Green, Efficient Detection and Removal of Hg2+ by Water-Soluble Fluorescent Pillar[5]arene Supramolecular Self-Assembly
Abstract
:1. Introduction
2. Results and Discussion
2.1. Self-Assembly Behavior of G in Water
2.2. Host–Guest Complexation Studies in Water
2.3. Detection of Hg2+ with H⊃G
2.4. Detection Mechanism of Hg2+ with H⊃G
2.5. Reversibility and Application in the Rapid Removal of Hg2+
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Mahbub, K.R.; Bahar, M.M.; Labbate, M.; Krishnan, K.; Andrews, S.; Naidu, R.; Megharaj, M. Bioremediation of mercury: Not properly exploited in contaminated soils. Appl. Microbiol. Biotechnol. 2017, 101, 963–976. [Google Scholar] [CrossRef]
- Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.R.; Sadeghi, M. Toxic mechanisms of five heavy metals: Mercury, lead, chromium, cadmium, and arsenic. Front. Pharmacol. 2021, 12, 643972–643990. [Google Scholar] [CrossRef]
- Tchounwou, P.B.; Ayensu, W.K.; Ninashvili, N.; Sutton, D. Review: Environmental exposure to mercury and its toxicopathologic implications for public health. Environ. Toxicol. 2003, 18, 149–175. [Google Scholar] [CrossRef]
- Li, S.X.; Zheng, F.Y.; Yang, H.; Ni, J.C. Thorough removal of inorganic and organic mercury from aqueous solutions by adsorption on Lemna minor powder. J. Hazard. Mater. 2011, 186, 423–429. [Google Scholar] [CrossRef]
- Vendrell, M.; Zhai, D.; Er, J.C.; Chang, Y.-T. Combinatorial strategies in fluorescent probe development. Chem. Rev. 2012, 112, 4391–4420. [Google Scholar] [CrossRef]
- You, L.; Zha, D.; Anslyn, E.V. Recent advances in supramolecular analytical chemistry using optical sensing. Chem. Rev. 2015, 115, 7840–7892. [Google Scholar] [CrossRef]
- Jung, J.H.; Lee, J.H.; Shinkai, S. Functionalized magnetic nanoparticles as chemosensors and adsorbents for toxic metal ions in environmental and biological fields. Chem. Soc. Rev. 2011, 40, 4464–4474. [Google Scholar] [CrossRef]
- Pavase, T.R.; Lin, H.; Shaikh, Q.-U.-A.; Hussain, S.; Li, Z.; Ahmed, I.; Lv, L.; Sun, L.; Shah, S.B.H.; Kalhoro, M.T. Recent advances of conjugated polymer (CP) nanocomposite-based chemical sensors and their applications in food spoilage detection: A comprehensive review. Sens. Actuators B Chem. 2018, 273, 1113–1138. [Google Scholar] [CrossRef]
- Dang, Q.-Q.; Wan, H.-J.; Zhang, X.-M. Carbazolic porous framework with tetrahedral core for gas uptake and tandem detection of iodide and mercury. ACS Appl. Mater. Interfaces 2017, 9, 21438–21446. [Google Scholar] [CrossRef]
- Hussain, S.; De, S.; Iyer, P.K. Thiazole-containing conjugated polymer as a visual and fluorometric sensor for iodide and mercury. ACS Appl. Mater. Interfaces 2013, 5, 2234–2240. [Google Scholar] [CrossRef]
- Li, Z.; Yang, Y.W. Macrocycle-based porous organic polymers for separation, sensing, and catalysis. Adv. Mater. 2022, 34, 2107401–2107441. [Google Scholar] [CrossRef] [PubMed]
- Dai, D.; Yang, J.; Yang, Y. Frontispiece: Supramolecular assemblies with aggregation-induced emission properties for sensing and detection. Chem. Eur. J. 2022, 28, 202103185–202103198. [Google Scholar] [CrossRef]
- Lou, X.-Y.; Song, N.; Yang, Y.-W. A stimuli-responsive pillar[5]arene-based hybrid material with enhanced tunable multicolor luminescence and ion-sensing ability. Natl. Sci. Rev. 2021, 8, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, J.; Li, H.; Song, N.; Wang, D.; Tang, B.Z. Supramolecular materials based on AIE luminogens (AIEgens): Construction and applications. Chem. Soc. Rev. 2020, 49, 1144–1172. [Google Scholar] [CrossRef] [PubMed]
- Ogoshi, T.; Yamagishi, T.-A.; Nakamoto, Y. Pillar-shaped macrocyclic hosts pillar[n]arenes: New key players for supramolecular chemistry. Chem. Rev. 2016, 116, 7937–8002. [Google Scholar] [CrossRef]
- Cao, D.; Meier, H. Pillararene-based fluorescent sensors for the tracking of organic compounds. Chin. Chem. Lett. 2019, 30, 1758–1766. [Google Scholar] [CrossRef]
- Jia, Y.; Fang, Y.; Li, Y.; He, L.; Fan, W.; Feng, W.; Yang, Y.; Liao, J.; Liu, N.; Yuan, L. Pillar[5]arenes bearing phosphine oxide pendents as Hg2+ selective receptors. Talanta 2014, 125, 322–328. [Google Scholar] [CrossRef]
- Cheng, H.-B.; Li, Z.; Huang, Y.-D.; Liu, L.; Wu, H.-C. Pillararene-based aggregation-induced-emission-active supramolecular system for simultaneous detection and removal of mercury(II) in water. ACS Appl. Mater. Interfaces 2017, 9, 11889–11894. [Google Scholar] [CrossRef]
- Roy, S.G.; Mondal, S.; Ghosh, K. Copillar[5]arene-rhodamine conjugate as a selective sensor for Hg2+ ions. N. J. Chem. 2020, 44, 5921–5928. [Google Scholar] [CrossRef]
- Wang, W.M.; Dai, D.H.; Wu, J.R.; Wang, C.Y.; Wang, Y.; Yang, Y.W. Recyclable supramolecular assembly-induced emission system for selective detection and efficientremoval of mercury(II). Chem. Eur. J. 2021, 27, 11879–11887. [Google Scholar] [CrossRef]
- Dai, D.; Li, Z.; Yang, J.; Wang, C.; Wu, J.-R.; Wang, Y.; Zhang, D.; Yang, Y.-W. Supramolecular assembly-induced emission enhancement for efficient mercury(ii) detection and removal. J. Am. Chem. Soc. 2019, 141, 4756–4763. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-M.; Zhu, W.; Huang, X.-J.; Qu, W.-J.; He, J.-X.; Fang, H.; Yao, H.; Wei, T.-B.; Lin, Q. Supramolecular aggregation-induced emission gels based on pillar[5]arene for ultrasensitive detection and separation of multianalytes. ACS Sustain. Chem. Eng. 2018, 6, 16597–16606. [Google Scholar] [CrossRef]
- Lin, Q.; Fan, Y.Q.; Mao, P.P.; Liu, L.; Liu, J.; Zhang, Y.M.; Yao, H.; Wei, T.B. Pillar[5]arene-based supramolecular organic framework with multi-Guest detection and recyclable separation properties. Chem. Eur. J. 2018, 24, 777–783. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.-F.; Han, B.-B.; Ma, J.-F.; Liu, X.; Yang, Q.-Y.; Lin, Q.; Yao, H.; Zhang, Y.-M.; Wei, T.-B. Pillar[5]arene-based fluorescent polymer for selective detection and removal of mercury ions. RSC Adv. 2017, 7, 47709–47714. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Ji, X.; Xiang, F.; Chi, X.; Han, C.; He, J.; Abliz, Z.; Chen, W.; Huang, F. A cationic water-soluble pillar[5]arene: Synthesis and host–guest complexation with sodium 1-octanesulfonate. Chem. Commun. 2011, 47, 12340–12342. [Google Scholar] [CrossRef]
- Ogoshi, T.; Hashizume, M.; Yamagishi, T.; Nakamoto, Y. Synthesis, conformational and host-guest properties of water-soluble pillar[5]arene. Chem. Commun. 2010, 46, 3708–3710. [Google Scholar] [CrossRef]
- Hu, X.-Y.; Liu, X.; Zhang, W.; Qin, S.; Yao, C.; Li, Y.; Cao, D.; Peng, L.; Wang, L. Controllable construction of biocompatible supramolecular micelles and vesicles by water-soluble phosphate pillar[5,6]arenes for selective anti-cancer drug delivery. Chem. Mater. 2016, 28, 3778–3788. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Y.; Wan, Y.; Cai, Y.; Xiong, Y.; Fan, Z.; Conradson, S.D.; Fu, H.; Yuan, L.; Feng, W. Highly efficient and selective pillararene-based organic materials for Hg2+ and CH3Hg+ extraction from aqueous solution. Chem. Eng. J. 2020, 387, 124087–124096. [Google Scholar] [CrossRef]
- Khalil-Cruz, L.E.; Liu, P.; Huang, F.; Khashab, N.M. Multifunctional pillar[n]arene-based smart nanomaterials. ACS Appl. Mater. Interfaces 2021, 13, 31337–31354. [Google Scholar] [CrossRef]
- Chen, L.; Cai, Y.; Feng, W.; Yuan, L. Pillararenes as macrocyclic hosts: A rising star in metal ion separation. Chem. Commun. 2019, 55, 7883–7898. [Google Scholar] [CrossRef]
- Fang, Y.; Deng, Y.; Dehaen, W. Tailoring pillararene-based receptors for specific metal ion binding: From recognition to supramolecular assembly. Coord. Chem. Rev. 2020, 415, 213313. [Google Scholar] [CrossRef]
- Shi, B.; Jie, K.; Zhou, Y.; Zhou, J.; Xia, D.; Huang, F. Nanoparticles with near-infrared emission enhanced by pillararene-based molecular recognition in water. J. Am. Chem. Soc. 2016, 138, 80–83. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Wang, T.; Jia, K.; Wu, X.; Yao, C.; Shao, W.; Zhang, D.; Hu, X.-Y.; Wang, L. Glucose-responsive supramolecular vesicles based on water-soluble pillar[5]arene and pyridylboronic acid derivatives for controlled insulin delivery. Chem. Eur. J. 2017, 23, 6605–6614. [Google Scholar] [CrossRef] [PubMed]
- Barbera, L.; Franco, D.; De Plano, L.M.; Gattuso, G.; Guglielmino, S.P.P.; Lentini, G.; Manganaro, N.; Marino, N.; Pappalardo, S.; Parisi, M.F.; et al. A water-soluble pillar[5]arene as a new carrier for an old drug. Org. Biomol. Chem. 2017, 15, 3192–3195. [Google Scholar] [CrossRef]
- Li, H.; Wei, R.; Yan, G.H.; Sun, J.; Li, C.; Wang, H.; Shi, L.; Capobianco, J.A.; Sun, L. Smart self-assembled nanosystem based on water-soluble pillararene and rare-earth-doped upconversion nanoparticles for pH-Responsive drug delivery. ACS Appl. Mater. Interfaces 2018, 10, 4910–4920. [Google Scholar] [CrossRef]
- Li, H.; Chen, D.-X.; Sun, Y.-L.; Zheng, Y.B.; Tan, L.-L.; Weiss, P.S.; Yang, Y.-W. Viologen-mediated assembly of and sensing with carboxylatopillar[5]arene-modified gold nanoparticles. J. Am. Chem. Soc. 2013, 135, 1570–1576. [Google Scholar] [CrossRef]
- Cui, W.; Tang, H.; Xu, L.; Wang, L.; Meier, H.; Cao, D. Pillar[5]arene-diketopyrrolopyrrole fluorescent copolymer: A promising recognition and adsorption material for adiponitrile by selective formation of a conjugated polypseudorotaxane. Macromol. Rapid Commun. 2017, 38, 1700161. [Google Scholar] [CrossRef]
- Zhou, Y.; Tang, H.; Li, Z.-H.; Xu, L.; Wang, L.; Cao, D. Bio-inspired AIE pillar[5]arene probe with multiple binding sites to discriminate alkanediamines. Chem. Commun. 2021, 57, 13114–13117. [Google Scholar] [CrossRef]
- Cui, W.; Wang, L.; Xu, L.; Zhang, G.; Meier, H.; Tang, H.; Cao, D. Fluorescent-cavity host: An efficient probe to study supramolecular recognition mechanisms. J. Phys. Chem. Lett. 2018, 9, 1047–1052. [Google Scholar] [CrossRef]
- Zhang, D.; Cheng, J.; Wei, L.; Song, W.; Wang, L.; Tang, H.; Cao, D. Host–guest complexation of monoanionic and dianionic guests with a polycationic pillararene host: Same two-step mechanism but striking difference in rate upon inclusion. J. Phys. Chem. Lett. 2020, 11, 2021–2026. [Google Scholar] [CrossRef]
- Liu, Y.; Qu, Z.; Cao, H.Y.; Sun, H.Y.; Gao, Y.; Jiang, X.Y. pH switchable nanoassembly for imaging a broad range of malignant tumors. ACS Nano 2017, 11, 12446–12452. [Google Scholar] [CrossRef]
- Han, C.; Zhang, Z.; Yu, G.; Huang, F. Syntheses of a pillar[4]arene[1]quinone and a difunctionalized pillar[5]arene by partial oxidation. Chem. Commun. 2012, 48, 9876–9878. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Lin, Q.; Zhang, Z.; Wei, T.; Shi, B.; Yao, H.; Zhang, Y. In situ formation of Hg2+-coordinated fluorescent nanoparticles through a supramolecular polymer network used for efficient Hg2+ sensing and separation. Nanoscale 2021, 13, 9172–9176. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liu, X.; Ma, J.; Han, B.; Ding, J.; Lin, Q.; Yao, H.; Zhang, Y.; Wei, T. A pillar[5]arene-based multiple-stimuli responsive metal–organic gel was constructed for facile removal of mercury ions. Soft Matter 2017, 13, 5214–5218. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, X.; Liang, G.; Zhong, K.; Lin, Q.; Yao, H.; Wei, T. A novel water soluble pillar[5]arene and phenazine derivative self-assembled pseudorotaxane sensor for the selective detection of Hg2+ and Ag+ with high selectivity and sensitivity. New J. Chem. 2018, 42, 10148–10152. [Google Scholar] [CrossRef]
- Lin, Q.; Jiang, X.; Ma, X.; Liu, J.; Yao, H.; Zhang, Y.; Wei, T. Novel bispillar[5]arene-based AIEgen and its’ application in mercury(II) detection. Sensor Actuat. B 2018, 272, 139–145. [Google Scholar] [CrossRef]
- Tseng, T.-W.; Luo, T.-T.; Wu, J.-Y.; Tsai, C.-C.; Huang, C.-Y.; Chiang, M.-H.; Lu, K.-L. Adaptation of guest molecules: A simple system that amplifies the gentle perturbation of host lattices from nickel(II) to cobalt(II). Inorg. Chim. Acta 2016, 445, 96–102. [Google Scholar] [CrossRef]
- Yao, Q.F.; Lü, B.Z.; Ji, C.D.; Cai, Y.; Yin, M.Z. Supramolecular host-guest system as ratiometric Fe3+ ion sensor based on water-soluble pillar[5]arene. ACS Appl. Mater. Interfaces 2017, 9, 36320–36326. [Google Scholar] [CrossRef]
- Nie, K.; Dong, B.; Shi, H.; Liu, Z.; Liang, B. Thienyl diketopyrrolopyrrole as a robust sensing platform for multiple ions and its application in molecular logic system. Sens. Actuators B Chem. 2017, 244, 849–853. [Google Scholar] [CrossRef]
- Liu, Y.M.; Chen, X.; Ding, J.M.; Yu, L.; Ma, D.; Ding, J.D. Improved solubility and bioactivity of camptothecin family antitumor drugs with supramolecular encapsulation by water-soluble pillar[6]arene. ACS Omega 2017, 2, 5283–5288. [Google Scholar] [CrossRef] [Green Version]
- Shangguan, L.; Chen, Q.; Shi, B.; Huang, F. Enhancing the solubility and bioactivity of anticancer drug tamoxifen by water-soluble pillar[6]arene-based host–guest complexation. Chem. Commun. 2017, 53, 9749–9752. [Google Scholar] [CrossRef] [PubMed]
Pillararene-Based Supramolecular Materials | Detection System, LOD and Sensing Mechanism | Ref. |
---|---|---|
DMSO/H2O solution (3:7, v/v), LOD = 0.1 μM, coordinated with the O atoms of pillar[5]arene and the N atoms of pyridine groups | [43] | |
Acetone, LOD = 2.3 μM, unique T−Hg2+−T pairings between thymine (T) and Hg2+ | [18] | |
Metal–organic gel, no LOD data, Fluorescence quenching at 470 nm | [44] | |
DMSO/H2O solution (3:7, v/v), LOD = 0.5 μM, fluorescence color change from 545 nm to 502 nm | [45] | |
DMSO/H2O (1:1, v/v), LOD = 0.043 μM, Fluorescence quenching at 485 nm, coordination between Hg2+ and probe | [46] | |
CHCl3/acetone/H2O (v/v/v = 1:4:495), LOD = 0.03 μM, Unique interaction thymine of G and Hg2+, Fluorescence turn on at 388 nm. | [21] | |
100% water, LOD = 0.7 μM, Fluorescence turn off, interaction with H and N, S atoms of G, removal and separation of Hg2+ | This work |
Sample | Spiked (μM) | Recovered (μM) | Recovery (%) |
---|---|---|---|
Lake Water | 20.0 | 17.4 | 87.0 |
26.7 | 22.3 | 83.7 | |
36.7 | 31.8 | 86.7 | |
40.0 | 34.7 | 86.8 | |
Tap water | 20.0 | 16.7 | 83.6 |
26.7 | 22.5 | 84.5 | |
30.0 | 26.9 | 89.7 | |
36.7 | 31.2 | 85.2 | |
40.0 | 35.6 | 89.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, X.; Wang, L.; Ran, X.; Tang, H.; Cao, D. Green, Efficient Detection and Removal of Hg2+ by Water-Soluble Fluorescent Pillar[5]arene Supramolecular Self-Assembly. Biosensors 2022, 12, 571. https://doi.org/10.3390/bios12080571
Jiang X, Wang L, Ran X, Tang H, Cao D. Green, Efficient Detection and Removal of Hg2+ by Water-Soluble Fluorescent Pillar[5]arene Supramolecular Self-Assembly. Biosensors. 2022; 12(8):571. https://doi.org/10.3390/bios12080571
Chicago/Turabian StyleJiang, Xiaomei, Lingyun Wang, Xueguang Ran, Hao Tang, and Derong Cao. 2022. "Green, Efficient Detection and Removal of Hg2+ by Water-Soluble Fluorescent Pillar[5]arene Supramolecular Self-Assembly" Biosensors 12, no. 8: 571. https://doi.org/10.3390/bios12080571
APA StyleJiang, X., Wang, L., Ran, X., Tang, H., & Cao, D. (2022). Green, Efficient Detection and Removal of Hg2+ by Water-Soluble Fluorescent Pillar[5]arene Supramolecular Self-Assembly. Biosensors, 12(8), 571. https://doi.org/10.3390/bios12080571