Biosensing Chlorpyrifos in Environmental Water Samples by a Newly Developed Carbon Nanoparticle-Based Indirect Lateral Flow Assay
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instruments
2.2. Chemicals and Materials
2.3. Conjugation of GAM Antibodies to Amorphous CNPs
2.4. Method Setup by Implementation of Spot-Based Strips
2.5. Preparation of Line-Based Strips for Sensitivity Testing
2.6. Sensitivity Testing of the CHLP LFIAs
2.7. Application of the LFIAs to Surface Water Samples
2.8. Preparation of Assay Tubes for On-Site Application
3. Results and Discussion
3.1. Choice of Assay Format
3.2. Conjugate, Membrane, and Buffer Selection
3.3. Sensitivity Determination of the Sprayed LFIAs
3.4. Application of the CHLP to Surface Water Samples
3.5. Application to Other Bee-Related Matrices
3.6. Towards Improved Point-of-Need Detection
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Voltz, M.; Guibaud, G.; Dagès, C.; Douzals, J.-P.; Guibal, R.; Grimbuhler, S.; Grünberger, O.; Lissalde, S.; Mazella, N.; Samouëlian, A. Pesticide and Agro-Ecological Transition: Assessing the Environmental and Human Impacts of Pesticides and Limiting Their Use; Springer: Berlin/Heidelberg, Germany, 2022; Volume 29, pp. 1–5. [Google Scholar]
- Lefebvre, M.; Maslianskaia-Pautrel, M.; Laille, P. Alternative adaptation scenarios towards pesticide-free urban green spaces: Welfare implication for French citizens. Environ. Sci. Policy 2022, 136, 46–55. [Google Scholar] [CrossRef]
- Kenaga, E.E.; Whitney, W.K.; Hardy, J.L.; Doty, A.E. Laboratory Tests with Dursban Insecticide. J. Econ. Entomol. 1965, 58, 1043–1050. [Google Scholar] [CrossRef]
- Timchalk, C.; Nolan, R.; Mendrala, A.; Dittenber, D.; Brzak, K.; Mattsson, J. A physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) model for the organophosphate insecticide chlorpyrifos in rats and humans. Toxicol. Sci. 2002, 66, 34–53. [Google Scholar] [CrossRef]
- Moreno, D.; Haney, P.; Luck, R. Chlorpyrifos and diazinon as barriers to Argentine ant (Hymenoptera: Formicidae) foraging on citrus trees. J. Econ. Entomol. 1987, 80, 208–214. [Google Scholar] [CrossRef]
- Solomon, K.R.; Williams, W.M.; Mackay, D.; Purdy, J.; Giddings, J.M.; Giesy, J.P. Properties and Uses of Chlorpyrifos in the United States. In Ecological Risk Assessment for Chlorpyrifos in Terrestrial and Aquatic Systems in the United States; Springer: Berlin/Heidelberg, Germany, 2014; pp. 13–34. [Google Scholar] [CrossRef]
- Environmental Protection Agency USA. Chlorpyrifos: Revised Human Health Risk Assessment for Registration Review 2016. Available online: https://www.epa.gov/ingredients-used-pesticide-products/revised-human-health-risk-assessment-chlorpyrifos (accessed on 22 July 2022).
- Testai, E.; Buratti, F.M.; Di Consiglio, E. Chlorpyrifos. In Hayes’ Handbook of Pesticide Toxicology; Elsevier: Amsterdam, The Netherlands, 2010; pp. 1505–1526. [Google Scholar]
- Hites, R.A. The rise and fall of chlorpyrifos in the United States. Environ. Sci. Technol. 2021, 55, 1354–1358. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Cui, H.; Duan, W. Ecotoxicity of chlorpyrifos to aquatic organisms: A review. Ecotoxicol. Environ. Saf. 2020, 200, 110731. [Google Scholar] [CrossRef] [PubMed]
- Spirhanzlova, P.; Couderq, S.; Le Mével, S.; Leemans, M.; Krief, S.; Mughal, B.B.; Demeneix, B.; Fini, J.-B. Short and long term effects of chlorpyrifos on thyroid hormone axis and brain development in Xenopus laevis. Neuroendocrinology 2022. [Google Scholar] [CrossRef] [PubMed]
- Christensen, K.; Harper, B.; Luukinen, B.; Buhl, K.; Stone, D. Chlorpyrifos technical fact sheet. National Pesticide Information Center web page. Oregon State University Extension Services 2009. Available online: http://npic.orst.edu/factsheets/archive/chlorptech.html (accessed on 3 September 2022).
- Sanchez-Bayo, F.; Goka, K. Pesticide residues and bees—A risk assessment. PLoS ONE 2014, 9, e94482. [Google Scholar] [CrossRef]
- Mullin, C.A.; Frazier, M.; Frazier, J.L.; Ashcraft, S.; Simonds, R.; VanEngelsdorp, D.; Pettis, J.S. High levels of miticides and agrochemicals in North American apiaries: Implications for honey bee health. PLoS ONE 2010, 5, e9754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, R.M.; Ellis, M.D.; Mullin, C.A.; Frazier, M. Pesticides and honey bee toxicity–USA. Apidologie 2010, 41, 312–331. [Google Scholar] [CrossRef]
- Calatayud-Vernich, P.; Calatayud, F.; Simó, E.; Picó, Y. Pesticide residues in honey bees, pollen and beeswax: Assessing beehive exposure. Environ. Pollut. 2018, 241, 106–114. [Google Scholar] [CrossRef]
- Williamson, S.M.; Moffat, C.; Gomersall, M.A.; Saranzewa, N.; Connolly, C.N.; Wright, G.A. Exposure to acetylcholinesterase inhibitors alters the physiology and motor function of honeybees. Front. Physiol. 2013, 4, 13. [Google Scholar] [CrossRef] [PubMed]
- El-Masarawy, M.; El-Bendary, H.; El-Helaly, A.M.A. The effect of using imidacloprid and chlorpyrifos and their nanoforms on certain characteristics of honeybee Apis mellifera L. Int. J. Trop. Insect Sci. 2021, 41, 1037–1042. [Google Scholar] [CrossRef]
- Urlacher, E.; Monchanin, C.; Rivière, C.; Richard, F.-J.; Lombardi, C.; Michelsen-Heath, S.; Hageman, K.J.; Mercer, A.R. Measurements of chlorpyrifos levels in forager bees and comparison with levels that disrupt honey bee odor-mediated learning under laboratory conditions. J. Chem. Ecol. 2016, 42, 127–138. [Google Scholar] [CrossRef]
- Giesy, J.P.; Solomon, K.R.; Cutler, G.C.; Giddings, J.M.; Mackay, D.; Moore, D.R.; Purdy, J.; Williams, W.M. Ecological risk assessment of the uses of the organophosphorus insecticide chlorpyrifos, in the United States. In Ecological Risk Assessment for Chlorpyrifos in Terrestrial and Aquatic Systems in the United States; Springer: Cham, Switzerland, 2014; Volume 231, pp. 1–11. [Google Scholar] [CrossRef]
- Banks, K.E.; Hunter, D.H.; Wachal, D.J. Chlorpyrifos in surface waters before and after a federally mandated ban. Environ. Int. 2005, 31, 351–356. [Google Scholar] [CrossRef] [PubMed]
- Galindo-Miranda, J.M.; Guízar-González, C.; Becerril-Bravo, E.J.; Moeller-Chávez, G.; León-Becerril, E.; Vallejo-Rodríguez, R. Occurrence of emerging contaminants in environmental surface waters and their analytical methodology—A review. Water Supply 2019, 19, 1871–1884. [Google Scholar] [CrossRef]
- Tarazona, J.V.; González-Caballero, M.d.C.; Alba-Gonzalez, M.d.; Pedraza-Diaz, S.; Cañas, A.; Dominguez-Morueco, N.; Esteban-López, M.; Cattaneo, I.; Katsonouri, A.; Makris, K.C. Improving the Risk Assessment of Pesticides through the Integration of Human Biomonitoring and Food Monitoring Data: A Case Study for Chlorpyrifos. Toxics 2022, 10, 313. [Google Scholar] [CrossRef]
- Bayoumi, A.E. Deleterious Effects of Banned Chemical Pesticides on Human Health in Developing Countries. 2022. Available online: https://www.intechopen.com/online-first/81416 (accessed on 3 September 2022).
- Austrian Fruit Grower Is Jailed for Spraying Insecticide Which Killed Bees. Daily Mail Online. 2018. Available online: https://www.dailymail.co.uk/news/article-6211261/Austrian-fruit-grower-JAILED-spraying-insecticide-killed-bees.html (accessed on 22 July 2022).
- EU. Commission Regulation (EU) 2020/1085 of 23 July 2020 amending Annexes II and V to Regulation (EC) No 396/2005 of the European Parliament and of the Council as regards maximum residue levels for chlorpyrifos and chlorpyrifos-methyl in or on certain products (Text with EEA relevance). OJEU 2020, 63, 7–8. [Google Scholar]
- EU. Commission Implementing Regulation (EU) 2020/18 of 10 January 2020 concerning the non-renewal of the approval of the active substance chlorpyrifos, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending the Annex to Commission Implementing Regulation (EU) No 540/2011 (Text with EEA relevance). OJEU 2020, 63, 14–16. [Google Scholar]
- John, E.M.; Shaike, J.M. Chlorpyrifos: Pollution and remediation. Environ. Chem. Lett. 2015, 13, 269–291. [Google Scholar] [CrossRef]
- Marino, D.; Ronco, A. Cypermethrin and chlorpyrifos concentration levels in surface water bodies of the Pampa Ondulada, Argentina. Bull. Environ. Contam. Toxicol. 2005, 75, 820–826. [Google Scholar] [CrossRef]
- Bailey, H.C.; Deanovic, L.; Reyes, E.; Kimball, T.; Larson, K.; Cortright, K.; Connor, V.; Hinton, D.E. Diazinon and chlorpyrifos in urban waterways in northern California, USA. Environ. Toxicol. Chem. 2000, 19, 82–87. [Google Scholar] [CrossRef]
- Rico, A.; Dafouz, R.; Vighi, M.; Rodríguez-Gil, J.L.; Daam, M.A. Use of postregistration monitoring data to evaluate the ecotoxicological risks of pesticides to surface waters: A case study with chlorpyrifos in the Iberian Peninsula. Environ. Toxicol. Chem. 2021, 40, 500–512. [Google Scholar] [CrossRef]
- Azar, İ.; Kumral, N.A. Validation of LC-MS/MS method for simultaneous determination of chlorpyrifos, deltamethrin, imidacloprid and some of their metabolites in maize silage. J. Environ. Sci. Health B 2022, 57, 125–132. [Google Scholar] [CrossRef]
- Issa, M.M.; Taha, S.M.; El-Marsafy, A.M.; Khalil, M.M.; Ismail, E.H. Acetonitrile-Ethyl acetate based method for the residue analysis of 373 pesticides in beeswax using LC-MS/MS and GC–MS/MS. J. Chromatogr. B 2020, 1145, 122106. [Google Scholar] [CrossRef]
- Sankar, K.; Lenisha, D.; Janaki, G.; Juliana, J.; Kumar, R.S.; Selvi, M.C.; Srinivasan, G. Digital image-based quantification of chlorpyrifos in water samples using a lipase embedded paper based device. Talanta 2020, 208, 120408. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Li, W.; Wu, R.; Liu, P.; Hu, X.; Xu, L.; Xiong, Z.; Wen, Y.; Ai, S. Rapid detection of chlorpyrifos pesticide residue in tea using surface-enhanced Raman spectroscopy combined with chemometrics. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 250, 119366. [Google Scholar] [CrossRef] [PubMed]
- Soler, C.; Girotti, S.; Ghini, S.; Fini, F.; Montoya, A.; Manclús, J.J.; Manes, J. Analysis of chlorpyrifos in water, fruit juice, and honeybee extract by chemiluminescent ELISA. Anal. Lett. 2008, 41, 2539–2553. [Google Scholar] [CrossRef]
- Cho, Y.; Lee, H.-S.; Park, E.-Y.; Lee, Y.-T.; Hammock, B.D.; Ahn, K.-C.; Lee, J.-K. Development of an ELISA for the organophosphorus insecticide chlorpyrifos. Bull. Korean Chem. Soc. 2002, 23, 481–487. [Google Scholar] [CrossRef]
- Posthuma-Trumpie, G.A.; Korf, J.; van Amerongen, A. Lateral flow (immuno) assay: Its strengths, weaknesses, opportunities and threats. A literature survey. Anal. Bioanal. Chem. 2009, 393, 569–582. [Google Scholar] [CrossRef] [Green Version]
- Hsiao, W.W.-W.; Le, T.-N.; Pham, D.M.; Ko, H.-H.; Chang, H.-C.; Lee, C.-C.; Sharma, N.; Lee, C.-K.; Chiang, W.-H. Recent advances in novel lateral flow technologies for detection of COVID-19. Biosensors 2021, 11, 295. [Google Scholar] [CrossRef]
- Wang, S.; Liu, Y.; Jiao, S.; Zhao, Y.; Guo, Y.; Wang, M.; Zhu, G. Quantum-dot-based lateral flow immunoassay for detection of neonicotinoid residues in tea leaves. J. Agric. Food Chem. 2017, 65, 10107–10114. [Google Scholar] [CrossRef]
- Zhang, Q.; Fang, L.; Jia, B.; Long, N.; Shi, L.; Zhou, L.; Zhao, H.; Kong, W. Optical lateral flow test strip biosensors for pesticides: Recent advances and future trends. TrAC Trends Analyt. Chem. 2021, 144, 116427. [Google Scholar] [CrossRef]
- Nuntawong, P.; Putalun, W.; Tanaka, H.; Morimoto, S.; Sakamoto, S. Lateral flow immunoassay for small-molecules detection in phytoproducts: A review. J. Nat. Med. 2022, 76, 521–545. [Google Scholar] [CrossRef]
- Xing, K.-Y.; Shan, S.; Liu, D.-F.; Lai, W.-H. Recent advances of lateral flow immunoassay for mycotoxins detection. TrAC Trends Anal. Chem. 2020, 133, 116087. [Google Scholar] [CrossRef]
- Kim, Y.A.; Lee, E.-H.; Kim, K.-O.; Lee, Y.T.; Hammock, B.D.; Lee, H.-S. Competitive immunochromatographic assay for the detection of the organophosphorus pesticide chlorpyrifos. Anal. Chim. Acta 2011, 693, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Zou, R.; Guo, Y.; Chen, Y.; Zhao, Y.; Zhao, L.; Zhu, G.; Liu, Y.; Peters, J.; Guo, Y. Computer-aided profiling of a unique broad-specific antibody and its application to an ultrasensitive fluoroimmunoassay for five N-methyl carbamate pesticides. J. Hazard. Mater. 2022, 426, 127845. [Google Scholar] [CrossRef]
- Posthuma-Trumpie, G.A.; Wichers, J.H.; Koets, M.; Berendsen, L.B.J.M.; van Amerongen, A. Amorphous carbon nanoparticles: A versatile label for rapid diagnostic (immuno)assays. Anal. Bioanal. Chem. 2012, 402, 593–600. [Google Scholar] [CrossRef]
- Sharma, R.; Verma, A.; Shinde, N.; Mann, B.; Gandhi, K.; Wichers, J.H.; van Amerongen, A. Adulteration of cow’s milk with buffalo’s milk detected by an on-site carbon nanoparticles-based lateral flow immunoassay. Food Chem. 2021, 351, 129311. [Google Scholar] [CrossRef]
- van Amerongen, A.; Wichers, J.H.; Berendsen, L.B.J.M.; Timmermans, A.J.M.; Keizer, G.D.; van Doorn, A.W.J.; Bantjes, A.; van Gelder, W.M.J. Colloidal carbon particles as a new label for rapid immunochemical test methods: Quantitative computer image analysis of results. J. Biotechnol. 1993, 30, 185–195. [Google Scholar] [CrossRef] [Green Version]
- Koets, M.; Sander, I.; Bogdanovic, J.; Doekes, G.; van Amerongen, A. A rapid lateral flow immunoassay for the detection of fungal alpha-amylase at the workplace. J. Environ. Monit. 2006, 8, 942–946. [Google Scholar] [CrossRef] [PubMed]
- O’Keeffe, M.; Crabbe, P.; Salden, M.; Wichers, J.; Van Peteghem, C.; Kohen, F.; Pieraccini, G.; Moneti, G. Preliminary evaluation of a lateral flow immunoassay device for screening urine samples for the presence of sulphamethazine. J. Immunol. Methods 2003, 278, 117–126. [Google Scholar] [CrossRef]
- Majdinasab, M.; Zareian, M.; Zhang, Q.; Li, P. Development of a new format of competitive immunochromatographic assay using secondary antibody–europium nanoparticle conjugates for ultrasensitive and quantitative determination of ochratoxin A. Food Chem. 2019, 275, 721–729. [Google Scholar] [CrossRef] [PubMed]
- Sotnikov, D.V.; Byzova, N.A.; Zvereva, E.A.; Bartosh, A.V.; Zherdev, A.V.; Dzantiev, B.B. Mathematical modeling of immunochromatographic test systems in a competitive format: Analytical and numerical approaches. Biochem. Eng. J. 2020, 164, 107763. [Google Scholar] [CrossRef]
- Jia, H.Y.; Guo, Y.M.; Sun, X.; Wang, X.Y. An Electrochemical Immunosensor Based on Microfluidic Chip for Detection of Chlorpyrifos. Int. J. Electrochem. Sci. 2015, 10, 8750–8758. [Google Scholar]
- Yang, L.; Wang, J.; Qu, L.; Liu, Z.; Jiang, L. An enzyme inhibition-based lab-in-a-syringe device for point-of-need determination of pesticides. Analyst 2020, 145, 3958–3966. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Fernández, B.; Costa-García, A.; Muñiz, A.D.L.E. Electrochemical (bio) sensors for pesticides detection using screen-printed electrodes. Biosensors 2020, 10, 32. [Google Scholar] [CrossRef]
- Chi, H.; Wang, C.; Wang, Z.; Zhu, H.; Mesias, V.S.D.; Dai, X.; Chen, Q.; Liu, W.; Huang, J. Highly reusable nanoporous silver sheet for sensitive SERS detection of pesticides. Analyst 2020, 145, 5158–5165. [Google Scholar] [CrossRef]
- Umapathi, R.; Park, B.; Sonwal, S.; Rani, G.M.; Cho, Y.; Huh, Y.S. Advances in optical-sensing strategies for the on-site detection of pesticides in agricultural foods. Trends Food Sci. Tech. 2022, 119, 69–89. [Google Scholar] [CrossRef]
- Peters, J. Mycotoxin Multiplex Microsphere Immunoassays: Screening from Ingredients to Beer; Wageningen University: Wageningen, The Netherlands, 2022; pp. 131–147. [Google Scholar] [CrossRef]
- Ross, G.M.; Salentijn, G.I.; Nielen, M.W. A critical comparison between flow-through and lateral flow immunoassay formats for visual and smartphone-based multiplex allergen detection. Biosensors 2019, 9, 143. [Google Scholar] [CrossRef] [Green Version]
- Quigley, T.P.; Amdam, G.V.; Harwood, G.H. Honey bees as bioindicators of changing global agricultural landscapes. Curr. Opin. Insect. Sci. 2019, 35, 132–137. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Willemsen, L.; Wichers, J.; Xu, M.; Van Hoof, R.; Van Dooremalen, C.; Van Amerongen, A.; Peters, J. Biosensing Chlorpyrifos in Environmental Water Samples by a Newly Developed Carbon Nanoparticle-Based Indirect Lateral Flow Assay. Biosensors 2022, 12, 735. https://doi.org/10.3390/bios12090735
Willemsen L, Wichers J, Xu M, Van Hoof R, Van Dooremalen C, Van Amerongen A, Peters J. Biosensing Chlorpyrifos in Environmental Water Samples by a Newly Developed Carbon Nanoparticle-Based Indirect Lateral Flow Assay. Biosensors. 2022; 12(9):735. https://doi.org/10.3390/bios12090735
Chicago/Turabian StyleWillemsen, Linda, Jan Wichers, Mang Xu, Richard Van Hoof, Coby Van Dooremalen, Aart Van Amerongen, and Jeroen Peters. 2022. "Biosensing Chlorpyrifos in Environmental Water Samples by a Newly Developed Carbon Nanoparticle-Based Indirect Lateral Flow Assay" Biosensors 12, no. 9: 735. https://doi.org/10.3390/bios12090735
APA StyleWillemsen, L., Wichers, J., Xu, M., Van Hoof, R., Van Dooremalen, C., Van Amerongen, A., & Peters, J. (2022). Biosensing Chlorpyrifos in Environmental Water Samples by a Newly Developed Carbon Nanoparticle-Based Indirect Lateral Flow Assay. Biosensors, 12(9), 735. https://doi.org/10.3390/bios12090735