Trace Immunosensing of Multiple Neonicotinoid Insecticides by a Novel Broad-Specific Antibody Obtained from a Rational Screening Strategy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Preparation of Hapten-Protein Conjugates
2.3. Computer-Assisted Simulation for Neonicotinoid Pesticides
2.4. Immunization and mAb Production
2.5. Full-Length RAb Production
2.5.1. Cloning of mAb Variable Regions of Heavy Chains (VH) and Light Chains (VL)
2.5.2. Expression and Purification of the Full-Length rAb
2.6. Characterization of Indirect Competitive ELISAs (icELISAs)
2.7. Development and Characterization of GNIS
2.8. Sample Pretreatment and Spiked Recovery Test
3. Results and Discussion
3.1. Screening Strategies for Broad-Specific mAbs
3.1.1. Computer-Aided Selection of Representative Compounds
3.1.2. Hybridoma Screening by Dual-Target icELISAs
3.2. Antibody Sequencing and Expression
3.3. Evaluation the Sensitivity and Specificity of 6F11 mAb and Full-Length rAb
3.4. Analysis of Food Samples by GNIS Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Zhang, C.; Yi, X.; Chen, C.; Tian, D.; Liu, H.; Xie, L.; Zhu, X.; Huang, M.; Ying, G.-G. Contamination of neonicotinoid insecticides in soil-water-sediment systems of the urban and rural areas in a rapidly developing region: Guangzhou, South China. Environ. Int. 2020, 139, 105719. [Google Scholar] [CrossRef] [PubMed]
- Kessler, S.C.; Tiedeken, E.J.; Simcock, K.L.; Derveau, S.; Mitchell, J.; Softley, S.; Radcliffe, A.; Stout, J.; Wright, G.A. Bees prefer foods containing neonicotinoid pesticides. Nature 2015, 521, 74–76. [Google Scholar] [CrossRef] [PubMed]
- Hallmann, C.A.; Foppen, R.P.B.; Van Turnhout, C.A.M.; De Kroon, H.; Jongejans, E. Declines in insectivorous birds are associated with high neonicotinoid concentrations. Nature 2014, 511, 341–343. [Google Scholar] [CrossRef] [PubMed]
- Hladik, M.L.; Main, A.R.; Goulson, D. Environmental Risks and Challenges Associated with Neonicotinoid Insecticides. Environ. Sci. Technol. 2018, 52, 3329–3335. [Google Scholar] [CrossRef]
- Hou, J.; Xie, W.; Hong, D.; Zhang, W.; Li, F.; Qian, Y.; Han, C. Simultaneous determination of ten neonicotinoid insecticides and two metabolites in honey and Royal-jelly by solid−phase extraction and liquid chromatography−tandem mass spectrometry. Food Chem. 2018, 270, 204–213. [Google Scholar] [CrossRef]
- Hao, C.; Noestheden, M.R.; Zhao, X.; Morse, D. Liquid chromatography–tandem mass spectrometry analysis of neonicotinoid pesticides and 6-chloronicotinic acid in environmental water with direct aqueous injection. Anal. Chim. Acta 2016, 925, 43–50. [Google Scholar] [CrossRef]
- Yang, B.; Ma, W.; Wang, S.; Shi, L.; Li, X.; Ma, Z.; Zhang, Q.; Li, H. Determination of eight neonicotinoid insecticides in Chinese cabbage using a modified QuEChERS method combined with ultra performance liquid chromatography-tandem mass spectrometry. Food Chem. 2022, 387, 132935. [Google Scholar] [CrossRef]
- Wang, P.; Yang, X.; Wang, J.; Cui, J.; Dong, A.; Zhao, H.; Zhang, L.; Wang, Z.; Xu, R.; Li, W.; et al. Multi-residue method for determination of seven neonicotinoid insecticides in grains using dispersive solid-phase extraction and dispersive liquid–liquid micro-extraction by high performance liquid chromatography. Food Chem. 2012, 134, 1691–1698. [Google Scholar] [CrossRef]
- Li, Y.-F.; Sun, Y.-M.; Beier, R.C.; Lei, H.-T.; Gee, S.; Hammock, B.D.; Wang, H.; Wang, Z.; Sun, X.; Shen, Y.-D.; et al. Immunochemical techniques for multianalyte analysis of chemical residues in food and the environment: A review. TrAC Trends Anal. Chem. 2016, 88, 25–40. [Google Scholar] [CrossRef]
- Li, H.; Ma, S.; Zhang, X.; Li, C.; Dong, B.; Mujtaba, M.G.; Wei, Y.; Liang, X.; Yu, X.; Wen, K.; et al. Generic Hapten Synthesis, Broad-Specificity Monoclonal Antibodies Preparation, and Ultrasensitive ELISA for Five Antibacterial Synergists in Chicken and Milk. J. Agric. Food Chem. 2018, 66, 11170–11179. [Google Scholar] [CrossRef]
- Jiao, L.; Liu, Y.; Zhang, X.; Liu, B.; Zhang, C.; Liu, X. Site-saturation mutagenesis library construction and screening for specific broad-spectrum single-domain antibodies against multiple Cry1 toxins. Appl. Microbiol. Biotechnol. 2017, 101, 6071–6082. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Liu, Z.; Xie, H.; Fang, Y.; Quan, Q.; Shen, X.; Lei, H.; Xu, Z.; Li, X. Ultrasensitive Magnetic Assisted Lateral Flow Immunoassay Based on Chiral Monoclonal Antibody against R-(−)-Salbutamol of Broad-Specificity for 38 β-Agonists Detection in Swine Urine and Pork. J. Agric. Food Chem. 2022, 70, 4112–4122. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.-L.; Shen, Y.-D.; Zheng, W.-X.; Beier, R.C.; Xie, G.-M.; Dong, J.-X.; Yang, J.-Y.; Wang, H.; Lei, H.-T.; She, Z.-G.; et al. Broad-Specificity Immunoassay for O,O-Diethyl Organophosphorus Pesticides: Application of Molecular Modeling to Improve Assay Sensitivity and Study Antibody Recognition. Anal. Chem. 2010, 82, 9314–9321. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, E.; Miyake, S.; Yogo, Y. Review of Enzyme-Linked Immunosorbent Assays (ELISAs) for Analyses of Neonicotinoid Insecticides in Agro-environments. J. Agric. Food Chem. 2013, 61, 12459–12472. [Google Scholar] [CrossRef]
- Liu, P.; Guo, Y.; Jiao, S.; Chang, Y.; Liu, Y.; Zou, R.; Liu, Y.; Chen, M.; Guo, Y.; Zhu, G. Characterization of Variable Region Genes and Discovery of Key Recognition Sites in the Complementarity Determining Regions of the Anti-Thiacloprid Monoclonal Antibody. Int. J. Mol. Sci. 2020, 21, 6857. [Google Scholar] [CrossRef]
- Chang, Y.; Chen, Y.; Jiao, S.; Lu, X.; Fang, Y.; Liu, Y.; Zhao, Y.; Zhan, X.; Zhu, G.; Guo, Y. A Novel Full-length IgG Recombinant Antibody Highly Specific to Clothianidin and Its Application in Immunochromatographic Assay. Biosensors 2022, 12, 233. [Google Scholar] [CrossRef]
- Tan, G.; Zhao, Y.; Wang, M.; Chen, X.; Wang, B.; Li, Q.X. Ultrasensitive quantitation of imidacloprid in vegetables by colloidal gold and time-resolved fluorescent nanobead traced lateral flow immunoassays. Food Chem. 2019, 311, 126055. [Google Scholar] [CrossRef]
- Fang, S.; Zhang, B.; Ren, K.-W.; Cao, M.-M.; Shi, H.-Y.; Wang, M.-H. Development of a Sensitive Indirect Competitive Enzyme-Linked Immunosorbent Assay (ic-ELISA) Based on the Monoclonal Antibody for the Detection of the Imidaclothiz Residue. J. Agric. Food Chem. 2011, 59, 1594–1597. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Pan, Y.; Chen, D.; Liu, Z.; Feng, L.; Peng, D.; Yuan, Z. Preparation of a generic monoclonal antibody and development of a highly sensitive indirect competitive ELISA for the detection of phenothiazines in animal feed. Food Chem. 2016, 221, 1004–1013. [Google Scholar] [CrossRef]
- Li, C.; Liang, X.; Wen, K.; Li, Y.; Zhang, X.; Ma, M.; Yu, X.; Yu, W.; Shen, J.; Wang, Z. Class-Specific Monoclonal Antibodies and Dihydropteroate Synthase in Bioassays Used for the Detection of Sulfonamides: Structural Insights into Recognition Diversity. Anal. Chem. 2019, 91, 2392–2400. [Google Scholar] [CrossRef]
- Zou, R.; Guo, Y.; Chen, Y.; Zhao, Y.; Zhao, L.; Zhu, G.; Liu, Y.; Peters, J.; Guo, Y. Computer-aided profiling of a unique broad-specific antibody and its application to an ultrasensitive fluoroimmunoassay for five N-methyl carbamate pesticides. J. Hazard. Mater. 2021, 426, 127845. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Kong, D.; Sui, J.; Jiang, T.; Li, Z.; Ma, L.; Lin, H. Broad-Specific Antibodies for a Generic Immunoassay of Quinolone: Development of a Molecular Model for Selection of Haptens Based on Molecular Field-Overlapping. Anal. Chem. 2009, 81, 3246–3251. [Google Scholar] [CrossRef] [PubMed]
- Wanatabe, S.; Ito, S.; Kamata, Y.; Omoda, N.; Yamazaki, T.; Munakata, H.; Kaneko, T.; Yuasa, Y. Development of competitive enzyme-linked immunosorbent assays (ELISAs) based on monoclonal antibodies for chloronicotinoid insecticides imidacloprid and acetamiprid. Anal. Chim. Acta 2001, 427, 211–219. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Taheri, N.; Lan, M.; Wei, P.; Liu, R.; Gui, W.; Guo, Y.; Zhu, G. Chemiluminescent Enzyme Immunoassay for Rapid Detection of Three α-Cyano Pyrethroid Residues in Agricultural Products. Food Anal. Methods 2016, 9, 2896–2905. [Google Scholar] [CrossRef]
- Liu, Y.; Jiao, S.; Chang, Y.; Lu, X.; Liu, P.; Zhao, Y.; Zha, C.; Shen, L.; Guo, Y.; Zhu, G. High-affinity recombinant full-length antibody-based immunochromatographic strip assay for rapid and reliable detection of pyraclostrobin residues in food samples. Food Agric. Immunol. 2020, 31, 985–1003. [Google Scholar] [CrossRef]
- Xie, H.; Li, Y.; Wang, J.; Lei, Y.; Koidis, A.; Li, X.; Shen, X.; Xu, Z.; Lei, H. Broad-specific immunochromatography for simultaneous detection of various sulfonylureas in adulterated multi-herbal tea. Food Chem. 2021, 370, 131055. [Google Scholar] [CrossRef]
- Yu, X.; Zhang, X.; Xu, J.; Guo, P.; Li, X.; Wang, H.; Xu, Z.; Lei, H.; Shen, X. Generation of recombinant antibodies by mammalian expression system for detecting S-metolachlor in environmental waters. J. Hazard. Mater. 2021, 418, 126305. [Google Scholar] [CrossRef]
- Plana, E.; Moreno, M.-J.; Montoya, Á.; Manclús, J.J. Development and application of recombinant antibody-based immunoassays to tetraconazole residue analysis in fruit juices. Food Chem. 2013, 143, 205–213. [Google Scholar] [CrossRef]
- Tan, G.; Chen, J.; Liu, W. Study progress on determination of pesticide imidacloprid residue by enzyme-linked immunoassay. J. Anhui Agric. Sci. 2018, 46, 17–19. [Google Scholar]
Neonicotinoids | mAb 1A5 | mAb 4B1 | mAb 5C3 | mAb 6F11 | ||||
---|---|---|---|---|---|---|---|---|
IC50 | CR | IC50 | CR | IC50 | CR | IC50 | CR | |
Imidacloprid | 1.14 | 100.0 | 2.90 | 100.0 | 0.24 | 100.0 | 0.59 | 100.0 |
Imidaclothiz | 0.90 | 126.7 | 41.09 | 7.1 | 2.79 | 8.6 | 0.48 | 122.9 |
Clothianidin | 1.80 | 63.3 | 59.41 | 4.9 | 1.19 | 20.2 | 1.43 | 41.3 |
Thiacloprid | 42.91 | 2.7 | 28.37 | 10.2 | 13.39 | 1.8 | 2.78 | 21.2 |
Acetamiprid | 43.34 | 2.6 | 92.77 | 3.1 | 58.52 | 0.4 | 6.24 | 9.5 |
Nitenpyram | 31.19 | 3.7 | >1000 | <0.1 | 30.66 | 0.8 | 7.16 | 8.2 |
Dinotefuran | >1000 | <0.1 | >1000 | <0.1 | >1000 | <0.1 | >1000 | <0.1 |
Thiamethoxam | >1000 | <0.1 | >1000 | <0.1 | >1000 | <0.1 | >1000 | <0.1 |
Neonicotinoids | 6F11-mAb | 6F11-rAb | ||
---|---|---|---|---|
IC50 (ng/mL) | CR (%) | IC50 (ng/mL) | CR (%) | |
0.27 | 100.0 | 0.36 | 100.0 | |
0.23 | 115.1 | 0.30 | 119.8 | |
0.46 | 58.3 | 0.86 | 41.7 | |
0.20 | 132.9 | 0.36 | 100.6 | |
0.21 | 124.8 | 0.53 | 67.8 | |
1.30 | 20.6 | 2.89 | 12.5 | |
5.92 | 4.5 | 9.04 | 4.0 | |
5.57 | 4.8 | 7.07 | 5.1 | |
>1000 | <0.1 | >1000 | <0.1 | |
>1000 | <0.1 | >1000 | <0.1 |
Sample | Pesticide | Spiked Level (ng/g) | Detected Concentration (ng/g) | Average Recovery (%) | RSD (%) |
---|---|---|---|---|---|
Chinese cabbage | Imidacloprid | 25 | 21.0 ± 1.9 | 84.0 | 9.1 |
50 | 64.2 ± 2.5 | 128.4 | 3.9 | ||
100 | 124.0 ± 13.7 | 124.0 | 11.0 | ||
Imidaclothiz | 25 | 23.2 ± 1.7 | 92.8 | 7.5 | |
50 | 42.9 ± 4.4 | 85.8 | 10.4 | ||
100 | 123.0 ± 5.7 | 123.0 | 4.0 | ||
Clothianidin | 25 | 26.5 ± 1.4 | 106.0 | 5.5 | |
50 | 58.6 ± 5.5 | 117.2 | 9.4 | ||
100 | 114.0 ± 7.8 | 114.0 | 6.8 | ||
Robinia honey | Imidacloprid | 12.5 | 13.4 ± 1.1 | 107.2 | 8.5 |
25 | 23.9 ± 2.4 | 95.4 | 9.9 | ||
50 | 61.5 ± 3.0 | 123.0 | 4.8 | ||
Imidaclothiz | 12.5 | 12.0 ± 0.4 | 95.6 | 3.4 | |
25 | 26.5 ± 1.2 | 105.8 | 4.6 | ||
50 | 59.5 ± 2.4 | 119.0 | 4.0 | ||
Clothianidin | 12.5 | 10.2 ± 0.9 | 81.4 | 8.7 | |
25 | 19.0 ± 0.7 | 76.0 | 3.6 | ||
50 | 55.0 ± 3.5 | 110.0 | 6.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiao, S.; Wang, Y.; Chang, Y.; Liu, P.; Chen, Y.; Liu, Y.; Zhu, G.; Guo, Y. Trace Immunosensing of Multiple Neonicotinoid Insecticides by a Novel Broad-Specific Antibody Obtained from a Rational Screening Strategy. Biosensors 2022, 12, 716. https://doi.org/10.3390/bios12090716
Jiao S, Wang Y, Chang Y, Liu P, Chen Y, Liu Y, Zhu G, Guo Y. Trace Immunosensing of Multiple Neonicotinoid Insecticides by a Novel Broad-Specific Antibody Obtained from a Rational Screening Strategy. Biosensors. 2022; 12(9):716. https://doi.org/10.3390/bios12090716
Chicago/Turabian StyleJiao, Shasha, Yan Wang, Yunyun Chang, Pengyan Liu, Yang Chen, Yihua Liu, Guonian Zhu, and Yirong Guo. 2022. "Trace Immunosensing of Multiple Neonicotinoid Insecticides by a Novel Broad-Specific Antibody Obtained from a Rational Screening Strategy" Biosensors 12, no. 9: 716. https://doi.org/10.3390/bios12090716
APA StyleJiao, S., Wang, Y., Chang, Y., Liu, P., Chen, Y., Liu, Y., Zhu, G., & Guo, Y. (2022). Trace Immunosensing of Multiple Neonicotinoid Insecticides by a Novel Broad-Specific Antibody Obtained from a Rational Screening Strategy. Biosensors, 12(9), 716. https://doi.org/10.3390/bios12090716