | 0.05–1.25 mM | 12 µM | - | High peroxidase mimicking activity | [45] |
Cu-TCPP/Au chip | PD-L1 exosome | SPR | 104–5 × 106 particles/mL | 16.7 particles/mL | Human serum | Higher RI sensitivity (137.67°/RIU), detection accuracy (0.77), and quality factor (24.81 RIU−1) were enhanced compared to bare gold sensor | [126] |
NH2- MIL-53(Al) | H2O2 | Ratiometric fluorescence | 0.5–50 µM | 26.49 nM | Human serum | NH2 groups improve the water-stability of the MOF | [83] |
glucose | 0.041 µM | ||||||
Ag/Eu@Ni-MOF | GSH | Ratiometric fluorescence | 5–250 µM | 0.17 µM | Human serum | - | [122] |
Cysteine | 0.2 µM | ||||||
Au NP/Cu-TCPP(Fe) | Glucose | SERS | 0.16–8 mM | 0.16 mM | Human saliva | Au: GOx-like activity 2D MOF: peroxidase-like activity | [82] |
Co-BDC | Glucose | Colorimetric | 50 µM–15 mM | 16.3 µM | Human blood | - | [121] |
Eu@BCP | Anthrax biomarker | Fluorescence | 0–35 µM | 0.038 nM | - | Dual-emission | [86] |
Tb@BCP | 0.033 nM | ||||||
Luminol-AgNPs@Co/Ni-MOF | Alpha-fetoprotien | Electrochemiluminescence | 1 pg/mL–100 ng/mL | 0.417 pg/mL | HUman plasma | Enhanced ECL performance | [124] |
Zn-Ru(dcbpy)32+ | Cardiac troponin I | Electrochemiluminescence | 1 fg/mL–10 ng/mL | 0.48 fg/mL | Human serum | ECL luminophore utilized as the organic ligand | [114] |
Co-TCPP(Fe) | Glucose | Chemiluminescence | 32–5500 µg/L | 10.667 µg/L | Human urine | Peroxidase-like catalysis | [123] |
Co-TTPP | DNA | Fluorescence | 0–1 nM | 120 pM | - | Best performance for MOF with 10 layers | [81] |
In-aip | H2O2 | Fluorescence | 0–160 µM | 0.87 µM | Human serum | Enzyme assisted analysis. 2D morphology facilitates efficient capture of unstable intermediates and ensures stable luminescence | [127] |
Glucose | 0–200 µM | 1.3 µM | |||||
Cu-TCPP | Salmonella enterica DNA | Fluorescence | 0.5–15 nM | 28 pM | - | Multiplex detection | [34] |
Listeria monocytogenes DNA | 0.1–12 nM | 35 pM | |||||
Vibrio parahemolyticus DNA | 0.1–9 nM | 15 pM | |||||
Ni-MOF | H2O2 | Colorimetric | 0.04–160 µM | 0.008 µM | Human serum | MOF exhibited greater affinity towards TMB and H2O2 than HRP | [116] |
ZIF67 | H2O2 | Colorimetric | 100–1000 mM | 0.11 mM | - | Catalytic activity dependent on pH and reaction temperature | [44] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghosh, A.; Fathima Thanutty Kallungal, S.; Ramaprabhu, S. 2D Metal-Organic Frameworks: Properties, Synthesis, and Applications in Electrochemical and Optical Biosensors. Biosensors 2023, 13, 123. https://doi.org/10.3390/bios13010123
Ghosh A, Fathima Thanutty Kallungal S, Ramaprabhu S. 2D Metal-Organic Frameworks: Properties, Synthesis, and Applications in Electrochemical and Optical Biosensors. Biosensors. 2023; 13(1):123. https://doi.org/10.3390/bios13010123
Chicago/Turabian StyleGhosh, Anamika, Sana Fathima Thanutty Kallungal, and Sundara Ramaprabhu. 2023. "2D Metal-Organic Frameworks: Properties, Synthesis, and Applications in Electrochemical and Optical Biosensors" Biosensors 13, no. 1: 123. https://doi.org/10.3390/bios13010123
APA StyleGhosh, A., Fathima Thanutty Kallungal, S., & Ramaprabhu, S. (2023). 2D Metal-Organic Frameworks: Properties, Synthesis, and Applications in Electrochemical and Optical Biosensors. Biosensors, 13(1), 123. https://doi.org/10.3390/bios13010123