Electrochemiluminescence Systems for the Detection of Biomarkers: Strategical and Technological Advances
Abstract
:1. Introduction
2. ECL Systems for the Detection of Biomarkers
3. Current Strategies and Technologies of the ECL Systems in the Detection of Biomolecules
3.1. Strategies and Technologies for the Sensitive Detection of Biomarkers
3.2. Strategies and Technologies for Multiple Biomarker Detections
3.3. Strategies and Technologies for the Simple Detection of Biomarkers
4. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Riedel, S.; Melendez, J.H.; An, A.T.; Rosenbaum, J.E.; Zenilman, J.M. Procalcitonin as a marker for the detection of bacteremia and sepsis in the emergency department. Am. J. Clin. Pathol. 2011, 135, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Pierrakos, C.; Vincent, J.L. Sepsis biomarkers: A review. Crit. Care 2010, 14, R15. [Google Scholar] [CrossRef]
- Maduraiveeran, G.; Sasidharan, M.; Ganesan, V. Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosens. Bioelectron. 2018, 103, 113–129. [Google Scholar] [CrossRef]
- Ozcelikay, G.; Karadurmus, L.; Kaya, S.I.; Bakirhan, N.K.; Ozkan, S.A. A Review: New trends in electrode systems for sensitive drug and biomolecule analysis. Crit. Rev. Anal. Chem. 2020, 50, 212–225. [Google Scholar] [CrossRef]
- Kim, D.M.; Park, J.S.; Jung, S.W.; Yeom, J.; Yoo, S.M. Biosensing applications using nanostructure-based localized surface plasmon resonance sensors. Sensors 2021, 21, 3191. [Google Scholar] [CrossRef]
- Kim, D.; Yoo, S. Aptamer-conjugated quantum dot optical biosensors: Strategies and applications. Chemosensors 2021, 9, 318. [Google Scholar] [CrossRef]
- Fathi, F.; Rashidi, M.R.; Pakchin, P.S.; Ahmadi-Kandjani, S.; Nikniazi, A. Photonic crystal-based biosensors: Emerging inverse opals for biomarker detection. Talanta 2021, 221, 121615. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Xia, C.; Feng, G.; Fang, J. Hospitals and laboratories on paper-based sensors: A mini review. Sensors 2021, 21, 5998. [Google Scholar] [CrossRef] [PubMed]
- Shetti, N.P.; Mishra, A.; Basu, S.; Mascarenhas, R.J.; Kakarla, R.R.; Aminabhavi, T.M. Skin-patchable electrodes for biosensor applications: A review. ACS Biomater. Sci. Eng. 2020, 6, 1823–1835. [Google Scholar] [CrossRef]
- Yokus, M.A.; Songkakul, T.; Pozdin, V.A.; Bozkurt, A.; Daniele, M.A. Wearable multiplexed biosensor system toward continuous monitoring of metabolites. Biosens. Bioelectron. 2020, 153, 112038. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Ma, X.; Pang, C.; Wang, M.; Yin, G.; Xu, Z.; Li, J.; Luo, J. Novel chloramphenicol sensor based on aggregation-induced electrochemiluminescence and nanozyme amplification. Biosens. Bioelectron. 2021, 176, 112944. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Wu, L.; Duan, J.; Yin, H.; Ai, S. Ultrasensitive electrochemiluminescence immunosensor for 5-hydroxymethylcytosine detection based on Fe3O4@SiO2 nanoparticles and PAMAM dendrimers. Biosens. Bioelectron. 2018, 99, 660–666. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Jiang, J.; Yuan, R.; Zhuo, Y.; Chai, Y. Highly ordered and field-free 3D DNA nanostructure: The next generation of DNA nanomachine for rapid single-step sensing. J. Am. Chem. Soc. 2018, 140, 9361–9364. [Google Scholar] [CrossRef]
- Qi, H.; Zhang, C. Electrogenerated chemiluminescence biosensing. Anal. Chem. 2020, 92, 524–534. [Google Scholar] [CrossRef]
- Husain, R.A.; Barman, S.R.; Chatterjee, S.; Khan, I.; Lin, Z.H. Enhanced biosensing strategies using electrogenerated chemiluminescence: Recent progress and future prospects. J. Mater. Chem. B 2020, 8, 3192–3212. [Google Scholar] [CrossRef]
- Bezuneh, T.T.; Fereja, T.H.; Kitte, S.A.; Li, H.; Jin, Y. Gold nanoparticle-based signal amplified electrochemiluminescence for biosensing applications. Talanta 2022, 248, 123611. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Periñán, E.; Gutiérrez-Sánchez, C.; García-Mendiola, T.; Lorenzo, E. Electrochemiluminescence biosensors using screen-printed electrodes. Biosensors 2020, 10, 118. [Google Scholar] [CrossRef]
- Sun, B.; Qi, H.; Ma, F.; Gao, Q.; Zhang, C.; Miao, W. Double covalent coupling method for the fabrication of highly sensitive and reusable electrogenerated chemiluminescence sensors. Anal. Chem. 2010, 82, 5046–5052. [Google Scholar] [CrossRef]
- Xiong, C.; Liang, W.; Zheng, Y.; Zhuo, Y.; Chai, Y.; Yuan, R. Ultrasensitive assay for telomerase activity via self-enhanced electrochemiluminescent Ruthenium complex doped metal-organic frameworks with high emission efficiency. Anal. Chem. 2017, 89, 3222–3227. [Google Scholar] [CrossRef]
- Yao, C.; Song, H.; Wan, Y.; Ma, K.; Zheng, C.; Cui, H.; Xin, P.; Xibo, J.; Shengyuan, D. Electro-photodynamic visualization of singlet oxygen induced by zinc porphyrin modified microchip in aqueous media. ACS Appl. Mater. Interfaces 2016, 8, 34833–34843. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.Q.; Zhang, H.Y.; Chai, Y.Q.; Yuan, R.; Zhuo, Y. A sensitive electrochemiluminescent aptasensor based on perylene derivatives as a novel co-reaction accelerator for signal amplification. Biosens. Bioelectron. 2016, 85, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.M.; Zhang, W.; Wang, Z.; Han, J.; Xie, G.; Chen, S.P. Ultrasensitive aptasensing of insulin based on hollow porous C3N4/S2O82−/AuPtAg ECL ternary system and DNA walker amplification. Biosens. Bioelectron. 2020, 148, 111795–111802. [Google Scholar] [CrossRef]
- Liu, J.L.; Tang, Z.L.; Zhang, J.Q.; Chai, Y.Q.; Zhuo, Y.; Yuan, R. Morphology-controlled 9,10-diphenylanthracene nanoblocks as electrochemiluminescence emitters for microRNA detection with one-step DNA walker amplification. Anal. Chem. 2018, 90, 5298–5305. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.M.; Zhou, J.; Chai, Y.Q.; Zhuo, Y.; Yuan, R. SnS2 quantum dots as new emitters with strong electrochemiluminescence for ultrasensitive antibody detection. Anal. Chem. 2018, 90, 12270–12277. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Liang, W.B.; Lei, Y.M.; Ou, Y.X.; Chai, Y.Q.; Yuan, R.; Zhuo, Y. An efficient electrochemiluminescence amplification strategy via bis-co-reaction accelerator for sensitive detection of laminin to monitor overnutrition associated liver damage. Biosens. Bioelectron. 2017, 98, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Keyikoglu, R.; Karatas, O.; Khataee, A.; Kobya, M.; Can, O.T.; Soltani, R.D.C.S.; Isleyen, M. Peroxydisulfate activation by in-situ synthesized nanoparticles for degradation of atrazine: Performance and mechanism. Sep. Purif. Technol. 2020, 247, 116925. [Google Scholar] [CrossRef]
- Zhu, S.S.; Jin, C.; Duan, X.G.; Wang, S.B.; Ho, S.H. Nonradical oxidation in persulfate activation by graphene-like nanosheets (GNS): Differentiating the contributions of singlet oxygen (1O2) and sorption-dependent electron transfer. Chem. Eng. J. 2020, 393, 124725. [Google Scholar] [CrossRef]
- Zhou, M.; Pu, Y.; Wu, Q.; Wang, P.; Liu, T.; Zhang, M. 2D hexagonal SnS2 nanoplates as novel co-reaction accelerator for construction of ultrasensitive g-C3N4-based electrochemiluminescent biosensor. Sens. Actuators B Chem. 2020, 319, 128298. [Google Scholar] [CrossRef]
- Zhou, J.; Li, Y.; Wang, W.; Tan, X.; Lu, Z.; Han, H. Metal-organic frameworks-based sensitive electrochemiluminescence biosensing. Biosens. Bioelectron. 2020, 164, 112332. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.N.; Zhuo, Y.; Yuan, R.; Chai, Y.Q. New signal amplification strategy using semicarbazide as co-reaction accelerator for highly sensitive electrochemiluminescent aptasensor construction. Anal. Chem. 2015, 87, 11389–11397. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Yang, F.; Tu, T.T.; Liao, N.; Chai, Y.Q.; Yuan, R.; Zhuo, Y. A synergistic promotion strategy remarkably accelerated electrochemiluminescence of SnO2 QDs for MicroRNA detection using 3D DNA walker amplification. Biosens. Bioelectron. 2020, 173, 112820. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.Y.; Wang, Y.Z.; Wang, L.L.; Zhu, J.W.; Zhao, J.; Zong, H.L.; Chen, C.X. Bipolar electrode ratiometric electrochemiluminescence biosensing analysis based on boron nitride quantum dots and biological release system. Biosens. Bioelectron. 2021, 191, 113393. [Google Scholar] [CrossRef]
- Liu, J.L.; Zhao, M.; Zhuo, Y.; Chai, Y.Q.; Yuan, R. Highly efficient intramolecular electrochemiluminescence energy transfer for ultrasensitive bioanalysis of aflatoxin M1. Chemistry 2017, 23, 1853–1859. [Google Scholar] [CrossRef]
- Zhang, P.; Lin, Z.F.; Zhuo, Y.; Yuan, R.; Chai, Y.Q. Dual microRNAs-fueled DNA nanogears: A case of regenerated strategy for multiple electrochemiluminescence detection of MicroRNAs with single luminophore. Anal. Chem. 2016, 89, 1338–1345. [Google Scholar] [CrossRef]
- Zhao, J.; Luo, J.; Liu, D.; He, Y.; Li, Q.; Chen, S.; Yuan, R. A coreactant-free electrochemiluminescence (ECL) biosensor based on in situ generating quencher for the ultrasensitive detection of microRNA. Sens. Actuators B Chem. 2020, 316, 128139. [Google Scholar] [CrossRef]
- Wang, F.; Liu, Y.; Fu, C.; Li, N.; Du, M.; Zhang, L.; Ge, S.; Yu, J. Paper-based bipolar electrode electrochemiluminescence platform for detection of multiple miRNAs. Anal. Chem. 2021, 93, 1702–1708. [Google Scholar] [CrossRef]
- Zhou, Y.; Chai, Y.; Yuan, R. Highly efficient dual-polar electrochemiluminescence from Au25 nanoclusters: The next generation of multibiomarker detection in a single step. Anal. Chem. 2019, 91, 14618–14623. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Chen, M.; Han, Q.; Wu, J.; Zhao, X.; Fu, Y. A three-dimensional DNA nanomachine with target recycling amplification technology and multiple electrochemiluminescence resonance energy transfer for sensitive microRNA-141 detection. Biosens. Bioelectron. 2020, 156, 112146. [Google Scholar] [CrossRef]
- Han, T.; Ma, C.; Wang, L.; Cao, Y.; Chen, H.-Y.; Zhu, J.J. A novel electrochemiluminescence Janus emitter for dual mode biosensing. Adv. Funct. Mater. 2022, 32, 2200863. [Google Scholar] [CrossRef]
- Kim, D.M.; Yoo, S.M. DNA-modifying enzyme reaction-based biosensors for disease diagnostics: Recent biotechnological advances and future perspectives. Crit. Rev. Biotechnol. 2020, 40, 787–803. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.; Li, J.; Yang, L.; Fan, D.; Kuang, X.; Sun, X.; Wei, Q.; Ju, H. Hollow double-shell CuCO2O4@Cu2O heterostructures as a highly efficient coreaction accelerator for amplifying NIR electrochemiluminescence of gold nanoclusters in immunoassay. Anal. Chem. 2022, 94, 7132–7139. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Wei, X.; Li, M.; Wang, L.; Wei, T.; Dai, Z. Co-quenching effect between lanthanum metal-organic frameworks luminophore and crystal violet for enhanced electrochemiluminescence gene detection. Small 2021, 17, e2103424. [Google Scholar] [CrossRef]
- Shi, L.; Li, X.; Zhu, W.; Wang, Y.; Du, B.; Cao, W.; Wei, Q.; Pang, X. Sandwich-type electrochemiluminescence sensor for detection of NT-proBNP by using high efficiency quench strategy of Fe3O4@PDA toward Ru(bpy)32+ coordinated with silver oxalate. ACS Sens. 2017, 2, 1774–1778. [Google Scholar] [CrossRef]
- Gong, W.; Yang, S.; Zhang, F.; Tian, F.; Chen, J.; Yin, Z.; Ding, S.; Yang, W.; Luo, R. A dual-quenched ECL immunosensor for ultrasensitive detection of retinol binding protein 4 based on luminol@AuPt/ZIF-67 and MnO2@CNTs. J. Nanobiotechnol. 2021, 19, 272. [Google Scholar] [CrossRef]
- Liu, J.L.; Zhang, J.Q.; Zhou, Y.; Xiao, D.R.; Zhuo, Y.; Chai, Y.Q.; Yuan, R. Crystallization-induced enhanced electrochemiluminescence from tetraphenyl alkene nanocrystals for ultrasensitive sensing. Anal. Chem. 2021, 93, 10890–10897. [Google Scholar] [CrossRef]
- Liu, J.L.; Zhang, J.Q.; Tang, Z.L.; Zhuo, Y.; Chai, Y.Q.; Yuan, R. Near-infrared aggregation-induced enhanced electrochemiluminescence from tetraphenylethylene nanocrystals: A new generation of ECL emitters. Chem. Sci. 2019, 10, 4497–4501. [Google Scholar] [CrossRef] [PubMed]
- Yin, M.; Wang, Y.; Gao, X.; Du, S.; Cheng, Y.; Yu, S.; Zou, G.; Xue, F. Electrochemiluminescence ultrasensitive immunoassay for carbohydrate antigen 125 based on AgInS2/ZnS nanocrystals. Anal. Bioanal. Chem. 2021, 413, 2207–2215. [Google Scholar] [CrossRef]
- Lv, H.; Zhang, R.; Cong, S.; Guo, J.; Shao, M.; Liu, W.; Zhang, L.; Lu, X. Near-infrared electrogenerated chemiluminescence from simple copper nanoclusters for sensitive alpha-fetoprotein sensing. Anal. Chem. 2022, 94, 4538–4546. [Google Scholar] [CrossRef]
- Yu, L.; Zhang, Q.; Kang, Q.; Zhang, B.; Shen, D.; Zou, G. Near-infrared electrochemiluminescence immunoassay with biocompatible Au nanoclusters as tags. Anal. Chem. 2020, 92, 7581–7587. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Fu, K.; Gao, X.; Dong, S.; Zhang, B.; Fu, S.; Hsu, H.Y.; Zou, G. Enhanced near-infrared electrochemiluminescence from trinary Ag-In-S to multinary Ag-Ga-In-S Nanocrystals via doping-in-growth and its immunosensing applications. Anal. Chem. 2021, 93, 2160–2165. [Google Scholar] [CrossRef]
- Guo, W.; Ding, H.; Gu, C.; Liu, Y.; Jiang, X.; Su, B.; Shao, Y. Potential-resolved multicolor electrochemiluminescence for multiplex immunoassay in a single sample. J. Am. Chem. Soc. 2018, 140, 15904–15915. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, N.; Pan, J.B.; Song, J.; Zhao, W.; Chen, H.Y.; Xu, J.J. Bipolar electrode array for multiplexed detection of prostate cancer biomarkers. Anal. Chem. 2022, 94, 3005–3012. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Ji, S.Y.; Xu, H.Y.; Zhao, W.; Xu, J.J.; Chen, H.Y. Bidirectional electrochemiluminescence color switch: An application in detecting multi-markers of prostate cancer. Anal. Chem. 2018, 90, 3570–3575. [Google Scholar] [CrossRef]
- Liu, G.; Hong, J.; Ma, K.; Wan, Y.; Zhang, X.; Huang, Y.; Kang, K.; Yang, M.; Chen, J.; Deng, S. Porphyrin trio-pendant fullerene guest as an in situ universal probe of high ECL efficiency for sensitive miRNA detection. Biosens. Bioelectron. 2020, 150, 111963. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Du, Y.; Wang, H.; Ma, H.; Wu, D.; Ren, X.; Wei, Q.; Xu, J.J. Self-supply of H2O2 and O2 by hydrolyzing CaO2 to enhance the electrochemiluminescence of luminol based on a closed bipolar electrode. Anal. Chem. 2020, 92, 12693–12699. [Google Scholar] [CrossRef]
- Zhang, N.; Gao, H.; Xu, C.H.; Cheng, Y.; Chen, H.Y.; Xu, J.J. An efficient electrochemiluminescence enhancement strategy on bipolar electrode for bioanalysis. Anal. Chem. 2019, 91, 12553–12559. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Fu, C.; Huang, C.; Li, N.; Wang, Y.; Ge, S.; Yu, J. Paper-Based closed Au-bipolar electrode electrochemiluminescence sensing platform for the detection of miRNA-155. Biosens. Bioelectron. 2020, 150, 111917. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Xu, C.H.; Zhao, W.; Guan, Q.Y.; Chen, H.Y.; Xu, J.J. Bipolar electrode based multicolor electrochemiluminescence biosensor. Anal. Chem. 2017, 89, 8050–8056. [Google Scholar] [CrossRef] [PubMed]
- Saqib, M.; Bashir, S.; Li, H.; Li, C.; Wang, S.; Jin, Y. Efficient electrogenerated chemiluminescence of Tris(2,2′-bipyridine) Ruthenium (II) with N-Hydroxysulfosuccinimide as a coreactant for selective and sensitive detection of l-Proline and Mercury (II). Anal. Chem. 2019, 91, 12517–12524. [Google Scholar] [CrossRef]
- Borrebaeck, C.A. Antibodies in diagnostics–from immunoassays to protein chips. Immunol. Today 2000, 21, 379–382. [Google Scholar] [CrossRef]
- Majuran, M.; Armendariz-Vidales, G.; Carrara, S.; Haghighatbin, M.A.; Spiccia, L.; Barnard, P.J.; Deacon, G.B.; Hogan, C.F.; Tuck, K.L. Near-infrared electrochemiluminescence from Bis-tridentate Ruthenium(II) Di(quinoline-8-yl)pyridine complexes in aqueous media. Chempluschem 2020, 85, 346–352. [Google Scholar] [CrossRef]
- Zhou, Y.Y.; Ding, Y.M.; Zhao, W.; Dong, J.H.; Li, L.Z.; Chen, H.Y.; Xu, J.J. Efficient NIR electrochemiluminescent dyes based on Ruthenium (II) complexes containing an N-heterocyclic carbene ligand. Chem. Commun. 2021, 57, 1254–1257. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Park, Y.S.; Lim, J.; Klimov, V.I. Towards zero-threshold optical gain using charged semiconductor quantum dots. Nat. Nanotechnol. 2017, 12, 1140–1147. [Google Scholar] [CrossRef]
- Yang, L.; De-Jager, C.R.; Adsetts, J.R.; Chu, K.; Liu, K.; Zhang, C.; Ding, Z. Analyzing near-infrared electrochemiluminescence of graphene quantum dots in aqueous media. Anal. Chem. 2021, 93, 12409–12416. [Google Scholar] [CrossRef] [PubMed]
- Hesari, M.; Workentin, M.S.; Ding, Z.F. NIR electrochemiluminescence from Au25—Nanoclusters facilitated by highly oxidizing and reducing co-reactant radicals. Chem. Sci. 2014, 5, 3814–3822. [Google Scholar] [CrossRef]
- Wang, T.; Wang, D.; Padelford, J.W.; Jiang, J.; Wang, G. Near-infrared electrogenerated chemiluminescence from aqueous soluble lipoic acid au nanoclusters. J. Am. Chem. Soc. 2016, 138, 6380–6383. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, Y.; Zhang, W.; Yin, P.; Shang, L.; Ma, R.; Jia, L.; Xue, Q.; He, S.; Wang, H. Lowly-aggregated perylene diimide as a near-infrared electrochemiluminescence luminophore for ultrasensitive immunosensors at low potentials. Analyst 2021, 146, 3679–3685. [Google Scholar] [CrossRef]
- Stroyuk, O.; Weigert, F.; Raevskaya, A.; Spranger, F.; Würth, C.; Resch- Genger, U.; Gaponik, N.; Zahn, D.R.T. Inherently broadband photoluminescence in Ag– In–S/ZnS quantum dots observed in ensemble and single-particle studies. J. Phys. Chem. C 2019, 123, 2632–2641. [Google Scholar] [CrossRef]
- Sakai, R.; Onishi, H.; Ido, S.; Furumi, S.J.N. Effective Mn-doping in AgInS2/ZnS core/shell nanocrystals for dual photoluminescent peaks. Nanomaterials 2019, 9, 263. [Google Scholar] [CrossRef] [PubMed]
- Zong, C.; Wu, J.; Wang, C.; Ju, H.; Yan, F. Chemiluminescence imaging immunoassay of multiple tumor markers for cancer screening. Anal. Chem. 2012, 84, 2410. [Google Scholar] [CrossRef]
- Rissin, D.M.; Kan, C.W.; Song, L.; Rivnak, A.J.; Fishburn, M.W.; Shao, Q.; Piech, T.; Ferrell, E.P.; Meyer, R.E.; Campbell, T.G. Multiplexed single molecule immunoassays. Lab. Chip. 2013, 13, 2902. [Google Scholar] [CrossRef] [PubMed]
- Kerr, E.; Doeven, E.H.; Barbante, G.J.; Hogan, C.F.; Bower, D.J.; Donnelly, P.S.; Connell, T.U.; Francis, P.S. Annihilation electrogenerated chemiluminescence of mixed metal chelates in solution: Modulating emission colour by manipulating the energetics. Chem. Sci. 2015, 6, 472–479. [Google Scholar] [CrossRef] [PubMed]
- Doeven, E.H.; Zammit, E.M.; Barbante, G.J.; Hogan, C.F.; Barnett, N.W.; Francis, P.S. A potential-controlled switch on/off mechanism for selective excitation in mixed electrochemiluminescent systems. Angew. Chem. Int. Ed. 2012, 51, 4354–4357. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Zhou, J.; Li, C.C.; Deng, S.; Gao, W.; Zhang, X.; Luo, X.; Wang, X.; Zhang, C.Y. Bipolar aggregation-induced electrochemiluminescence of Thiophene-fused conjugated microporous polymers. ACS. Appl. Mate. Interfaces 2021, 13, 28782–28789. [Google Scholar] [CrossRef]
- Hesari, M.; Ding, Z. A grand avenue to Au nanocluster electrochemiluminescence. Acc. Chem. Res. 2017, 50, 218–230. [Google Scholar] [CrossRef]
- Zhu, M.J.; Pan, J.B.; Wu, Z.Q.; Gao, X.Y.; Zhao, W.; Xia, X.H.; Xu, J.J.; Chen, H.Y. Electrogenerated chemiluminescence imaging of electrocatalysis at a single Au-Pt janus nanoparticle. Angew. Chem. Int. Ed. Engl. 2018, 57, 4010–4014. [Google Scholar] [CrossRef]
- Su, H.; Price, C.A.; Jing, L.; Tian, Q.; Liu, J.; Qian, K. Janus particles: Design, preparation, and biomedical applications. Mater. Today Bio. 2019, 4, 100033. [Google Scholar] [CrossRef]
- Jiang, S.; Chen, Q.; Tripathy, M.; Luijten, E.; Schweizer, K.S.; Granick, S. Janus particle synthesis and assembly. Adv. Mater. 2010, 22, 1060–1071. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, G.; Agrawal, R. Janus nanoparticles: Recent advances in their interfacial and biomedical applications. ACS Appl. Nano Mater. 2019, 2, 1738–1757. [Google Scholar] [CrossRef]
- Wei, H.; Wang, E. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 2013, 42, 6060–6093. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Wang, X.; Wang, Q.; Lou, Z.; Li, S.; Zhu, Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (II). Chem. Soc. Rev. 2019, 48, 1004–1076. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.M.; Yoo, S.M. Colorimetric systems for the detection of bacterial contamination: Strategy and applications. Biosensors 2022, 12, 532. [Google Scholar] [CrossRef]
- Liu, J.; Meng, L.; Fei, Z.; Dyson, P.; Zhang, L. On the origin of the synergy between the Pt nanoparticles and MnO2 nanosheets in Wonton-like 3D nanozyme oxidase mimics. Biosens. Bioelectron. 2018, 121, 159–165. [Google Scholar] [CrossRef]
- Gao, W.; Liu, Z.; Qi, L.; Lai, J.; Kitte, S.A.; Xu, G. Ultrasensitive glutathione detection based on lucigenin cathodic electrochemiluminescence in the presence of nanosheets. Anal. Chem. 2016, 88, 7654–7659. [Google Scholar] [CrossRef]
- Li, X.; Sun, X.; Fan, D.; Yan, T.; Feng, R.; Wang, H.; Wu, D.; Wei, Q. Aternary quenching electrochemiluminescence insulin immunosensor based on Mn2+ released from MnO2@carbon core-shell nanospheres with ascorbic acid quenching PdPt-MoS2@TiO2 enhanced luminol. Biosens. Bioelectron. 2019, 142, 111551. [Google Scholar] [CrossRef]
- Yoo, S.M.; Lee, S.Y. Optical biosensors for the detection of pathogenic microorganisms. Trends Biotechnol. 2016, 34, 7–25. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, Q.H.; Kim, M.I. Nanomaterial-mediated paper-based biosensors for colorimetric pathogen detection. Trends Analyt. Chem. 2020, 132, 116038. [Google Scholar] [CrossRef]
- Gao, C.; Xue, J.; Zhang, L.; Cui, K.; Li, H.; Yu, J. Paper-based origami photoelectrochemical sensing platform with TiO2/Bi4 NbO8Cl/Co-Pi cascade structure enabling of bidirectional modulation of charge carrier separation. Anal. Chem. 2018, 90, 14116–14120. [Google Scholar] [CrossRef]
- Kong, Q.; Cui, K.; Zhang, L.; Wang, Y.; Sun, J.; Ge, S.; Zhang, Y.; Yu, J. “On–Off–On” Photoelectrochemical/visual lab-on-paper sensing via signal amplification of CdS quantum dots@leaf-shape ZnO and quenching of Au-modified prism-anchored octahedral CeO2 nanoparticles. Anal. Chem. 2018, 90, 11297–11304. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Qi, W.; Xu, G. Recent advances in electrochemiluminescence. Chem. Soc. Rev. 2015, 44, 3117–3142. [Google Scholar] [CrossRef] [Green Version]
- Abdussalam, A.; Xu, G. Recent advances in electrochemiluminescence luminophores. Anal. Bioanal. Chem. 2022, 414, 131–146. [Google Scholar] [CrossRef]
- Chen, S.; Ma, H.; Padelford, J.W.; Qinchen, W.; Yu, W.; Wang, S.; Zhu, M.; Wang, G. Near infrared electrochemiluminesnce of rod-shape 25-atom AuAg nanoclusters that is hundreds-fold stronger than that of Ru(bpy)3 standard. J. Am. Chem. Soc. 2019, 141, 9603–9609. [Google Scholar] [CrossRef]
- Kebede, N.; Francis, P.S.; Barbante, G.J.; Hogan, C.F. Electrogenerated chemiluminescence of tris (2, 2′ bipyridine) Ruthenium (ii) using common biological buffers as co-reactant, pH buffer and supporting electrolyte. Analyst 2015, 140, 7142–7145. [Google Scholar] [CrossRef]
- Dong, Y.P.; Gao, T.T.; Zhou, Y.; Jiang, L.P.; Zhu, J.J. Anodic electrogenerated chemiluminescence of Ru(bpy)32+ with CdSe quantum dots as coreactant and its application in quantitative detection of DNA. Sci. Rep. 2015, 5, 15392. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Shi, L.; Niu, W.; Li, H.; Xu, G. Environmentally friendly and highly sensitive ruthenium (II) tris (2, 2′-bipyridyl) electrochemiluminescent system using 2-(dibutylamino) ethanol as co-reactant. Angew. Chem. Int. Ed. 2007, 46, 421–424. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Li, H.; Wang, D.; Liu, C.; Zhang, C. An electrochemiluminescence cloth-based biosensor with smartphone-based imaging for detection of lactate in saliva. Analyst 2017, 142, 3715–3724. [Google Scholar] [CrossRef]
- Douman, S.F.; De Eguilaz, M.R.; Cumba, L.R.; Beirne, S.; Wallace, G.G.; Yue, Z.; Iwuoha, E.I.; Forster, R.J. Electrochemiluminescence at 3D printed titanium electrodes. Front. Chem. 2021, 9, 662810. [Google Scholar] [CrossRef]
- Kadimisetty, K.; Malla, S.; Bhalerao, K.S.; Mosa, I.M.; Bhakta, S.; Lee, N.H.; Rusling, J.F. Automated 3D-printed microfluidic array for rapid nanomaterial-enhanced detection of multiple proteins. Anal. Chem. 2018, 90, 7569–7577. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-M.; Go, M.-J.; Lee, J.; Na, D.; Yoo, S.-M. Recent advances in micronanomaterial-based aptamer selection strategies. Molecules 2021, 26, 5187. [Google Scholar] [CrossRef] [PubMed]
- Boussebayle, A.; Groher, F.; Suess, B. RNA-based Capture-SELEX for the selection of small molecule-binding aptamers. Methods 2019, 161, 10–15. [Google Scholar] [CrossRef]
- Sefah, K.; Shangguan, D.; Xiong, X.; O’Donoghue, M.B.; Tan, W. Development of DNA aptamers using Cell-SELEX. Nat. Protoc. 2010, 5, 1169–1185. [Google Scholar] [CrossRef] [PubMed]
- Barman, J. Targeting cancer cells using aptamers, cell-SELEX approach and recent advancements. RSC Adv. 2015, 5, 11724–11732. [Google Scholar] [CrossRef]
- Li, S.; Xu, H.; Ding, H.; Huang, Y.; Cao, X.; Yang, G.; Li, J.; Xie, Z.; Meng, Y.; Li, X.; et al. Identification of an aptamer targeting hnRNP A1 by tissue slide-based SELEX. J. Pathol. 2009, 218, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Tsai, Y.-C.; Lin, C.-S.; Lin, C.-N.; Hsu, F.-F.; Lee, G.-B. Screening aptamers targeting the cell membranes of clinical cancer tissues on an integrated microfluidic system. Sens Actuators B Chem. 2021, 330, 129334. [Google Scholar] [CrossRef]
- Lin, C.S.; Tsai, Y.C.; Hsu, K.F.; Lee, G.B. Optimization of aptamer selection on an automated microfluidic system with cancer tissues. Lab Chip 2021, 21, 725–734. [Google Scholar] [CrossRef]
Company | Product | Representative Biomarkers | Related Diseases | Features | Website |
---|---|---|---|---|---|
Radiometer | AQT90 FLEX analyser | Troponin, creatine kinase-muscle/brain, myoglobin, N-terminal-pro brain natriuretic peptides, procalcitonin, C-reactive protein, D-dimer, human chorionic gonadotropin, etc. | Sepsis, heart failure, myocardial infarction, venous thromboembolism. | No sample preparation is necessary; Immunoassay; Applications for emergency sample assay; Results in less than 21 min; Automated analyser. | https://www.radiometeramerica.com/ (accessed on 31 August 2022) |
Roche Diagnostics | Cobas analyser | High-sensitive troponin T, creatine kinase, myoglobin, parathyroid hormone, human chorionic gonadotropin, etc. | Anaemia, cardiac and tumour markers, critical care, fertility/hormones, infectious diseases | Immunoassay; Applications for emergency sample assay; Throughput of up to 86 tests/h; Automated analyser. | https://diagnostics.roche.com/global/en/products/instruments/cobas-e-411-ins-502.html (accessed on 31 August 2022) |
Meso Scale Diagnostics | Meso Sector analyser | SARS-CoV-2, calprotectin, platelet-derived growth factor receptor-β, insulin-like growth factor binding protein 4, angiotensin-converting enzyme 2, Tau, lymphotactin, etc. | Alzheimer’s disease, cardiovascular disease, bone disorders, cardiac biomarkers, cardiac injury, kidney injury, liver injury, muscle injury, cancer | Immunoassay; Use of 96-well or 364-well plates; Throughput of up to 50 plates/h. | https://www.mesoscale.com/ (accessed on 31 August 2022) |
Biometro | Lucia system | C-reactive protein. | Inflammation | Immunoassay; Cathodic ECL system; Portable analyser. | http://www.biometro.net/en/ (accessed on 31 August 2022) |
Sensing System | Advantages | Limitations |
---|---|---|
Systems based on the chemical reactions of the luminophore and co-reactant |
|
|
Systems that incorporate co-reaction accelerator-involved reactions |
|
|
Systems that incorporate resonance energy transfer reactions |
|
|
Systems that incorporate an enzyme reaction-based signal amplification |
|
|
Challenge | Performance Improvement Strategy | References |
---|---|---|
Sensitivity |
| [22,32,37,41] [32,41] [39,42,43,44] [22,32,37,39] [45,46] [41,46,47,48,49,50] |
Multiplexing capability |
| [51,52] [53] [37] [39] |
Simple operation |
| [45,54] [35,55] [56,57] [36,52,53,56] [36,57] [36] |
Electrode | Co-Reactant | Luminophore | Receptor | Target | Related Disease | Dynamic Range | LoD | Sample | Features | Reference |
---|---|---|---|---|---|---|---|---|---|---|
GCE | S2O82− | Hollow porous C3N4 | Apt | Insulin | Diabetes | 0.05 pg/mL–100 ng/mL | 17 fg/mL | Human serum | Use of AuPtAg NP as a single type of co-reaction accelerator. Combination of Nb.BbvCl-aided DNA walker signal amplification methods. | [22] |
GCE | S2O82− | SnO2 QDs | Capture DNA | miRNA-21 | Cancer | 10 aM–100 pM | 2.9 aM | Cell lysates | Combination with a 3D DNA walker. Use of MnO2 NFs, AgNPs and hemin/G-quadruplex as multiple co-reaction accelerators. | [32] |
GCE | S2O82− | Lanthanide MOF | Capture DNA | p53 gene | Cancer | 1 pM–100 nM | 0.33 pM | Human serum | Co-quenching (1) effective ECL-RET quenching between a LaMOFs-CV pair in microchannels; (2) quenching caused by the dsDNA-bridged electron transfer from excited LaMOFs to CV. | [42] |
GCE/AuNP | S2O82− | Ru(bpy)32+ | Ab | NT-proBNP | Heart failure | 0.0005 ng/mL–100.0 ng/mL | 0.28 pg/mL | Human serum | Use of a PDA-coated Fe3O4 as a quencher. Use of a AuNP-modified GO-Ru(bpy)32+/Ag2C2O4 as a luminophore | [43] |
GCE | TEA | TPA nanocrystal | None | Dopamine | Neurological diseases | 5 nM–10 μM | 3.1 nM | Human serum | Use of a crystallisation-induced enhanced ECL of the TPA nanocrystals. | [45] |
GCE | TPrA | Ir(ppy)3, Ru(bpy)2(dvbpy)2+, Ir(dFCF3ppy)2(dtbbpy)+ | Ab | CEA, AFP, β-HCG | Cancer | ND | ND | None | Multicolour ECL system using three different luminophores with different emission spectra and a potential resolved ECL generation ability. | [51] |
ITO | TPrA | [Ru(bpy)3]2+ [Ir(ppy)3] | PSA | Cancer | 1 ng/mL–20 ng/mL | ND | Human serum | Closed BPE system. ECL emission based on modulating the resistance of the BPE. | [58] | |
ITO | TPrA | Ru(bpy)32+, Ir(df-ppy)2(pic) | Ab | PSA, miRNA-141, sarcosine | Cancer | 1 ng/mL–25 ng/mL for PSA, 10 × 10−15 M–10 × 10−10 M for miRNA-141, 5 × 10−7 M to 5 × 10−4 M for sarcosine | 4.0 ng/mL PSA, 20 fM miRNA-141, and 1.0 M sarcosine | Human serum | Closed ECL-BPE system. ECL emission based on modulating the resistance of the BPE. | [53] |
FTO | TPrA | Ru(bpy)32+ | Ab | PSA, IL-6, PSMA | Cancer | - | 0.093 ng/mL (for PSA), 0.061 pg/mL (for IL-6), 0.059 ng/mL (for PSMA) | Human serum | Closed BPE array microfluidic chip system (3 × 6 array). | [52] |
GCE | DEDA (for anodic ECL), dissolved O2 (for cathodic ECL) | Au25 NC | None | CEA, MUC1 | Cancer | ND | 0.43 pg/mL (for CEA), 5.8 fg/mL (for MUC1) | None | Use of TiO2 NSs and Cu2O@CuNPs as cathodic and anodic co-reaction accelerators, respectively. Combination of the target-catalysed hairpin hybridisation as a signal amplification strategy. | [37] |
GCE/AuNP | C60(ZnTPP)3@γ-cyclodextrin | Capture DNA | miRNA | Cancer | 1 pM–100 nM | 120 fM | Human serum | Use of a host-guest inclusion-based universal probe tag for the ECL signal readout, with no need for a biofunctionalised pre-treatment of the luminophore. | [54] | |
GCE | TPrA | Ru(bpy)32+, luminol | Capture DNA | miRNA-21, miRNA-155 | Cancer | 10 × 10−15 M–10 × 10−9 M | 8.7 × 10−15 M for miRNA-21 and 1.2 × 10−15 M for miRNA-155 | Cell lysates | Combination of the ECL-RET and CHA reaction. Use of a quenching effect by RET between Janus NPs and dyes (Cy5 and FAM). | [39] |
GCE | Dissolved oxygen | C-PFBT dot | None | miRNA | Cancer | ND | 33 aM | Cell lysates | No additional input of a co-reactant. Use of in situ generated H2O2 via GOx catalytic reaction. Combination of a target-recycling reaction and HCR | [35] |
ITO | H2O2 | Luminol | Ab | CYFRA 21-1 | Cancer | 0.0075 ng/mL–50 ng/mL | 1.89 pg/mL | Human serum | Use of CaO2 possessing a capacity of self-supplying H2O2 and O2 via a hydrolysis reaction of CaO2. Use of a BPE-ECL system. | [55] |
GCE | Luminol | Ab | RBP4 | Type 2 diabetes mellitus | 0.0001 ng/mL–100 ng/mL | 43 fg/mL | Human serum | Use of luminol@AuPt/ZIF-67 (ECL donor) with peroxidase activity for developing an enzyme-free system. Use of MnO2@CNTs and GSH as a quencher (dual quenching system). | [44] | |
Au/ITO | TPrA | C-Ir (III) for the cathode, (pq)2Irbza/TPrA for the anode | PtNR-GOx- Ab | PSA | Cancer | 1 pg/mL–10 ng/mL | 0.72 pg/mL | None | Use of BPE. Use of Pt-tipped AuNRs for facilitating the reduction of H2O2. | [56] |
Paper | TPrA | Ru(bpy)32+ | Capture DNA | miRNA-155 | Cancer | 1 pM–10 μM | 0.67 pM | None | Paper-based BPE-ECL system. | [57] |
Paper | S2O82− | CdTe QDs, Au@g-C3N4 NSs | Capture DNA | miRNA-126, miRNA-155 | Cancer | 1 × 10−14 M–1 × 10−7 M | 5.7 fM (for miRNA-155), 4.2 fM (for miRNA-126) | None | Paper-based dual-channel BPE-ECL system for multiple detections. Combination of Nb.BbvCl-aided DNA walker signal amplification method. | [36] |
GCE | TPrA | AgInS2/ZnS NC | Ab | Carbohydrate antigen 125 | Cancer | 5 × 10−6 U/mL–5 × 10−3 U/mL | 1 × 10−6 U/mL | Human serum | NIR-ECL system. | [47] |
GCE | Tri-isopropanolamine | AuNC | Ab | CYFRA21−1 | Cancer | 2 fg/mL–50 ng/mL | 0.67 fg/mL | Human serum | NIR-ECL system. Use of AuNCs as the luminophore and hollow double-shell-CuCo2O4@Cu2O heterostructures as the co-reaction accelerators | [41] |
GCE | K2S2O8 | CuNC | Ab | AFP | Cancer | 1 ng/mL–400 ng/mL | 0.02 ng/mL | Human serum | NIR-ECL system. | [48] |
GCE | TEOA | AuNC | Ab | AFP | Cancer | 3 fg/mL–0.1 ng/mL | 1 fg/mL | Human serum | NIR-ECL system. Use of the methionine-tagged Au NCs to achieve NIR-ECL. | [49] |
GCE | TEOA | Ag−Ga−In−S NC | Ab | PSA | Cancer | 0.05 pg/mL–1.0 ng/mL | 0.01 pg/mL | None | NIR-ECL system. Use of the GSH-tagged NCs. | [50] |
GCE | NHSS | Ru(bpy)32+ | None | L-Proline, Hg2+ | Cancer | 0.5 μM–200 μM (for proline), 0.1 μM–25 μM (for Hg2+) | 50 nM (for proline), 10 nM (for Hg2+) | Serum, urine, lake water | Anodic ECL system. | [59] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoo, S.-M.; Jeon, Y.-M.; Heo, S.-Y. Electrochemiluminescence Systems for the Detection of Biomarkers: Strategical and Technological Advances. Biosensors 2022, 12, 738. https://doi.org/10.3390/bios12090738
Yoo S-M, Jeon Y-M, Heo S-Y. Electrochemiluminescence Systems for the Detection of Biomarkers: Strategical and Technological Advances. Biosensors. 2022; 12(9):738. https://doi.org/10.3390/bios12090738
Chicago/Turabian StyleYoo, Seung-Min, Yong-Min Jeon, and Seo-Young Heo. 2022. "Electrochemiluminescence Systems for the Detection of Biomarkers: Strategical and Technological Advances" Biosensors 12, no. 9: 738. https://doi.org/10.3390/bios12090738
APA StyleYoo, S. -M., Jeon, Y. -M., & Heo, S. -Y. (2022). Electrochemiluminescence Systems for the Detection of Biomarkers: Strategical and Technological Advances. Biosensors, 12(9), 738. https://doi.org/10.3390/bios12090738