Role of Paper-Based Sensors in Fight against Cancer for the Developing World
Abstract
:1. Introduction
2. Paper-based Sensors: Low-Cost Screening Devices for the Developing World
3. Design and Working of a Typical Paper-Based Sensor
- Analyte: It can be simply be defined as the chemical substance to be measured. In the case of cancer screening, cancer specific biomarkers, tumour markers, antigen, and proteins are essential analytes. More about the different types of analytes for cancer screening in Section 4
- Labeling: In most of the biosensors, labeling plays an important role. For the detection of the analyte, labels that attach to the molecule are used. The selection of label depends on the detection method used.
- Recognition: The recognition element is used to convert the biological information into signals. The most common detection method used in cancer screeing is enzyme-linked immunoassay (ELISA). In Section 5, various recognition methods that have been used for paper-based cancer screening are discussed.
- Readout: The readout method is used to obtain the outcome of the test. Some common readout methods are electrochemical, optical, and colorimetric. Depending on the detection technique used, the results obtained can either be qualitative (yes/no) type or quantitative (numerical values).
4. Analytes for Cancer Screening
5. Recognition Element
5.1. Antibodies
5.2. Aptamers
6. Sensing and Readout Methods
6.1. Modified Electrodes
6.2. Electrochemical
6.3. Optical
6.4. Smartphone/Machine-Learning-Based
7. Limitations of Current Paper-based Methods
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PoCT | Point of Care Testing |
CEA | Carcino Embryonic Antigen |
MCF-7 | Michigan Cancer Foundation |
AFP | Alpha-fetoprotein |
MWCNT | Multi-walled carbon nano tubes |
CA125 | Cancer antigen 125 |
CA153 | Carbohydrate antigen 153 |
PSA | Prostate-specific antigen |
HRP | Horse radish peroxidase |
MOF | Metal–Organic Framework |
miR-141 | microRNA-141 |
miR-21 | microRNA-21 |
NSE | Neuron-specific enolase |
PEAK1 | Pseudopodium-enriched atypical kinase one |
EGFR | Epidermal Growth Factor Receptor |
Cyt C | Cytochrome c |
PCF | Photonic crystal fiber |
DSN | Duplex-specific nuclease |
CPE | Conjugated polyelectrolyte |
VEGF-C | Vascular endothelial growth factor C |
NMB | New methylene blue |
NH2-SWCNTs | Amino-functional single-walled carbon nanotubes |
AuNPs | Gold nanoparticles |
References
- Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 2015, 136, E359–E386. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Laversanne, M.; Weiderpass, E.; Soerjomataram, I. The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer 2021, 127, 3029–3030. [Google Scholar] [CrossRef] [PubMed]
- Danaei, G.; Vander Hoorn, S.; Lopez, A.D.; Murray, C.J.; Ezzati, M. Comparative Risk Assessment Collaborating Group. Causes of cancer in the world: Comparative risk assessment of nine behavioural and environmental risk factors. Lancet 2005, 366, 1784–1793. [Google Scholar] [CrossRef]
- Ferlay, J.; Partensky, C.; Bray, F. More deaths from pancreatic cancer than breast cancer in the EU by 2017. Acta Oncol. 2016, 55, 1158–1160. [Google Scholar] [CrossRef] [PubMed]
- Cancer. Available online: https://www.who.int/health-topics/cancer#tab=tab_1 (accessed on 10 July 2022).
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Damgacioglu, H.; Sonawane, K.; Zhu, Y.; Li, R.; Balasubramanian, B.A.; Lairson, D.R.; Giuliano, A.R.; Deshmukh, A.A. Oropharyngeal cancer incidence and mortality trends in all 50 states in the US, 2001–2017. JAMA Otolaryngol. Head Neck Surg. 2022, 148, 155–165. [Google Scholar] [CrossRef]
- Sekeroglu, B.; Tuncal, K. Prediction of cancer incidence rates for the European continent using machine learning models. Health Inform. J. 2021, 27, 1460458220983878. [Google Scholar] [CrossRef]
- Soerjomataram, I.; Bray, F. Planning for tomorrow: Global cancer incidence and the role of prevention 2020–2070. Nat. Rev. Clin. Oncol. 2021, 18, 663–672. [Google Scholar] [CrossRef]
- Pramesh, C.; Badwe, R.A.; Bhoo-Pathy, N.; Booth, C.M.; Chinnaswamy, G.; Dare, A.J.; de Andrade, V.P.; Hunter, D.J.; Gopal, S.; Gospodarowicz, M.; et al. Priorities for cancer research in low-and middle-income countries: A global perspective. Nat. Med. 2022, 28, 649–657. [Google Scholar] [CrossRef]
- Kretz, A.L.; Trauzold, A.; Hillenbrand, A.; Knippschild, U.; Henne-Bruns, D.; von Karstedt, S.; Lemke, J. TRAILblazing strategies for cancer treatment. Cancers 2019, 11, 456. [Google Scholar] [CrossRef] [Green Version]
- Teleanu, R.I.; Chircov, C.; Grumezescu, A.M.; Teleanu, D.M. Tumor angiogenesis and anti-angiogenic strategies for cancer treatment. J. Clin. Med. 2019, 9, 84. [Google Scholar] [CrossRef] [PubMed]
- L Arias, J. Drug targeting strategies in cancer treatment: An overview. Mini Rev. Med. Chem. 2011, 11, 1–17. [Google Scholar] [CrossRef]
- Isaeva, O.; Osipov, V. Different strategies for cancer treatment: Mathematical modelling. Comput. Math. Methods Med. 2009, 10, 253–272. [Google Scholar] [CrossRef]
- Tunali, I.; Gillies, R.J.; Schabath, M.B. Application of radiomics and artificial intelligence for lung cancer precision medicine. Cold Spring Harb. Perspect. Med. 2021, 11, a039537. [Google Scholar] [CrossRef] [PubMed]
- Abbasi Kajani, A.; Haghjooy Javanmard, S.; Asadnia, M.; Razmjou, A. Recent advances in nanomaterials development for nanomedicine and cancer. ACS Appl. Bio Mater. 2021, 4, 5908–5925. [Google Scholar] [CrossRef]
- Kenner, B.; Chari, S.T.; Kelsen, D.; Klimstra, D.S.; Pandol, S.J.; Rosenthal, M.; Rustgi, A.K.; Taylor, J.A.; Yala, A.; Abul-Husn, N.; et al. Artificial intelligence and early detection of pancreatic cancer: 2020 summative review. Pancreas 2021, 50, 251. [Google Scholar] [CrossRef] [PubMed]
- Hawkes, N. Cancer survival data emphasise importance of early diagnosis. BMJ 2019, 364, l408. [Google Scholar] [CrossRef] [PubMed]
- Why Is Early Diagnosis Important? Cancer Research UK. Available online: https://www.cancerresearchuk.org/about-cancer/cancer-symptoms/why-is-early-diagnosis-important (accessed on 22 June 2021).
- Brown, M.L.; Yabroff, K.R. 12, Economic impact of cancer in the United States. Cancer Epidemiol. Prev. 2006, 202, 202–214. [Google Scholar]
- IJzerman, M.J.; Berghuis, A.S.; de Bono, J.S.; Terstappen, L.W. Health economic impact of liquid biopsies in cancer management. Expert Rev. Pharmacoecon. Outcomes Res. 2018, 18, 593–599. [Google Scholar] [CrossRef]
- Janovsky, C.C.P.S.; Bittencourt, M.S.; Novais, M.A.P.D.; Maciel, R.; Biscolla, R.P.M.; Zucchi, P. Thyroid cancer burden and economic impact on the Brazilian public health system. Arch. Endocrinol. Metab. 2018, 62, 537–544. [Google Scholar] [CrossRef]
- Shah, S.C.; Kayamba, V.; Peek, R.M., Jr.; Heimburger, D. Cancer control in low-and middle-income countries: Is it time to consider screening? J. Glob. Oncol. 2019, 5, 1–8. [Google Scholar] [CrossRef]
- Rivera-Franco, M.M.; Leon-Rodriguez, E. Delays in breast cancer detection and treatment in developing countries. Breast Cancer Basic Clin. Res. 2018, 12, 1178223417752677. [Google Scholar] [CrossRef] [PubMed]
- Vu, M.; Yu, J.; Awolude, O.A.; Chuang, L. Cervical cancer worldwide. Curr. Probl. Cancer 2018, 42, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Ginsburg, O.; Yip, C.H.; Brooks, A.; Cabanes, A.; Caleffi, M.; Dunstan Yataco, J.A.; Gyawali, B.; McCormack, V.; McLaughlin de Anderson, M.; Mehrotra, R.; et al. Breast cancer early detection: A phased approach to implementation. Cancer 2020, 126, 2379–2393. [Google Scholar] [CrossRef]
- Cortes, J.; Perez-García, J.M.; Llombart-Cussac, A.; Curigliano, G.; El Saghir, N.S.; Cardoso, F.; Barrios, C.H.; Wagle, S.; Roman, J.; Harbeck, N.; et al. Enhancing global access to cancer medicines. CA Cancer J. Clin. 2020, 70, 105–124. [Google Scholar] [CrossRef] [PubMed]
- Hull, R.; Mbele, M.; Makhafola, T.; Hicks, C.; Wang, S.M.; Reis, R.M.; Mehrotra, R.; Mkhize-Kwitshana, Z.; Kibiki, G.; Bates, D.O.; et al. Cervical cancer in low and middle-income countries. Oncol. Lett. 2020, 20, 2058–2074. [Google Scholar] [CrossRef]
- Moodley, J.; Cairncross, L.; Naiker, T.; Constant, D. From symptom discovery to treatment-women’s pathways to breast cancer care: A cross-sectional study. BMC Cancer 2018, 18, 312. [Google Scholar] [CrossRef]
- Darj, E.; Chalise, P.; Shakya, S. Barriers and facilitators to cervical cancer screening in Nepal: A qualitative study. Sex. Reprod. Healthc. 2019, 20, 20–26. [Google Scholar] [CrossRef]
- Carrilho, E.; Martinez, A.W.; Whitesides, G.M. Understanding wax printing: A simple micropatterning process for paper-based microfluidics. Anal. Chem. 2009, 81, 7091–7095. [Google Scholar] [CrossRef] [PubMed]
- Derda, R.; Tang, S.K.Y.; Laromaine, A.; Mosadegh, B.; Hong, E.; Mwangi, M.; Mammoto, A.; Ingber, D.E.; Whitesides, G.M. Multizone paper platform for 3D cell cultures. PLoS ONE 2011, 6, e18940. [Google Scholar] [CrossRef] [PubMed]
- Ellerbee, A.K.; Phillips, S.T.; Siegel, A.C.; Mirica, K.A.; Martinez, A.W.; Striehl, P.; Jain, N.; Prentiss, M.; Whitesides, G.M. Quantifying colorimetric assays in paper-based microfluidic devices by measuring the transmission of light through paper. Anal. Chem. 2009, 81, 8447–8452. [Google Scholar] [CrossRef] [PubMed]
- Glavan, A.C.; Martinez, R.V.; Maxwell, E.J.; Subramaniam, A.B.; Nunes, R.M.D.; Soh, S.; Whitesides, G.M. Rapid fabrication of pressure-driven open-channel microfluidic devices in omniphobic R(F) paper. Lab Chip 2013, 13, 2922–2930. [Google Scholar] [CrossRef] [PubMed]
- Glavan, A.C.; Christodouleas, D.C.; Mosadegh, B.; Yu, H.D.; Smith, B.S.; Lessing, J.; Fernández-Abedul, M.T.; Whitesides, G.M. Folding analytical devices for electrochemical ELISA in hydrophobic R(H) paper. Anal. Chem. 2014, 86, 11999–12007. [Google Scholar] [CrossRef] [PubMed]
- Martinez, A.W.; Phillips, S.T.; Wiley, B.J.; Gupta, M.; Whitesides, G.M. FLASH: A rapid method for prototyping paper-based microfluidic devices. Lab Chip 2008, 8, 2146. [Google Scholar] [CrossRef]
- Martinez, A.W.; Phillips, S.T.; Whitesides, G.M. Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc. Natl. Acad. Sci. USA 2008, 105, 19606–19611. [Google Scholar] [CrossRef]
- Martinez, A.W.; Phillips, S.T.; Nie, Z.; Cheng, C.M.; Carrilho, E.; Wiley, B.J.; Whitesides, G.M. Programmable diagnostic devices made from paper and tape. Lab Chip 2010, 10, 2499–2504. [Google Scholar] [CrossRef]
- Martinez, R.V.; Fish, C.R.; Chen, X.; Whitesides, G.M. Elastomeric Origami: Programmable Paper-Elastomer Composites as Pneumatic Actuators. Adv. Funct. Mater. 2012, 22, 1376–1384. [Google Scholar] [CrossRef]
- Nie, Z.; Deiss, F.; Liu, X.; Akbulut, O.; Whitesides, G.M. Integration of paper-based microfluidic devices with commercial electrochemical readers. Lab Chip 2010, 10, 3163–3169. [Google Scholar] [CrossRef]
- Nemiroski, A.; Christodouleas, D.C.; Hennek, J.W.; Kumar, A.A.; Maxwell, E.J.; Fernández-Abedul, M.T.; Whitesides, G.M. Universal mobile electrochemical detector designed for use in resource-limited applications. Proc. Natl. Acad. Sci. USA 2014, 111, 11984–11989. [Google Scholar] [CrossRef]
- Lan, W.J.; Maxwell, E.J.; Parolo, C.; Bwambok, D.K.; Subramaniam, A.B.; Whitesides, G.M. Paper-based electroanalytical devices with an integrated, stable reference electrode. Lab Chip 2013, 13, 4103–4108. [Google Scholar] [CrossRef]
- Lan, W.J.; Zou, X.U.; Hamedi, M.M.; Hu, J.; Parolo, C.; Maxwell, E.J.; Bühlmann, P.; Whitesides, G.M. Paper-based potentiometric ion sensing. Anal. Chem. 2014, 86, 9548–9553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siegel, A.C.; Phillips, S.T.; Wiley, B.J.; Whitesides, G.M. Thin, lightweight, foldable thermochromic displays on paper. Lab Chip 2009, 9, 2775–2781. [Google Scholar] [CrossRef]
- Mosadegh, B.; Dabiri, B.E.; Lockett, M.R.; Derda, R.; Campbell, P.; Parker, K.K.; Whitesides, G.M. rThree-Dimensional Paper-Based Model for Cardiac Ischemia. Adv. Healthc. Mater. 2014, 3, 1036–1043. [Google Scholar] [CrossRef] [PubMed]
- Lessing, J.; Glavan, A.C.; Walker, S.B.; Keplinger, C.; Lewis, J.A.; Whitesides, G.M. Inkjet printing of conductive inks with high lateral resolution on omniphobic “R(F) paper” for paper-based electronics and MEMS. Adv. Mater. 2014, 26, 4677–4682. [Google Scholar] [CrossRef]
- Liu, X.; Mwangi, M.; Li, X.; O’Brien, M.; Whitesides, G.M. Paper-based piezoresistive MEMS sensors. Lab Chip 2011, 11, 2189–2196. [Google Scholar] [CrossRef]
- Glavan, A.C.; Martinez, R.V.; Subramaniam, A.B.; Yoon, H.J.; Nunes, R.M.; Lange, H.; Thuo, M.M.; Whitesides, G.M. Omniphobic “RF paper” produced by silanization of paper with fluoroalkyltrichlorosilanes. Adv. Funct. Mater. 2014, 24, 60–70. [Google Scholar] [CrossRef]
- Thuo, M.M.; Martinez, R.V.; Lan, W.J.; Liu, X.; Barber, J.; Atkinson, M.B.; Bandarage, D.; Bloch, J.F.; Whitesides, G.M. Fabrication of low-cost paper-based microfluidic devices by embossing or cut-and-stack methods. Chem. Mater. 2014, 26, 4230–4237. [Google Scholar] [CrossRef]
- Mazzeo, A.D.; Kalb, W.B.; Chan, L.; Killian, M.G.; Bloch, J.F.; Mazzeo, B.A.; Whitesides, G.M. Paper-based, capacitive touch pads. Adv. Mater. 2012, 24, 2850–2856. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.Y.; Lin, H.T.; Chen, T.H.; Chen, C.A.; Chang, H.T.; Chen, C.F. Signal amplified gold nanoparticles for cancer diagnosis on paper-based analytical devices. ACS Sens. 2018, 3, 174–182. [Google Scholar] [CrossRef]
- Hu, J.; Wang, S.; Wang, L.; Li, F.; Pingguan-Murphy, B.; Lu, T.J.; Xu, F. Advances in paper-based point-of-care diagnostics. Biosens. Bioelectron. 2014, 54, 585–597. [Google Scholar] [CrossRef]
- Ito, E.; Iha, K.; Yoshimura, T.; Nakaishi, K.; Watabe, S. Early diagnosis with ultrasensitive ELISA. Adv. Clin. Chem. 2021, 101, 121–133. [Google Scholar] [PubMed]
- Arya, S.K.; Estrela, P. Recent advances in enhancement strategies for electrochemical ELISA-based immunoassays for cancer biomarker detection. Sensors 2018, 18, 2010. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, S.; Vázquez-Villegas, P.; Rito-Palomares, M.; Martinez-Chapa, S.O. Advantages, disadvantages and modifications of conventional ELISA. In Enzyme-Linked Immunosorbent Assay (ELISA); Springer: Berlin/Heidelberg, Germany, 2018; pp. 67–115. [Google Scholar]
- Qiu, J.; Keyser, B.; Lin, Z.T.; Wu, T. Autoantibodies as potential biomarkers in breast cancer. Biosensors 2018, 8, 67. [Google Scholar] [CrossRef] [PubMed]
- Arya, S.K.; Estrela, P. Electrochemical ELISA-based platform for bladder cancer protein biomarker detection in urine. Biosens. Bioelectron. 2018, 117, 620–627. [Google Scholar] [CrossRef]
- Al Mughairy, B.; Al-Lawati, H.A. Recent analytical advancements in microfluidics using chemiluminescence detection systems for food analysis. TrAC Trends Anal. Chem. 2020, 124, 115802. [Google Scholar] [CrossRef]
- Tonkinson, J.L.; Stillman, B.A. Nitrocellulose: A tried and true polymer finds utility as a post-genomic substrate. Front. Biosci.-Landmark 2002, 7, 1–12. [Google Scholar]
- Jiang, Q.; Han, T.; Ren, H.; Aziz, A.U.R.; Li, N.; Zhang, H.; Zhang, Z.; Liu, B. Bladder cancer hunting: A microfluidic paper-based analytical device. Electrophoresis 2020, 41, 1509–1516. [Google Scholar] [CrossRef]
- Evans, E.; Gabriel, E.F.M.; Coltro, W.K.T.; Garcia, C.D. Rational selection of substrates to improve color intensity and uniformity on microfluidic paper-based analytical devices. Analyst 2014, 139, 2127–2132. [Google Scholar] [CrossRef]
- Swahn, B. A new micromethod for the determination of total lipids in serum. Scand. J. Clin. Lab. Investig. 1952, 4, 247–248. [Google Scholar] [CrossRef]
- Chandler, R.; Gutierrez, C. The filter-paper method of suction measurement. Geotechnique 1986, 36, 265–268. [Google Scholar] [CrossRef]
- Chardon, W.; Menon, R.; Chien, S. Iron oxide impregnated filter paper (Pi test): A review of its development and methodological research. Nutr. Cycl. Agroecosystems 1996, 46, 41–51. [Google Scholar] [CrossRef]
- Fawcett, R.; Collis-George, N. A filter-paper method for determining the moisture characteristics of soil. Aust. J. Exp. Agric. 1967, 7, 162–167. [Google Scholar] [CrossRef]
- Partridge, S. Filter-paper partition chromatography of sugars: I. General description and application to the quantitative analysis of sugars in apple juice, egg white and foetal blood of sheep. with a note by RG Westall. Biochem. J. 1948, 42, 238–248. [Google Scholar] [CrossRef] [PubMed]
- Tang, R.; Li, M.; Yan, X.; Xie, M.; Liu, L.N.; Li, Z.; Xu, F. Comparison of paper-based nucleic acid extraction materials for point-of-care testing applications. Cellulose 2022, 29, 2479–2495. [Google Scholar] [CrossRef] [PubMed]
- Minamide, L.; Bamburg, J. A filter paper dye-binding assay for quantitative determination of protein without interference from reducing agents or detergents. Anal. Biochem. 1990, 190, 66–70. [Google Scholar] [CrossRef]
- Aryal, R.; Terman, P.; Voss, K.J. Comparison of two filter-based reflectance methods to measure the light absorption by atmospheric aerosols. J. Atmos. Ocean. Technol. 2014, 31, 923–929. [Google Scholar] [CrossRef]
- Rauf, S.; Ali, Y.; Hussain, S.; Ullah, F.; Hayat, A. Design of a novel filter paper-based construct for rapid analysis of acetone. PLoS ONE 2018, 13, e0199978. [Google Scholar] [CrossRef]
- Kurdekar, A.; Chunduri, L.; Bulagonda, E.P.; Haleyurgirisetty, M.K.; Kamisetti, V.; Hewlett, I.K. Comparative performance evaluation of carbon dot-based paper immunoassay on Whatman filter paper and nitrocellulose paper in the detection of HIV infection. Microfluid. Nanofluidics 2016, 20, 99. [Google Scholar] [CrossRef]
- Fierro-Mercado, P.M.; Hernández-Rivera, S.P. Highly sensitive filter paper substrate for SERS trace explosives detection. Int. J. Spectrosc. 2012, 2012, 716527. [Google Scholar] [CrossRef]
- Gan, W.; Zhuang, B.; Zhang, P.; Han, J.; Li, C.X.; Liu, P. A filter paper-based microdevice for low-cost, rapid, and automated DNA extraction and amplification from diverse sample types. Lab Chip 2014, 14, 3719–3728. [Google Scholar] [CrossRef]
- Kim, H.; Prezzi, M.; Salgado, R. Calibration of Whatman Grade 42 filter paper for soil suction measurement. Can. J. Soil Sci. 2016, 97, 93–98. [Google Scholar] [CrossRef]
- Mei, J.V.; Zobel, S.D.; Hall, E.M.; De Jesús, V.R.; Adam, B.W.; Hannon, W.H. Performance properties of filter paper devices for whole blood collection. Bioanalysis 2010, 2, 1397–1403. [Google Scholar] [CrossRef] [PubMed]
- Rottinghaus, E.; Bile, E.; Modukanele, M.; Maruping, M.; Mine, M.; Nkengasong, J.; Yang, C. Comparison of Ahlstrom grade 226, Munktell TFN, and Whatman 903 filter papers for dried blood spot specimen collection and subsequent HIV-1 load and drug resistance genotyping analysis. J. Clin. Microbiol. 2013, 51, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Langer, E.K.; Johnson, K.J.; Shafer, M.M.; Gorski, P.; Overdier, J.; Musselman, J.; Ross, J.A. Characterization of the elemental composition of newborn blood spots using sector-field inductively coupled plasma-mass spectrometry. J. Expo. Sci. Environ. Epidemiol. 2011, 21, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Borman, A.M.; Linton, C.J.; Miles, S.J.; Campbell, C.K.; Johnson, E.M. Ultra-rapid preparation of total genomic DNA from isolates of yeast and mould using Whatman FTA filter paper technology–a reusable DNA archiving system. Med. Mycol. 2006, 44, 389–398. [Google Scholar] [CrossRef] [PubMed]
- da Cunha Santos, G.; Liu, N.; Tsao, M.S.; Kamel-Reid, S.; Chin, K.; Geddie, W.R. Detection of EGFR and KRAS mutations in fine-needle aspirates stored on Whatman FTA cards: Is this the tool for biobanking cytological samples in the molecular era? Cancer Cytopathol. 2010, 118, 450–456. [Google Scholar] [CrossRef] [PubMed]
- Cards, F. FTA Cards for Preservation of Nucleic Acids for Molecular Assays. Arch. Pathol. Lab. Med. 2018, 142, 308–312. [Google Scholar]
- Davis, E.H.; Velez, J.O.; Russell, B.J.; Basile, A.J.; Brault, A.C.; Hughes, H.R. Evaluation of Whatman FTA cards for the preservation of yellow fever virus RNA for use in molecular diagnostics. PLoS Neglected Trop. Dis. 2022, 16, e0010487. [Google Scholar] [CrossRef]
- Kurien, B.T.; Scofield, R.H. Western blotting. Methods 2006, 38, 283–293. [Google Scholar] [CrossRef]
- Mansfield, M.A. The Use of Nitrocellulose Membranes in Lateral-Flow Assays. In Drugs of Abuse: Body Fluid Testing; Wong, R.C., Tse, H.Y., Eds.; Humana Press: Totowa, NJ, USA, 2005; pp. 71–85. [Google Scholar] [CrossRef]
- Koga, H.; Nagashima, K.; Suematsu, K.; Takahashi, T.; Zhu, L.; Fukushima, D.; Huang, Y.; Nakagawa, R.; Liu, J.; Uetani, K.; et al. Nanocellulose Paper Semiconductor with a 3D Network Structure and Its Nano–Micro–Macro Trans-Scale Design. ACS Nano 2022, 16, 8630–8640. [Google Scholar] [CrossRef]
- Tang, R.; Liu, L.; Li, M.; Yao, X.; Yang, Y.; Zhang, S.; Li, F. Transparent microcrystalline cellulose/polyvinyl alcohol paper as a new platform for three-dimensional cell culture. Anal. Chem. 2020, 92, 14219–14227. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.J.; Soum, V.; Lee, S.N.; Choi, J.H.; Shin, J.H.; Shin, K.; Oh, B.K. Pumpless three-dimensional photo paper–based microfluidic analytical device for automatic detection of thioredoxin-1 using enzyme-linked immunosorbent assay. Anal. Bioanal. Chem. 2022, 414, 3219–3230. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, S.; Luo, J.; Xiong, Y.; Ming, T.; Liu, J.; Ma, Y.; Yan, S.; Yang, Y.; Yang, Z.; et al. Low sample volume origami-paper-based graphene-modified aptasensors for label-free electrochemical detection of cancer biomarker-EGFR. Microsyst. Nanoeng. 2020, 6, 32. [Google Scholar] [CrossRef] [PubMed]
- Henry, N.L.; Hayes, D.F. Cancer biomarkers. Mol. Oncol. 2012, 6, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Diamandis, E.P. Cancer biomarkers: Can we turn recent failures into success? J. Natl. Cancer Inst. 2010, 102, 1462–1467. [Google Scholar] [CrossRef] [PubMed]
- Dincer, C.; Bruch, R.; Costa-Rama, E.; Fernández-Abedul, M.T.; Merkoçi, A.; Manz, A.; Urban, G.A.; Güder, F. Disposable Sensors in Diagnostics, Food, and Environmental Monitoring. Adv. Mater. 2019, 31, 1806739. [Google Scholar] [CrossRef] [PubMed]
- Weber, W.; Fussenegger, M. Emerging biomedical applications of synthetic biology. Nat. Rev. Genet. 2012, 13, 21–35. [Google Scholar] [CrossRef]
- Zourob, M.; Elwary, S.; Khademhosseini, A. Recognition Receptors in Biosensors; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Justino, C.I.; Freitas, A.C.; Pereira, R.; Duarte, A.C.; Santos, T.A.R. Recent developments in recognition elements for chemical sensors and biosensors. TrAC Trends Anal. Chem. 2015, 68, 2–17. [Google Scholar] [CrossRef]
- Piletsky, S.A.; Whitcombe, M.J. Designing Receptors for The Next Generation of Biosensors; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 12. [Google Scholar]
- Zhang, X.; Soori, G.; Dobleman, T.J.; Xiao, G.G. The application of monoclonal antibodies in cancer diagnosis. Expert Rev. Mol. Diagn. 2014, 14, 97–106. [Google Scholar] [CrossRef]
- Modjtahedi, H.; Ali, S.; Essapen, S. Therapeutic application of monoclonal antibodies in cancer: Advances and challenges. Br. Med. Bull. 2012, 104, 41–59. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Van Gelder, V.; Amaladoss, A.; Patel, K.H. Covalent binding of antibodies to cellulose paper discs and their applications in naked-eye colorimetric immunoassays. J. Vis. Exp. 2016, e54111. [Google Scholar] [CrossRef] [PubMed]
- Henderson, C.A.; McLiesh, H.; Then, W.L.; Garnier, G. Activity and longevity of antibody in paper-based blood typing diagnostics. Front. Chem. 2018, 6, 193. [Google Scholar] [CrossRef] [PubMed]
- Tang, R.H.; Liu, L.N.; Zhang, S.F.; He, X.C.; Li, X.J.; Xu, F.; Ni, Y.H.; Li, F. A review on advances in methods for modification of paper supports for use in point-of-care testing. Microchim. Acta 2019, 186, 521. [Google Scholar] [CrossRef] [PubMed]
- Berry, J.D.; Gaudet, R.G. Antibodies in infectious diseases: Polyclonals, monoclonals and niche biotechnology. New Biotechnol. 2011, 28, 489–501. [Google Scholar] [CrossRef] [PubMed]
- Ambrosi, A.; Airo, F.; Merkoçi, A. Enhanced gold nanoparticle based ELISA for a breast cancer biomarker. Anal. Chem. 2010, 82, 1151–1156. [Google Scholar] [CrossRef]
- Ji, S.; Lee, M.; Kim, D. Detection of early stage prostate cancer by using a simple carbon nanotube@ paper biosensor. Biosens. Bioelectron. 2018, 102, 345–350. [Google Scholar] [CrossRef]
- Shao, N.; Wickstrom, E.; Panchapakesan, B. Nanotube–antibody biosensor arrays for the detection of circulating breast cancer cells. Nanotechnology 2008, 19, 465101. [Google Scholar] [CrossRef]
- Loeian, M.S.; Aghaei, S.M.; Farhadi, F.; Rai, V.; Yang, H.W.; Johnson, M.D.; Aqil, F.; Mandadi, M.; Rai, S.N.; Panchapakesan, B. Liquid biopsy using the nanotube-CTC-chip: Capture of invasive CTCs with high purity using preferential adherence in breast cancer patients. Lab Chip 2019, 19, 1899–1915. [Google Scholar] [CrossRef]
- Khoshroo, A.; Fattahi, A.; Hosseinzadeh, L. Development of paper-based aptasensor for circulating tumor cells detection in the breast cancer. J. Electroanal. Chem. 2022, 910, 116182. [Google Scholar] [CrossRef]
- Prasad, K.S.; Abugalyon, Y.; Li, C.; Xu, F.; Li, X. A new method to amplify colorimetric signals of paper-based nanobiosensors for simple and sensitive pancreatic cancer biomarker detection. Analyst 2020, 145, 5113–5117. [Google Scholar] [CrossRef]
- Zhou, J.; Zheng, Y.; Liu, J.; Bing, X.; Hua, J.; Zhang, H. A paper-based detection method of cancer cells using the photo-thermal effect of nanocomposite. J. Pharm. Biomed. Anal. 2016, 117, 333–337. [Google Scholar] [CrossRef] [PubMed]
- Keefe, A.D.; Pai, S.; Ellington, A. Aptamers as therapeutics. Nat. Rev. Drug Discov. 2010, 9, 537–550. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Huang, P.J.J.; Ding, J.; Liu, J. Aptamer-based biosensors for biomedical diagnostics. Analyst 2014, 139, 2627–2640. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Wang, L.; Li, J.; Fan, C.; Zhao, J. Aptamer-based biosensors. TrAC Trends Anal. Chem. 2008, 27, 108–117. [Google Scholar] [CrossRef]
- Han, K.; Liang, Z.; Zhou, N. Design strategies for aptamer-based biosensors. Sensors 2010, 10, 4541–4557. [Google Scholar] [CrossRef]
- Khosravi, F.; Loeian, S.M.; Panchapakesan, B. Ultrasensitive Label-Free Sensing of IL-6 Based on PASE Functionalized Carbon Nanotube Micro-Arrays with RNA-Aptamers as Molecular Recognition Elements. Biosensors 2017, 7, 17. [Google Scholar] [CrossRef]
- Liang, L.; Su, M.; Li, L.; Lan, F.; Yang, G.; Ge, S.; Yu, J.; Song, X. Aptamer-based fluorescent and visual biosensor for multiplexed monitoring of cancer cells in microfluidic paper-based analytical devices. Sens. Actuators B Chem. 2016, 229, 347–354. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, H.; Luo, J.; Liu, J.; Wang, L.; Fan, Y.; Yan, S.; Yang, Y.; Cai, X. A novel label-free microfluidic paper-based immunosensor for highly sensitive electrochemical detection of carcinoembryonic antigen. Biosens. Bioelectron. 2016, 83, 319–326. [Google Scholar] [CrossRef]
- Fan, Y.; Liu, J.; Wang, Y.; Luo, J.; Xu, H.; Xu, S.; Cai, X. A wireless point-of-care testing system for the detection of neuron-specific enolase with microfluidic paper-based analytical devices. Biosens. Bioelectron. 2017, 95, 60–66. [Google Scholar] [CrossRef]
- Wang, Y.; Luo, J.; Liu, J.; Sun, S.; Xiong, Y.; Ma, Y.; Yan, S.; Yang, Y.; Yin, H.; Cai, X. Label-free microfluidic paper-based electrochemical aptasensor for ultrasensitive and simultaneous multiplexed detection of cancer biomarkers. Biosens. Bioelectron. 2019, 136, 84–90. [Google Scholar] [CrossRef]
- Cass, A.E.; Davis, G.; Francis, G.D.; Hill, H.A.O.; Aston, W.J.; Higgins, I.J.; Plotkin, E.V.; Scott, L.D.; Turner, A.P. Ferrocene-mediated enzyme electrode for amperometric determination of glucose. Anal. Chem. 1984, 56, 667–671. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Shi, S.; Ma, J.; Guo, Y. A paper-based electrochemical immunosensor with reduced graphene oxide/thionine/gold nanoparticles nanocomposites modification for the detection of cancer antigen 125. Biosens. Bioelectron. 2019, 135, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Xue, P.; Kang, Y.; Hui, K.M. based microfluidic electrochemical immunodevice integrated with nanobioprobes onto graphene film for ultrasensitive multiplexed detection of cancer biomarkers. Anal. Chem. 2013, 85, 8661–8668. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Boryczka, J.; Kasani, S.; Wu, N. Enabling direct protein detection in a drop of whole blood with an “on-strip” plasma separation unit in a paper-based lateral flow strip. Anal. Chem. 2020, 93, 1326–1332. [Google Scholar] [CrossRef] [PubMed]
- Yildiz, U.H.; Alagappan, P.; Liedberg, B. Naked eye detection of lung cancer associated miRNA by paper-based biosensing platform. Anal. Chem. 2013, 85, 820–824. [Google Scholar] [CrossRef]
- Källander, K.; Tibenderana, J.K.; Akpogheneta, O.J.; Strachan, D.L. Zelee Hill, Augustinus HA ten Asbroek, Lesong Conteh, Betty R Kirkwood, and Sylvia R Meek. 2013. Mobile health (mHealth) approaches and lessons for increased performance and retention of community health workers in low-and middle-income countries: A review. J. Med. Internet Res. 2013, 15, e17. [Google Scholar] [CrossRef]
- Aydindogan, E.; Guler Celik, E.; Timur, S. Paper-Based analytical methods for smartphone sensing with functional nanoparticles: Bridges from smart surfaces to global health. Anal. Chem. 2018, 90, 12325–12333. [Google Scholar]
- Kassal, P.; Horak, E.; Sigurnjak, M.; Steinberg, M.D.; Steinberg, I.M. Wireless and mobile optical chemical sensors and biosensors. Rev. Anal. Chem. 2018, 37, 20170024. [Google Scholar] [CrossRef]
- Chandra Kishore, S.; Samikannu, K.; Atchudan, R.; Perumal, S.; Edison, T.N.J.I.; Alagan, M.; Sundramoorthy, A.K.; Lee, Y.R. Smartphone-Operated Wireless Chemical Sensors: A Review. Chemosensors 2022, 10, 55. [Google Scholar] [CrossRef]
- Xu, J.; Chen, X.; Khan, H.; Yang, L. A dual-readout paper-based sensor for on-site detection of penicillinase with a smartphone. Sens. Actuators B Chem. 2021, 335, 129707. [Google Scholar] [CrossRef]
- Shrivas, K.; Monisha; Patel, S.; Thakur, S.S.; Shankar, R. Food safety monitoring of the pesticide phenthoate using a smartphone-assisted paper-based sensor with bimetallic Cu@ Ag core–shell nanoparticles. Lab Chip 2020, 20, 3996–4006. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Niu, X.; Li, X.; He, Y.; Song, H.; Peng, Y.; Pan, J.; Qiu, F.; Zhao, H.; Lan, M. A smartphone-integrated ready-to-use paper-based sensor with mesoporous carbon-dispersed Pd nanoparticles as a highly active peroxidase mimic for H2O2 detection. Sens. Actuators B Chem. 2018, 265, 412–420. [Google Scholar] [CrossRef]
- Shrivas, K.; Monisha; Kant, T.; Karbhal, I.; Kurrey, R.; Sahu, B.; Sinha, D.; Patra, G.K.; Deb, M.K.; Pervez, S. Smartphone coupled with paper-based chemical sensor for on-site determination of iron (III) in environmental and biological samples. Anal. Bioanal. Chem. 2020, 412, 1573–1583. [Google Scholar] [CrossRef] [PubMed]
- Biswas, S.K.; Chatterjee, S.; Bandyopadhyay, S.; Kar, S.; Som, N.K.; Saha, S.; Chakraborty, S. Smartphone-enabled paper-based hemoglobin sensor for extreme point-of-care diagnostics. ACS Sens. 2021, 6, 1077–1085. [Google Scholar] [CrossRef]
- Wang, K.; Yang, J.; Xu, H.; Cao, B.; Qin, Q.; Liao, X.; Wo, Y.; Jin, Q.; Cui, D. Smartphone-imaged multilayered paper-based analytical device for colorimetric analysis of carcinoembryonic antigen. Anal. Bioanal. Chem. 2020, 412, 2517–2528. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Shi, S.; Ma, J.; Guo, Y. Smartphone-based electrochemical system with multi-walled carbon nanotubes/thionine/gold nanoparticles modified screen-printed immunosensor for cancer antigen 125 detection. Microchem. J. 2022, 174, 107044. [Google Scholar] [CrossRef]
- Feng, Q.M.; Pan, J.B.; Zhang, H.R.; Xu, J.J.; Chen, H.Y. Disposable paper-based bipolar electrode for sensitive electrochemiluminescence detection of a cancer biomarker. Chem. Commun. 2014, 50, 10949–10951. [Google Scholar] [CrossRef]
- Tian, R.; Li, Y.; Bai, J. Hierarchical assembled nanomaterial paper-based analytical devices for simultaneously electrochemical detection of microRNAs. Anal. Chim. Acta 2019, 1058, 89–96. [Google Scholar] [CrossRef]
- Fakhri, N.; Abarghoei, S.; Dadmehr, M.; Hosseini, M.; Sabahi, H.; Ganjali, M.R. Paper-based colorimetric detection of miRNA-21 using Ag/Pt nanoclusters. Spectrochim. Acta Part Mol. Biomol. Spectrosc. 2020, 227, 117529. [Google Scholar] [CrossRef]
- Cai, X.; Zhang, H.; Yu, X.; Wang, W. A microfluidic paper-based laser-induced fluorescence sensor based on duplex-specific nuclease amplification for selective and sensitive detection of miRNAs in cancer cells. Talanta 2020, 216, 120996. [Google Scholar] [CrossRef]
- Eid, M.; Rashed, A.N.Z.; Bulbul, A.A.M.; Podder, E. Mono-rectangular core photonic crystal fiber (MRC-PCF) for skin and blood cancer detection. Plasmonics 2021, 16, 717–727. [Google Scholar] [CrossRef]
- Lee, J.; Lee, Y.J.; Ahn, Y.J.; Choi, S.; Lee, G.J. A simple and facile paper-based colorimetric assay for detection of free hydrogen sulfide in prostate cancer cells. Sens. Actuators B Chem. 2018, 256, 828–834. [Google Scholar] [CrossRef]
- Mazzu-Nascimento, T.; Morbioli, G.G.; Milan, L.A.; Donofrio, F.C.; Mestriner, C.A.; Carrilho, E. Development and statistical assessment of a paper-based immunoassay for detection of tumor markers. Anal. Chim. Acta 2017, 950, 156–161. [Google Scholar] [CrossRef] [PubMed]
- Prasad, K.S.; Cao, X.; Gao, N.; Jin, Q.; Sanjay, S.T.; Henao-Pabon, G.; Li, X. A low-cost nanomaterial-based electrochemical immunosensor on paper for high-sensitivity early detection of pancreatic cancer. Sens. Actuators B Chem. 2020, 305, 127516. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Li, B.; Tian, C.; Yu, F.; Zhou, N.; Zhan, Y.; Chen, L. Rotational paper-based electrochemiluminescence immunodevices for sensitive and multiplexed detection of cancer biomarkers. Anal. Chim. Acta 2018, 1007, 33–39. [Google Scholar] [CrossRef]
- Sun, Y.; Ge, S.; Xue, J.; Zhou, X.; Lu, W.; Li, G.; Cao, X. Highly sensitive detection of cytochrome c in the NSCLC serum using a hydrophobic paper-based–gold nanourchin substrate. Biomed. Opt. Express 2020, 11, 7062–7078. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, Y.; Wang, Y.; Ge, S.; Liu, H.; Yan, M.; Yu, J. A paper-based electrochemiluminescence electrode as an aptamer-based cytosensor using PtNi@ carbon dots as nanolabels for detection of cancer cells and for in-situ screening of anticancer drugs. Microchim. Acta 2016, 183, 1873–1880. [Google Scholar] [CrossRef]
- Sun, S.; Wang, Y.; Ming, T.; Luo, J.; Xing, Y.; Liu, J.; Xiong, Y.; Ma, Y.; Yan, S.; Yang, Y.; et al. An origami paper-based nanoformulated immunosensor detects picograms of VEGF-C per milliliter of blood. Commun. Biol. 2021, 4, 121. [Google Scholar] [CrossRef]
- Sharma, B.; Parajuli, P.; Podila, R. Rapid detection of urokinase plasminogen activator using flexible paper-based graphene-gold platform. Biointerphases 2020, 15, 011004. [Google Scholar] [CrossRef]
- Zhou, T.; Huang, R.; Huang, M.; Shen, J.; Shan, Y.; Xing, D. CRISPR/Cas13a powered portable electrochemiluminescence chip for ultrasensitive and specific MiRNA detection. Adv. Sci. 2020, 7, 1903661. [Google Scholar] [CrossRef]
- Mukama, O.; Wu, W.; Wu, J.; Lu, X.; Liu, Y.; Liu, Y.; Liu, J.; Zeng, L. A highly sensitive and specific lateral flow aptasensor for the detection of human osteopontin. Talanta 2020, 210, 120624. [Google Scholar] [CrossRef] [PubMed]
- Ge, S.; Ge, L.; Yan, M.; Song, X.; Yu, J.; Liu, S. A disposable immunosensor device for point-of-care test of tumor marker based on copper-mediated amplification. Biosens. Bioelectron. 2013, 43, 425–431. [Google Scholar] [CrossRef] [PubMed]
- Aydindogan, E.; Ceylan, A.E.; Timur, S. based colorimetric spot test utilizing smartphone sensing for detection of biomarkers. Talanta 2020, 208, 120446. [Google Scholar] [CrossRef] [PubMed]
- Bahavarnia, F.; Saadati, A.; Hassanpour, S.; Hasanzadeh, M.; Shadjou, N.; Hassanzadeh, A. Paper-based immunosensing of ovarian cancer tumor protein CA 125 using novel nano-ink: A new platform for efficient diagnosis of cancer and biomedical analysis using microfluidic paper-based analytical devices (μPAD). Int. J. Biol. Macromol. 2019, 138, 744–754. [Google Scholar] [CrossRef]
- Yen, Y.K.; Chao, C.H.; Yeh, Y.S. A graphene-PEDOT: PSS modified paper-based aptasensor for electrochemical impedance spectroscopy detection of tumor marker. Sensors 2020, 20, 1372. [Google Scholar] [CrossRef]
- Patel, D.; Shah, Y.; Thakkar, N.; Shah, K.; Shah, M. Implementation of artificial intelligence techniques for cancer detection. Augment. Hum. Res. 2020, 5, 6. [Google Scholar] [CrossRef]
Paper Type | Properties | Sensing Methods | Applications/Notes/References |
---|---|---|---|
Whatman Filter Paper Grade 1 | Size: 26 × 31 mm to 600 × 600 mm sheets or 10 mm to 150 cm circles. Porosity: 11 µm Nominal thickness: 180 µm Medium retention and flow rate | Colorimetric, Surface Plasmon Resonance SERS, Electrochemical, Chemiluminescence, Phosphorescence, Photometric, Chromogenic sensing, Fluorescence, Dye based sensing, Spectrometry | Analytical separation [61] Electrophoretic separation [62] Soil analysis [63,64,65] Food testing [66] Point of care testing [67] Protein [68] Atmospheric dust [69] Gas detection [70] HIV detection [71] Explosive Sensing [72] Automated DNA extraction and amplification [73] |
Whatman Filter Paper Grade 2 | Size: 460 × 570 mm to 580 × 680 mm or 42.5 mm to 500 cm circles. Porosity: 8 µm Nominal thickness: 190 µm More retention than Grade 1 and slower flow rate | Same sensing methods are applicable as in Grade 1 | Same applications as Grade 1 except slower flow rate and higher retention due to smaller pore size. |
Whatman Filter Paper Grade 3 | Size: 26 × 31 mm to 600 × 600 mm or 23 mm to 320 mm circles. Porosity: 6 µm Nominal thickness: 390 µm More retention than Grade 1, 2 and slower flow rate | Poor colorimetric sensing due to slower flow rates | Same applications as Grade 1 except slower flow rate. Poor for colorimetric sensing due to lower color contrast |
Whatman Filter Paper Grade 4, 5, 6 | Main difference is porosity; Grade 4: 25 µm Grade 5: 2.5 µm and Grade 6: 3 µm. | Poor colorimetric sensing of Grade 5 and 6 is expected due to slower flow rates. | Same applications as Grade 1 except slower flow rate of Grade 5 and 6. Grade 4 suitable for large particles monitoring in air. Soil Suction Testing [74] |
Whatman® Grade 903 | W × L = 450 mm × 450 mm, 140 µm thickness, porosity: 4–7 µm | Compatible with most sensing methods. Super refined cellulose | Whole-blood collection [75], HIV load, and drug-resistance testing [76]. Element detection in neonatal blood spots (NBSs) using sector-field inductively coupled plasma-mass spectrometry [77]. |
Whatman® FTA filter paper cards | N/A | Highly sensitive for rapid nucleic acid extractions and storage. | Nucleic acid extraction from cells [78]; fine needle aspirates for cancer testing [79]; tissue analysis [80]; and virus and bacterial RNA detection and preservation [81]. |
Nitrocellolose membrane | pore size: 0.2 µm | Same sensing methods are applicable as in Grade 1 | Western Blotting [82] Fabrication of Lateral Flow Assay [83] |
Nanocellulose paper | Nanofibrillated cellulose (NFC) coated with layer of reactive nanoporous silicone nanofilament | Mainly restricted to applications requiring hydrophobic substrate | Paper-based electronics [84] |
Microcrystaline Cellulose/ Polyvinyl Alcohol Paper | Porosity: 90%, pore size (between 23 and 46 µm), thickness (from 315 to 436 µm), and high light transmission under water (>95%) | Similar to nanocellulose paper | low-cost cell culture platform [85] |
Omniphobic RF paper | “fluoroalkylated paper” (“RF paper”) by vapor-phase silanization of paper with fluoroalkyl trichlorosilanes | Resist wetting by liquids with a wide range of surface tensions correlates with the length and degree of fluorination of the organosilane and with the roughness of the paper | Same as nanocellulose paper [48] |
Photo paper | Commercially sold by Epson, Canon etc. | Same applications as Grade 1 | Pumpless paper-based analytical devices [86] |
Biomarker Detected | Recognition Element | Readout Method | Types of Cancer | Reference |
---|---|---|---|---|
MCF-7 Cells | Graphene Oxide- Gold nanoparticle nanocomposite with anti-EpCAM antibody. | Protothermal contrasting and visual readout | Breast cancer | [107] |
AFP, CEA, CA125, and CA153. | Horse radish peroxidase (HRP)- O phenylene diamine H2O2 | Electrochemical Immunodevice | Multiple | [119] |
PSA | Bipolar electrode | electrochemiluminescence | Prostate cancer | [133] |
microRNA-141 (miR-141) and microRNA-21 (miR-21) | Metal–organic framework (MOF) conjugated bio-probe, methylene blue (MB) and ferrocene (Fc) with distinguishable electrochemical signal, | Elctrochemical | Early detection of cancer | [134] |
CEA | NH2-G/Thi/AuNPs nanocomposites modified electrode | Electrochemical | Multiple | [114] |
miRNA-21 | Positively charged conjugated polyelectrolyte (CPEs) “poly(3-alkoxy-4-methylthiophene)” (PT) | Colometric Through Naked Eye | Lung Cancer | [121] |
NMP22 and BTA | Antibodies | Colometric With Naked Eye | Bladder Cancer | [60] |
miRNA-21 | DNA-templated Ag/Pt nanoclusters (DNA-Ag/Pt NCs), | Colometric Through Naked Eye | Lung Cancer | [135] |
miRNA-21 and miRNA-31 | Duplex-specific nuclease (DSN) | Laser-induced fluorescence (LIF) | miRNAs in cancer cells | [136] |
blood cancer cells and skin cancer cell | photonic crystal fiber (PCF) | optical | blood and skin | [137] |
Neuron-specific enolase (NSE) | NH2-G/Thi/AuNPs nanocomposites modified electrode | electrochemical detector and Android’s smartphone | Lung Cancer | [115] |
cancer antigen 125 (CA125) | reduced graphene oxide/thionine/gold nanoparticles (rGO/Thi/AuNPs) nanocomposites coated working electrode | electrochemical | ovarian cancer, lung cancer, endometrial cancer and breast cancer | [118] |
CEA | plasma separation | optical:raman scattering readout | Multiple | [120] |
free hydrogen sulfide in prostate cancer cells | polyvinylpyrrolidone (PVP) membrane containing silver/Nafion | Colorimetric | Prostate cancer | [138] |
PSA | multi wall carbon nanotubes MWCNTs activated PSA antibody (monoclonal antibody of the prostate specific antigen) | Electrochemical: Bench top multimeter | Prostate cancer | [102] |
CEA | Anti CEA | Colorimetric | Multiple | [139] |
PEAK1 | Anti PEAK1 | Colorimetric using gold nps | pancreatic cancer | [106] |
PEAK1 | nanomaterial graphene oxide coated electrode immobilized with anti-PEAK1 | Electrochemical | pancreatic cancer | [140] |
CEA PSA | [Ru(bpy)3]2+-labeled signal antibody CEA and PSA | Electrochemiluminescence | Multiple | [141] |
Cytochrome c (Cyt c) | Cyt c aptamer and Raman reporter Cy5-labeled complementary DNA | optical:raman scattering | Lung Cancer | [142] |
CEA and NSE | DNA aptamer | Electrochemical | Multiple | [116] |
EGFR | anti-EGFR aptamers | Electrochemical | gastric, breast, ovarian, and colorectal cancers | [87] |
MCF-7 cells | Aptamer-modified electrode | Electrochemiluminescence | Breast cancer | [143] |
VEGF-C | NMB/NH2-SWCNT/AuNps modified Working electrode | Electrochemical | Cancer progression | [144] |
urokinase plasminogen activator | graphene-AuNP platform and fluorescence of quantum dots | Colorimetric | Cancer progression | [145] |
Micro RNA MiR-17 | “light-switch” molecule [Ru(phen)2dppz]2+ modified electrode. | Electrochemiluminescence | Breast cancer | [146] |
Osteopontin | Biotinylated aptamer for precapture and antibody for detection | Optical through naked eye | Cancer prognosis | [147] |
Diphenylthiocarbazone | CuO NPs-labeled seconday Anibodies captured by antibodies | Fluorescence resonance energy transfer (FRET) | Prostate cancer | [148] |
AFP and MUC16 | AuNP labeling and anti-AFP and anti-MUC16 antibodies | colorimetric spot test | Multiple types | [149] |
Perilipin-2 | Gold nanorattles with PLIN-2 assay | Plasmonic biosensor | Renal cancer | [144] |
CA 125 | Ag/rGO nano-ink based electrodes with anti-CA | Electrochemical | Ovarian Cancer | [150] |
CEA | Graphene-PEDOT:PSS modified electrode | Electrochemical | Multiple | [151] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dukle, A.; Nathanael, A.J.; Panchapakesan, B.; Oh, T.-H. Role of Paper-Based Sensors in Fight against Cancer for the Developing World. Biosensors 2022, 12, 737. https://doi.org/10.3390/bios12090737
Dukle A, Nathanael AJ, Panchapakesan B, Oh T-H. Role of Paper-Based Sensors in Fight against Cancer for the Developing World. Biosensors. 2022; 12(9):737. https://doi.org/10.3390/bios12090737
Chicago/Turabian StyleDukle, Amey, Arputharaj Joseph Nathanael, Balaji Panchapakesan, and Tae-Hwan Oh. 2022. "Role of Paper-Based Sensors in Fight against Cancer for the Developing World" Biosensors 12, no. 9: 737. https://doi.org/10.3390/bios12090737
APA StyleDukle, A., Nathanael, A. J., Panchapakesan, B., & Oh, T. -H. (2022). Role of Paper-Based Sensors in Fight against Cancer for the Developing World. Biosensors, 12(9), 737. https://doi.org/10.3390/bios12090737