Functionalization of 2D MoS2 Nanosheets with Various Metal and Metal Oxide Nanostructures: Their Properties and Application in Electrochemical Sensors
Abstract
:1. Introduction
2. Synthesis of MoS2 Nanosheets
- (i)
- lithium (Li) intercalation exfoliation, which involves an initial 48 h intercalation of Li ions between bulk MoS2 in an inert gas atmosphere followed by a spontaneous ultrasonic-assisted exfoliation of the Li-intercalated MoS2, which occurs through water reaction, as shown in Figure 1a [43,44]. During the process, bulk MoS2 is treated with an n-butyllithium solution to produce the intercalation product LixMoS2. The reaction process is caused by the electron transfer from n-butyllithium to MoS2 layers, which absorbs Li+ between the layers to balance the charge. When the intercalate, LixMoS2, comes into contact with water, it reacts with the intercalated lithium, creating LiOH and H2 gas. As a result, negatively-charged nanosheets repel each other, increasing interlayer distances and weakening van der Waals forces, resulting in a colloidal dispersion of (nearly) entire single layers of MoS2 [45]. The lithium intercalation reaction converts MoS2 from the semiconductive 2H phase hexagonal structure to the metallic trigonal 1T phase [46], although the 1T phase MoS2 is not suitable for optoelectronic devices, it is quite desirable for electrochemical catalysis.
- (ii)
- Liquid-phase exfoliation (Figure 1b) involves exfoliation by sonication [47,48] or exposure of bulk MoS2 to high shear rates using either a rotor–stator high shear mixer or a basic kitchen blender [49,50]. The bulk MoS2 is exfoliated in the presence of stabilizing liquids, such as suitable solvents [47], surfactant solutions [50], or polymers [51]. Sonication-assisted exfoliation is triggered by hydrodynamic shear forces associated with cavitation, which is the formation, growth, and collapse of voids or bubbles in liquids due to pressure changes [48]. Following exfoliation, the inter-sheet attractive forces and interfacial tension between the sheets and the surrounding liquid are reduced, resulting in the dispersion of a single layer [48]. When using a high shear mixer or blender, exfoliation occurs as a result of revolving rotor–stator blades producing extremely high shear rates [49,50]. The shear rate generates full turbulence, resulting in viscous shear forces. The presence of dominant viscous shear forces increases collision and cavitation between bulk materials, leading to exfoliation [49,50]. During this process, the sheets are coated with an appropriate surfactant/solvent and stabilized by repulsive inter-sheet interactions [50]. This approach results in defect-free single or multilayered nanosheets that are stabilized against aggregation by liquid interaction. The liquid-phase exfoliation method, due to its simplicity and scalability potential, has an advantage over the lithium exfoliation method; it is also not an air-sensitive process and it does not require chemical reactions; thus, it provides high crystallinity for synthesized MoS2 nanosheets [52].
- (iii)
- Hydrothermal/solvothermal synthesis (Figure 1c) is essentially where the chemical reaction takes place in a closed system (autoclave) in which the solvent temperature is raised to its critical point (200 °C) by heating concurrently with autogenous pressure [53]. This approach involves direct crystallization from solutions, which often include crystal nucleation and subsequent growth [53]. The sample is rapidly precipitated from the reaction solution during the synthesis process, allowing for controlled homogeneity, as well as control over aging, particle size, and morphology [54]. The solvothermal synthesis is similar to the hydrothermal synthesis, except that in the synthetic method organic solvents are used instead of water [55]. MoS2 nanosheets with good crystalline structure and morphology are produced by optimization of hydrothermal temperature and reaction time [54].
- (iv)
- Chemical vapor deposition (CVD) (Figure 1d) has been used to synthesize high-quality graphene, and it was recently adopted for the synthesis of MoS2 nanosheets. In a standard CVD procedure, molybdenum trioxide (MoO3) and sulfur powders are common precursors used for the deposition of MoS2 films on a silicon/silicon dioxide (Si/SiO2) substrate; upon heating, MoO3 reacts with sulfur vapor in the gas phase at a high temperature (650 °C) to give MoS2 layers in a reducing atmosphere under ambient pressure [56]. The CVD process is capable of producing nanosheets of good quality with scalable size, controllable thickness, and excellent electronic properties. However, it is more difficult to obtain crystalline 2D MoS2 nanosheets with a controlled number of layers by CVD as compared to graphene, because the structure, thickness, and crystallinity of graphene could be well controlled by an effective catalyst design but there is no catalyst involved in the growth of 2D MoS2 nanosheets [56,57].
3. Functionalization of MoS2 Nanosheets with Metal and Metal Oxide Nanostructures
3.1. Ex situ Functionalization
3.2. In Situ Functionalization
4. Properties
4.1. Electrical Properties
4.2. Optical Properties
4.3. Catalytic Properties
5. Application of 2D MoS2-Based Nanocomposites
5.1. Electrochemical Biosensors
5.2. Electrochemical Immunosensors
5.3. Photoelectrochemical Sensors
5.4. Electrochemiluminescence Sensors
6. Challenges, Limitations, and Future Outlooks
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhimanapati, G.R.; Lin, Z.; Meunier, V.; Jung, Y.; Cha, J.; Das, S.; Xiao, D.; Son, Y.; Strano, M.S.; Cooper, V.R.; et al. Recent Advances in Two-Dimensional Materials beyond Graphene. ACS Nano 2015, 9, 11509–11539. [Google Scholar] [CrossRef] [PubMed]
- Butler, S.Z.; Hollen, S.M.; Cao, L.; Cui, Y.; Gupta, J.A.; Gutiérrez, H.R.; Heinz, T.F.; Hong, S.S.; Huang, J.; Ismach, A.F.; et al. Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene. ACS Nano 2013, 7, 2898–2926. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Liang, T.; Shi, M.; Chen, H. Graphene-Like Two-Dimensional Materials. Chem. Rev. 2013, 113, 3766–3798. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.; Kang, J.; Ng, L.W.T.; Zhu, X.; Howe, R.C.T.; Jones, C.G.; Hersam, M.C.; Hasan, T. Functional Inks and Printing of Two-Dimensional Materials. Chem. Soc. Rev. 2018, 47, 3265–3300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S.K.; Colombo, L. Electronics Based on Two-Dimensional Materials. Nat. Nanotechnol. 2014, 9, 768–779. [Google Scholar] [CrossRef]
- Wang, Q.H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J.N.; Strano, M.S. Electronics and Optoelectronics of Two-Dimensional Transition Metal Dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712. [Google Scholar] [CrossRef]
- Mann, J.; Ma, Q.; Odenthal, P.M.; Isarraraz, M.; Le, D.; Preciado, E.; Barroso, D.; Yamaguchi, K.; von Son Palacio, G.; Nguyen, A.; et al. 2-Dimensional Transition Metal Dichalcogenides with Tunable Direct Band Gaps: MoS2(1–x)Se2x Monolayers. Adv. Mater. 2014, 26, 1399–1404. [Google Scholar] [CrossRef]
- Zhang, X.; Lai, Z.; Tan, C.; Zhang, H. Solution-Processed Two-Dimensional MoS2 Nanosheets: Preparation, Hybridization, and Applications. Angew. Chem. Int. Ed. 2016, 55, 8816–8838. [Google Scholar] [CrossRef]
- Das, S.; Kim, M.; Lee, J.; Choi, W. Synthesis, Properties, and Applications of 2-D Materials: A Comprehensive Review. Crit. Rev. Solid State Mater. Sci. 2014, 39, 231–252. [Google Scholar] [CrossRef]
- Mutalik, C.; Krisnawati, D.I.; Patil, S.B.; Khafid, M.; Atmojo, D.S.; Santoso, P.; Lu, S.-C.; Wang, D.-Y.; Kuo, T.-R. Phase-Dependent MoS2 Nanoflowers for Light-Driven Antibacterial Application. ACS Sustain. Chem. Eng. 2021, 9, 7904–7912. [Google Scholar] [CrossRef]
- Hossain, R.F.; Deaguero, I.G.; Boland, T.; Kaul, A.B. Solution Dispersed 2D Graphene & MoS2 for an Inkjet Printed Biocompatible Photodetector. In Proceedings of the 2016 Lester Eastman Conference (LEC), Bethlehem, PI, USA, 2–4 August 2016; pp. 19–22. [Google Scholar]
- Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-Layer MoS2 Transistors. Nat. Nanotechnol. 2011, 6, 147–150. [Google Scholar] [CrossRef]
- Su, S.; Sun, H.; Cao, W.; Chao, J.; Peng, H.; Zuo, X.; Yuwen, L.; Fan, C.; Wang, L. Dual-Target Electrochemical Biosensing Based on DNA Structural Switching on Gold Nanoparticle-Decorated MoS2 Nanosheets. ACS Appl. Mater. Interfaces 2016, 8, 6826–6833. [Google Scholar] [CrossRef]
- Kabachii, Y.A.; Golub, A.S.; Kochev, S.Y.; Lenenko, N.D.; Abramchuk, S.S.; Antipin, M.Y.; Valetsky, P.M.; Stein, B.D.; Mahmoud, W.E.; Al-Ghamdi, A.A.; et al. Multifunctional Nanohybrids by Self-Assembly of Monodisperse Iron Oxide Nanoparticles and Nanolamellar MoS2 Plates. Chem. Mater. 2013, 25, 2434–2440. [Google Scholar] [CrossRef]
- Sreeprasad, T.S.; Nguyen, P.; Kim, N.; Berry, V. Controlled, Defect-Guided, Metal-Nanoparticle Incorporation onto MoS2 via Chemical and Microwave Routes: Electrical, Thermal, and Structural Properties. Nano Lett. 2013, 13, 4434–4441. [Google Scholar] [CrossRef]
- Yu, S.H.; Lee, Y.; Jang, S.K.; Kang, J.; Jeon, J.; Lee, C.; Lee, J.Y.; Kim, H.; Hwang, E.; Lee, S.; et al. Dye-Sensitized MoS2 Photodetector with Enhanced Spectral Photoresponse. ACS Nano 2014, 8, 8285–8291. [Google Scholar] [CrossRef]
- Gomathi, P.T.; Sahatiya, P.; Badhulika, S. Large-Area, Flexible Broadband Photodetector Based on ZnS–MoS2 Hybrid on Paper Substrate. Adv. Funct. Mater. 2017, 27, 1701611. [Google Scholar] [CrossRef]
- Zhang, H.; Tian, Y.; Zhao, J.; Cai, Q.; Chen, Z. Small Dopants Make Big Differences: Enhanced Electrocatalytic Performance of MoS2 Monolayer for Oxygen Reduction Reaction (ORR) by N– and P–Doping. Electrochim. Acta 2017, 225, 543–550. [Google Scholar] [CrossRef] [Green Version]
- Cui, S.; Wen, Z.; Huang, X.; Chang, J.; Chen, J. Stabilizing MoS2 Nanosheets through SnO2 Nanocrystal Decoration for High-Performance Gas Sensing in Air. Small 2015, 11, 2305–2313. [Google Scholar] [CrossRef]
- Zhang, D.; Sun, Y.; Jiang, C.; Yao, Y.; Wang, D.; Zhang, Y. Room-Temperature Highly Sensitive CO Gas Sensor Based on Ag-Loaded Zinc Oxide/Molybdenum Disulfide Ternary Nanocomposite and Its Sensing Properties. Sens. Actuators B Chem. 2017, 253, 1120–1128. [Google Scholar] [CrossRef]
- Fedorov, V.E.; Naumov, N.G.; Lavrov, A.N.; Tarasenko, M.S.; Artemkina, S.B.; Romanenko, A.I.; Medvedev, M.V. Tuning Electronic Properties of Molybdenum Disulfide by a Substitution in Metal Sublattice. In Proceedings of the 2013 36th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 20–24 May 2013; pp. 11–14. [Google Scholar]
- Chen, X.; Berner, N.C.; Backes, C.; Duesberg, G.S.; McDonald, A.R. Functionalization of Two-Dimensional MoS2: On the Reaction Between MoS2 and Organic Thiols. Angew. Chem. Int. Ed. 2016, 55, 5803–5808. [Google Scholar] [CrossRef]
- Wu, S.; Zeng, Z.; He, Q.; Wang, Z.; Wang, S.J.; Du, Y.; Yin, Z.; Sun, X.; Chen, W.; Zhang, H. Electrochemically Reduced Single-Layer MoS2 Nanosheets: Characterization, Properties, and Sensing Applications. Small 2012, 8, 2264–2270. [Google Scholar] [CrossRef] [PubMed]
- Najmaei, S.; Zou, X.; Er, D.; Li, J.; Jin, Z.; Gao, W.; Zhang, Q.; Park, S.; Ge, L.; Lei, S.; et al. Tailoring the Physical Properties of Molybdenum Disulfide Monolayers by Control of Interfacial Chemistry. Nano Lett. 2014, 14, 1354–1361. [Google Scholar] [CrossRef]
- Mouri, S.; Miyauchi, Y.; Matsuda, K. Tunable Photoluminescence of Monolayer MoS2 via Chemical Doping. Nano Lett. 2013, 13, 5944–5948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, Y.; Najmaei, S.; Liu, Z.; Bao, Y.; Wang, Y.; Zhu, X.; Halas, N.J.; Nordlander, P.; Ajayan, P.M.; Lou, J.; et al. Plasmonic Hot Electron Induced Structural Phase Transition in a MoS2 Monolayer. Adv. Mater. 2014, 26, 6467–6471. [Google Scholar]
- Lin, Y.-C.; Dumcenco, D.O.; Huang, Y.-S.; Suenaga, K. Atomic Mechanism of the Semiconducting-to-Metallic Phase Transition in Single-Layered MoS2. Nat. Nanotechnol. 2014, 9, 391–396. [Google Scholar] [CrossRef]
- Sarkar, D.; Xie, X.; Kang, J.; Zhang, H.; Liu, W.; Navarrete, J.; Moskovits, M.; Banerjee, K. Functionalization of Transition Metal Dichalcogenides with Metallic Nanoparticles: Implications for Doping and Gas-Sensing. Nano Lett. 2015, 15, 2852–2862. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; McDonald, A.R. Functionalization of Two-Dimensional Transition-Metal Dichalcogenides. Adv. Mater. 2016, 28, 5738–5746. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wang, B.; Huang, R.; Gao, B.; Kong, F.; Zhang, Q. First-Principles Study of Transition-Metal Atoms Adsorption on MoS2 Monolayer. Phys. E Low-Dimens. Syst. Nanostruct. 2014, 63, 276–282. [Google Scholar] [CrossRef]
- Lu, J.; Lu, J.H.; Liu, H.; Liu, B.; Gong, L.; Tok, E.S.; Loh, K.P.; Sow, C.H. Microlandscaping of Au Nanoparticles on Few-Layer MoS2 Films for Chemical Sensing. Small 2015, 11, 1792–1800. [Google Scholar] [CrossRef]
- Tan, Y.; Liu, P.; Chen, L.; Cong, W.; Ito, Y.; Han, J.; Guo, X.; Tang, Z.; Fujita, T.; Hirata, A.; et al. Monolayer MoS2 Films Supported by 3D Nanoporous Metals for High-Efficiency Electrocatalytic Hydrogen Production. Adv. Mater. 2014, 26, 8023–8028. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, J.; Wang, C.; Zhai, T.-T.; Bao, W.-J.; Xu, J.-J.; Xia, X.-H.; Chen, H.-Y. Hot Electron of Au Nanorods Activates the Electrocatalysis of Hydrogen Evolution on MoS2 Nanosheets. J. Am. Chem. Soc. 2015, 137, 7365–7370. [Google Scholar] [CrossRef] [PubMed]
- Miao, J.; Hu, W.; Jing, Y.; Luo, W.; Liao, L.; Pan, A.; Wu, S.; Cheng, J.; Chen, X.; Lu, W. Au Nanoarrays: Surface Plasmon-Enhanced Photodetection in Few Layer MoS2 Phototransistors with Au Nanostructure Arrays (Small 20/2015). Small 2015, 11, 2346. [Google Scholar] [CrossRef]
- Huang, J.; He, Y.; Jin, J.; Li, Y.; Dong, Z.; Li, R. A Novel Glucose Sensor Based on MoS2 Nanosheet Functionalized with Ni Nanoparticles. Electrochim. Acta 2014, 136, 41–46. [Google Scholar] [CrossRef]
- Su, S.; Sun, H.; Xu, F.; Yuwen, L.; Wang, L. Highly Sensitive and Selective Determination of Dopamine in the Presence of Ascorbic Acid Using Gold Nanoparticles-Decorated MoS2 Nanosheets Modified Electrode. Electroanalysis 2013, 25, 2523–2529. [Google Scholar] [CrossRef]
- Zhang, D.; Jiang, C.; Li, P.; Sun, Y. Layer-by-Layer Self-Assembly of Co3O4 Nanorod-Decorated MoS2 Nanosheet-Based Nanocomposite toward High-Performance Ammonia Detection. ACS Appl. Mater. Interfaces 2017, 9, 6462–6471. [Google Scholar] [CrossRef]
- Huang, Y.; Guo, J.; Kang, Y.; Ai, Y.; Li, C.M. Two Dimensional Atomically Thin MoS2 Nanosheets and Their Sensing Applications. Nanoscale 2015, 7, 19358–19376. [Google Scholar] [CrossRef]
- Pumera, M.; Loo, A.H. Layered Transition-Metal Dichalcogenides (MoS2 and WS2) for Sensing and Biosensing. TrAC Trends Anal. Chem. 2014, 61, 49–53. [Google Scholar] [CrossRef]
- Sinha, A.; Tan, B.; Huang, Y.; Zhao, H.; Dang, X.; Chen, J.; Jain, R. MoS2 Nanostructures for Electrochemical Sensing of Multidisciplinary Targets: A Review. TrAC Trends Anal. Chem. 2018, 102, 75–90. [Google Scholar] [CrossRef]
- Liu, T.; Liu, Z. 2D MoS2 Nanostructures for Biomedical Applications. Adv. Healthc. Mater. 2018, 7, 1701158. [Google Scholar] [CrossRef]
- Li, H.; Wu, J.; Yin, Z.; Zhang, H. Preparation and Applications of Mechanically Exfoliated Single-Layer and Multilayer MoS2 and WSe2 Nanosheets. Acc. Chem. Res. 2014, 47, 1067–1075. [Google Scholar] [CrossRef]
- Joensen, P.; Frindt, R.F.; Morrison, S.R. Single-Layer MoS2. Mater. Res. Bull. 1986, 21, 457–461. [Google Scholar] [CrossRef]
- Ambrosi, A.; Sofer, Z.; Pumera, M. Lithium Intercalation Compound Dramatically Influences the Electrochemical Properties of Exfoliated MoS2. Small 2015, 11, 605–612. [Google Scholar] [CrossRef]
- Grayfer, E.D.; Kozlova, M.N.; Fedorov, V.E. Colloidal 2D Nanosheets of MoS2 and Other Transition Metal Dichalcogenides through Liquid-Phase Exfoliation. Adv. Colloid Interface Sci. 2017, 245, 40–61. [Google Scholar] [CrossRef]
- Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M.; Chhowalla, M. Photoluminescence from Chemically Exfoliated MoS2. Nano Lett. 2011, 11, 5111–5116. [Google Scholar] [CrossRef]
- Coleman, J.N.; Lotya, M.; O’Neill, A.; Bergin, S.D.; King, P.J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R.J.; et al. Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials. Science 2011, 331, 568–571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonaccorso, F.; Sun, Z. Solution Processing of Graphene, Topological Insulators and Other 2d Crystals for Ultrafast Photonics. Opt. Mater. Express 2014, 4, 63–78. [Google Scholar] [CrossRef]
- Paton, K.R.; Varrla, E.; Backes, C.; Smith, R.J.; Khan, U.; O’Neill, A.; Boland, C.; Lotya, M.; Istrate, O.M.; King, P.; et al. Scalable Production of Large Quantities of Defect-Free Few-Layer Graphene by Shear Exfoliation in Liquids. Nat. Mater. 2014, 13, 624–630. [Google Scholar] [CrossRef] [PubMed]
- Varrla, E.; Backes, C.; Paton, K.R.; Harvey, A.; Gholamvand, Z.; McCauley, J.; Coleman, J.N. Large-Scale Production of Size-Controlled MoS2 Nanosheets by Shear Exfoliation. Chem. Mater. 2015, 27, 1129–1139. [Google Scholar] [CrossRef]
- May, P.; Khan, U.; O’Neill, A.; Coleman, J.N. Approaching the Theoretical Limit for Reinforcing Polymers with Graphene. J. Mater. Chem. 2012, 22, 1278–1282. [Google Scholar] [CrossRef]
- Gupta, A.; Arunachalam, V.; Vasudevan, S. Liquid-Phase Exfoliation of MoS2 Nanosheets: The Critical Role of Trace Water. J. Phys. Chem. Lett. 2016, 7, 4884–4890. [Google Scholar] [CrossRef]
- Li, J.; Wu, Q.; Wu, J. Synthesis of Nanoparticles via Solvothermal and Hydrothermal Methods BT—Handbook of Nanoparticles; Aliofkhazraei, M., Ed.; Springer International Publishing: Cham, Switzerland, 2015; pp. 1–28. [Google Scholar]
- Chaudhary, N.; Khanuja, M.; Islam, S.S. Hydrothermal Synthesis of MoS2 Nanosheets for Multiple Wavelength Optical Sensing Applications. Sens. Actuators A Phys. 2018, 277, 190–198. [Google Scholar] [CrossRef]
- Rajamathi, M.; Seshadri, R. Oxide and Chalcogenide Nanoparticles from Hydrothermal/Solvothermal Reactions. Curr. Opin. Solid State Mater. Sci. 2002, 6, 337–345. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Feng, H.; Wu, Y.; Jiao, L. Controlled Synthesis of Highly Crystalline MoS2 Flakes by Chemical Vapor Deposition. J. Am. Chem. Soc. 2013, 135, 5304–5307. [Google Scholar] [CrossRef]
- Ago, H.; Ito, Y.; Mizuta, N.; Yoshida, K.; Hu, B.; Orofeo, C.M.; Tsuji, M.; Ikeda, K.; Mizuno, S. Epitaxial Chemical Vapor Deposition Growth of Single-Layer Graphene over Cobalt Film Crystallized on Sapphire. ACS Nano 2010, 4, 7407–7414. [Google Scholar] [CrossRef]
- Nguyen, E.P.; Carey, B.J.; Ou, J.Z.; van Embden, J.; Della Gaspera, E.; Chrimes, A.F.; Spencer, M.J.S.; Zhuiykov, S.; Kalantar-Zadeh, K.; Daeneke, T. Electronic Tuning of 2D MoS2 through Surface Functionalization. Adv. Mater. 2015, 27, 6225–6229. [Google Scholar] [CrossRef]
- KC, S.; Longo, R.C.; Addou, R.; Wallace, R.M.; Cho, K. Impact of Intrinsic Atomic Defects on the Electronic Structure of MoS2monolayers. Nanotechnology 2014, 25, 375703. [Google Scholar] [CrossRef]
- Zhong, X.; Yang, H.; Guo, S.; Li, S.; Gou, G.; Niu, Z.; Dong, Z.; Lei, Y.; Jin, J.; Li, R.; et al. In Situ Growth of Ni–Fe Alloy on Graphene-like MoS2 for Catalysis of Hydrazine Oxidation. J. Mater. Chem. 2012, 22, 13925–13927. [Google Scholar] [CrossRef]
- Kibsgaard, J.; Chen, Z.; Reinecke, B.N.; Jaramillo, T.F. Engineering the Surface Structure of MoS2 to Preferentially Expose Active Edge Sites for Electrocatalysis. Nat. Mater. 2012, 11, 963–969. [Google Scholar] [CrossRef]
- Kwon, H.J.; Shin, K.; Soh, M.; Chang, H.; Kim, J.; Lee, J.; Ko, G.; Kim, B.H.; Kim, D.; Hyeon, T. Large-Scale Synthesis and Medical Applications of Uniform-Sized Metal Oxide Nanoparticles. Adv. Mater. 2018, 30, 1704290. [Google Scholar] [CrossRef]
- Huang, A.; He, Y.; Zhou, Y.Y.; Zhou, Y.Y.; Yang, Y.; Zhang, J.; Luo, L.; Mao, Q.; Hou, D.; Yang, J. A Review of Recent Applications of Porous Metals and Metal Oxide in Energy Storage, Sensing and Catalysis. J. Mater. Sci. 2019, 54, 949–973. [Google Scholar] [CrossRef]
- Falcaro, P.; Ricco, R.; Yazdi, A.; Imaz, I.; Furukawa, S.; Maspoch, D.; Ameloot, R.; Evans, J.D.; Doonan, C.J. Application of Metal and Metal Oxide Nanoparticles@MOFs. Coord. Chem. Rev. 2016, 307, 237–254. [Google Scholar] [CrossRef]
- Chavali, M.S.; Nikolova, M.P. Metal Oxide Nanoparticles and Their Applications in Nanotechnology. SN Appl. Sci. 2019, 1, 607. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.; Zhu, Y. Printing Conductive Nanomaterials for Flexible and Stretchable Electronics: A Review of Materials, Processes, and Applications. Adv. Mater. Technol. 2019, 4, 1800546. [Google Scholar] [CrossRef]
- Corr, S.A. Metal Oxide Nanoparticles. Nanoscience 2013, 1, 180–207. [Google Scholar]
- Guo, S.; Wang, E. Noble Metal Nanomaterials: Controllable Synthesis and Application in Fuel Cells and Analytical Sensors. Nano Today 2011, 6, 240–264. [Google Scholar] [CrossRef]
- Parlak, O.; İncel, A.; Uzun, L.; Turner, A.P.F.; Tiwari, A. Structuring Au Nanoparticles on Two-Dimensional MoS2 Nanosheets for Electrochemical Glucose Biosensors. Biosens. Bioelectron. 2017, 89, 545–550. [Google Scholar] [CrossRef]
- Li, F.; Li, Y.; Feng, J.; Gao, Z.; Lv, H.; Ren, X.; Wei, Q. Facile Synthesis of MoS2@Cu2O-Pt Nanohybrid as Enzyme-Mimetic Label for the Detection of the Hepatitis B Surface Antigen. Biosens. Bioelectron. 2018, 100, 512–518. [Google Scholar] [CrossRef]
- Lassoued, A.; Dkhil, B.; Gadri, A.; Ammar, S. Control of the Shape and Size of Iron Oxide (α-Fe2O3) Nanoparticles Synthesized through the Chemical Precipitation Method. Results Phys. 2017, 7, 3007–3015. [Google Scholar] [CrossRef]
- Xiao, T.; Huang, J.; Wang, D.; Meng, T.; Yang, X. Au and Au-Based Nanomaterials: Synthesis and Recent Progress in Electrochemical Sensor Applications. Talanta 2020, 206, 120210. [Google Scholar] [CrossRef]
- Su, S.; Zou, M.; Zhao, H.; Yuan, C.; Xu, Y.; Zhang, C.; Wang, L.; Fan, C.; Wang, L. Shape-Controlled Gold Nanoparticles Supported on MoS2 Nanosheets: Synergistic Effect of Thionine and MoS2 and Their Application for Electrochemical Label-Free Immunosensing. Nanoscale 2015, 7, 19129–19135. [Google Scholar] [CrossRef]
- Han, J.; Ma, J.; Ma, Z. One-Step Synthesis of Graphene Oxide–Thionine–Au Nanocomposites and Its Application for Electrochemical Immunosensing. Biosens. Bioelectron. 2013, 47, 243–247. [Google Scholar] [CrossRef] [PubMed]
- Su, S.; Zhang, C.; Yuwen, L.; Chao, J.; Zuo, X.; Liu, X.; Song, C.; Fan, C.; Wang, L. Creating SERS Hot Spots on MoS2 Nanosheets with in Situ Grown Gold Nanoparticles. ACS Appl. Mater. Interfaces 2014, 6, 18735–18741. [Google Scholar] [CrossRef] [PubMed]
- Shetti, N.P.; Bukkitgar, S.D.; Reddy, K.R.; Reddy, C.V.; Aminabhavi, T.M. ZnO-Based Nanostructured Electrodes for Electrochemical Sensors and Biosensors in Biomedical Applications. Biosens. Bioelectron. 2019, 141, 111417. [Google Scholar] [CrossRef] [PubMed]
- Montiel, M.A.; Vidal-Iglesias, F.J.; Montiel, V.; Solla-Gullón, J. Electrocatalysis on Shape-Controlled Metal Nanoparticles: Progress in Surface Cleaning Methodologies. Curr. Opin. Electrochem. 2017, 1, 34–39. [Google Scholar] [CrossRef] [Green Version]
- Kebede, M.A.; Imae, T. Chapter 1.1—Low-Dimensional Nanomaterials. In Micro and Nano Technologies; Ariga, K., Aono, M.B.T.-A.S.N., Eds.; William Andrew Publishing: London, UK, 2019; pp. 3–16. [Google Scholar]
- Singh, A.K.; Srivastava, O.N.; Singh, K. Shape and Size-Dependent Magnetic Properties of Fe3O4 Nanoparticles Synthesized Using Piperidine. Nanoscale Res. Lett. 2017, 12, 298. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, F.; Ye, X.; Wu, T.; Wu, K.; Li, C. Photoelectrochemical Immunosensing of Tetrabromobisphenol A Based on the Enhanced Effect of Dodecahedral Gold Nanocrystals/MoS2 Nanosheets. Sens. Actuators B Chem. 2017, 245, 205–212. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, W.; Wang, Z.; Ke, H.; Zhao, W.; Zhang, A.; Huang, C.; Jia, N. A Sandwich Electrochemiluminescence Immunosensor for Highly Sensitive Detection of Alpha Fetal Protein Based on MoS2-PEI-Au Nanocomposites and Au@BSA Core/Shell Nanoparticles. Sens. Actuators B Chem. 2017, 253, 470–477. [Google Scholar] [CrossRef]
- Arunbalaji, S.; Vasudevan, R.; Arivanandhan, M.; Alsalme, A.; Alghamdi, A.; Jayavel, R. CuO/MoS2 Nanocomposites for Rapid and High Sensitive Non-Enzymatic Glucose Sensors. Ceram. Int. 2020, 46, 16879–16885. [Google Scholar] [CrossRef]
- Zhang, Y.; Wen, F.; Tan, J.; Jiang, C.; Zhu, M.; Chen, Y.; Wang, H. Highly Efficient Electrocatalytic Oxidation of Nitrite by Electrodeposition of Au Nanoparticles on Molybdenum Sulfide and Multi-Walled Carbon Nanotubes. J. Electroanal. Chem. 2017, 786, 43–49. [Google Scholar] [CrossRef]
- Zhou, J.; Zhao, Y.; Bao, J.; Huo, D.; Fa, H.; Shen, X.; Hou, C. One-Step Electrodeposition of Au-Pt Bimetallic Nanoparticles on MoS2 Nanoflowers for Hydrogen Peroxide Enzyme-Free Electrochemical Sensor. Electrochim. Acta 2017, 250, 152–158. [Google Scholar] [CrossRef]
- Lin, X.; Ni, Y.; Kokot, S. Electrochemical and Bio-Sensing Platform Based on a Novel 3D Cu Nano-Flowers/Layered MoS2 Composite. Biosens. Bioelectron. 2016, 79, 685–692. [Google Scholar] [CrossRef]
- Yang, T.; Chen, M.; Kong, Q.; Luo, X.; Jiao, K. Toward DNA Electrochemical Sensing by Free-Standing ZnO Nanosheets Grown on 2D Thin-Layered MoS2. Biosens. Bioelectron. 2017, 89, 538–544. [Google Scholar] [CrossRef]
- Zou, H.L.; Li, B.L.; Luo, H.Q.; Li, N.B. 0D-2D Heterostructures of Au Nanoparticles and Layered MoS2 for Simultaneous Detections of Dopamine, Ascorbic Acid, Uric Acid, and Nitrite. Sens. Actuators B Chem. 2017, 253, 352–360. [Google Scholar] [CrossRef]
- Song, D.; Wang, Y.; Lu, X.; Gao, Y.; Li, Y.; Gao, F. Ag Nanoparticles-Decorated Nitrogen-Fluorine Co-Doped Monolayer MoS2 Nanosheet for Highly Sensitive Electrochemical Sensing of Organophosphorus Pesticides. Sens. Actuators B Chem. 2018, 267, 5–13. [Google Scholar] [CrossRef]
- Li, X.; Du, X. Molybdenum Disulfide Nanosheets Supported Au-Pd Bimetallic Nanoparticles for Non-Enzymatic Electrochemical Sensing of Hydrogen Peroxide and Glucose. Sens. Actuators B Chem. 2017, 239, 536–543. [Google Scholar] [CrossRef]
- Liu, X.; Liu, P.; Tang, Y.; Yang, L.; Li, L.; Qi, Z.; Li, D.; Wong, D.K.Y. A Photoelectrochemical Aptasensor Based on a 3D Flower-like TiO2-MoS2-Gold Nanoparticle Heterostructure for Detection of Kanamycin. Biosens. Bioelectron. 2018, 112, 193–201. [Google Scholar] [CrossRef]
- Duan, K.; Du, Y.; Feng, Q.; Ye, X.; Xie, H.; Xue, M.; Wang, C. Synthesis of Platinum Nanoparticles by Using Molybdenum Disulfide as a Template and Its Application to Enzyme-like Catalysis. ChemCatChem 2014, 6, 1873–1876. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, Q.; Wu, C.; Zhang, Y.; Zeng, L. PtNi Bimetallic Nanoparticles Loaded MoS2 Nanosheets: Preparation and Electrochemical Sensing Application for the Detection of Dopamine and Uric Acid. Anal. Chim. Acta 2019, 1055, 17–25. [Google Scholar] [CrossRef]
- Fang, L.; Wang, F.; Chen, Z.; Qiu, Y.; Zhai, T.; Hu, M.; Zhang, C.; Huang, K. Flower-like MoS2 Decorated with Cu2O Nanoparticles for Non-Enzymatic Amperometric Sensing of Glucose. Talanta 2017, 167, 593–599. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, Y.; Xu, P.; Wen, W.; Li, X.; Xu, J. PtW/MoS2 Hybrid Nanocomposite for Electrochemical Sensing of H2O2 Released from Living Cells. Biosens. Bioelectron. 2016, 80, 601–606. [Google Scholar] [CrossRef]
- Jing, P.; Yi, H.; Xue, S.; Chai, Y.; Yuan, R.; Xu, W. A Sensitive Electrochemical Aptasensor Based on Palladium Nanoparticles Decorated Graphene–Molybdenum Disulfide Flower-like Nanocomposites and Enzymatic Signal Amplification. Anal. Chim. Acta 2015, 853, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Tan, Z.; Dong, H.; Liu, Q.; Liu, H.; Zhao, P.; Wang, P.; Li, Y.; Zhang, D.; Zhao, Z.; Dong, Y. A Label-Free Immunosensor Based on PtPd NCs@MoS2 Nanoenzymes for Hepatitis B Surface Antigen Detection. Biosens. Bioelectron. 2019, 142, 111556. [Google Scholar] [CrossRef]
- Chao, J.; Han, X.; Sun, H.; Su, S.; Weng, L.; Wang, L. Platinum Nanoparticles Supported MoS2 Nanosheet for Simultaneous Detection of Dopamine and Uric Acid. Sci. China Chem. 2016, 59, 332–337. [Google Scholar] [CrossRef]
- Sookhakian, M.; Basirun, W.J.; Goh, B.T.; Woi, P.M.; Alias, Y. Molybdenum Disulfide Nanosheet Decorated with Silver Nanoparticles for Selective Detection of Dopamine. Colloids Surf. B Biointerfaces 2019, 176, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Jin, C.; Miao, X.; Shen, Y. Simultaneous Determination of Dopamine and Uric Acid on a MoS2-CPtNPs Nanocomposite-Modified Electrode. Int. J. Electrochem. Sci. 2020, 15, 3969–3979. [Google Scholar] [CrossRef]
- Dou, B.; Yang, J.; Yuan, R.; Xiang, Y. Trimetallic Hybrid Nanoflower-Decorated MoS2 Nanosheet Sensor for Direct in Situ Monitoring of H2O2 Secreted from Live Cancer Cells. Anal. Chem. 2018, 90, 5945–5950. [Google Scholar] [CrossRef]
- Song, D.; Li, Q.; Lu, X.; Li, Y.; Li, Y.; Wang, Y.; Gao, F. Ultra-Thin Bimetallic Alloy Nanowires with Porous Architecture/Monolayer MoS2 Nanosheet as a Highly Sensitive Platform for the Electrochemical Assay of Hazardous Omethoate Pollutant. J. Hazard. Mater. 2018, 357, 466–474. [Google Scholar] [CrossRef]
- Ma, N.; Zhang, T.; Fan, D.; Kuang, X.; Ali, A.; Wu, D.; Wei, Q. Triple Amplified Ultrasensitive Electrochemical Immunosensor for Alpha Fetoprotein Detection Based on MoS2@Cu2O-Au Nanoparticles. Sens. Actuators B Chem. 2019, 297, 126821. [Google Scholar] [CrossRef]
- Jeevanandham, G.; Jerome, R.; Murugan, N.; Preethika, M.; Vediappan, K.; Sundramoorthy, A.K. Nickel Oxide Decorated MoS2 Nanosheet-Based Non-Enzymatic Sensor for the Selective Detection of Glucose. RSC Adv. 2020, 10, 643–654. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Chen, P.; Wen, F.; Zhu, Y.; Zhang, Y. Flower-like Fe2O3@MoS2 Nanocomposite Decorated Glassy Carbon Electrode for the Determination of Nitrite. Sens. Actuators B Chem. 2015, 220, 749–754. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, P.; Wen, F.; Yuan, B.; Wang, H. Fe3O4 Nanospheres on MoS2 Nanoflake: Electrocatalysis and Detection of Cr(VI) and Nitrite. J. Electroanal. Chem. 2016, 761, 14–20. [Google Scholar] [CrossRef]
- Liu, X.; Huo, X.; Liu, P.; Tang, Y.; Xu, J.; Liu, X.; Zhou, Y. Assembly of MoS2 Nanosheet-TiO2 Nanorod Heterostructure as Sensor Scaffold for Photoelectrochemical Biosensing. Electrochim. Acta 2017, 242, 327–336. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, G.; Zhang, Y.; Pang, X.; Cao, W.; Du, B.; Wei, Q. Sandwich-Type Electrochemical Immunosensor for CEA Detection Based on Ag/MoS2@Fe3O4 and an Analogous ELISA Method with Total Internal Reflection Microscopy. Sens. Actuators B Chem. 2018, 266, 561–569. [Google Scholar] [CrossRef]
- Huang, J.; Dong, Z.; Li, Y.; Li, J.; Tang, W.; Yang, H.; Wang, J.; Bao, Y.; Jin, J.; Li, R. MoS2 Nanosheet Functionalized with Cu Nanoparticles and Its Application for Glucose Detection. Mater. Res. Bull. 2013, 48, 4544–4547. [Google Scholar] [CrossRef]
- Zhao, H.; Xu, J.; Sheng, Q.; Zheng, J.; Cao, W.; Yue, T. NiCo2O4 Nanorods Decorated MoS2 Nanosheets Synthesized from Deep Eutectic Solvents and Their Application for Electrochemical Sensing of Glucose in Red Wine and Honey. J. Electrochem. Soc. 2019, 166, H404–H411. [Google Scholar] [CrossRef]
- Xu, J.; Wang, Y.; Hu, S. Nanocomposites of Graphene and Graphene Oxides: Synthesis, Molecular Functionalization and Application in Electrochemical Sensors and Biosensors. A Review. Microchim. Acta 2017, 184, 1–44. [Google Scholar] [CrossRef]
- Bai, S.; Shen, X. Graphene–Inorganic Nanocomposites. RSC Adv. 2012, 2, 64–98. [Google Scholar] [CrossRef]
- Liu, M.; Zhu, H.; Wang, Y.; Sevencan, C.; Li, B.L. Functionalized MoS2-Based Nanomaterials for Cancer Phototherapy and Other Biomedical Applications. ACS Mater. Lett. 2021, 3, 462–496. [Google Scholar] [CrossRef]
- Souri, Z.; Adeli, M.; Mehdipour, E.; Yari, A.; Shams, A.; Beyranvand, S.; Sattari, S. Covalent Decoration of MoS2 Platforms by Silver Nanoparticles through the Reversible Addition–Fragmentation Chain Transfer Reaction. Langmuir 2021, 37, 3382–3390. [Google Scholar] [CrossRef]
- Stergiou, A.; Tagmatarchis, N. Molecular Functionalization of Two-Dimensional MoS2 Nanosheets. Chem. A Eur. J. 2018, 24, 18246–18257. [Google Scholar] [CrossRef]
- Zuo, L.-X.; Jiang, L.-P.; Zhu, J.-J. A Facile Sonochemical Route for the Synthesis of MoS2/Pd Composites for Highly Efficient Oxygen Reduction Reaction. Ultrason. Sonochem. 2017, 35, 681–688. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wong, S.L. Functionalization of 2D Transition Metal Dichalcogenides for Biomedical Applications. Mater. Sci. Eng. C 2017, 70, 1095–1106. [Google Scholar] [CrossRef] [PubMed]
- Mallakpour, S.; Madani, M. A Review of Current Coupling Agents for Modification of Metal Oxide Nanoparticles. Prog. Org. Coat. 2015, 86, 194–207. [Google Scholar] [CrossRef]
- Kumar, S.V.; Ganesan, S. Preparation and Characterization of Gold Nanoparticles with Different Capping Agents. Int. J. Green Nanotechnol. 2011, 3, 47–55. [Google Scholar] [CrossRef]
- Li, W.; Guo, M.; Zhang, G.; Zhang, Y.W. Edge-Specific Au/Ag Functionalization-Induced Conductive Paths in Armchair MoS2 Nanoribbons. Chem. Mater. 2014, 26, 5625–5631. [Google Scholar] [CrossRef]
- Singh, A.; Dahotre, N.B. Laser In-Situ Synthesis of Mixed Carbide Coating on Steel. J. Mater. Sci. 2004, 39, 4553–4560. [Google Scholar] [CrossRef]
- Wang, H.Y.; Jiang, Q.C.; Li, X.L.; Wang, J.G. In Situ Synthesis of TiC/Mg Composites in Molten Magnesium. Scr. Mater. 2003, 48, 1349–1354. [Google Scholar] [CrossRef]
- Eshun, K.; Xiong, H.D.; Yu, S.; Li, Q. Doping Induces Large Variation in the Electrical Properties of MoS2 Monolayers. Solid. State. Electron. 2015, 106, 44–49. [Google Scholar] [CrossRef]
- Viet, N.X.; Hoan, N.X.; Takamura, Y. Development of Highly Sensitive Electrochemical Immunosensor Based on Single-Walled Carbon Nanotube Modified Screen-Printed Carbon Electrode. Mater. Chem. Phys. 2019, 227, 123–129. [Google Scholar] [CrossRef]
- Guo, Q.; Ghadiri, R.; Weigel, T.; Aumann, A.; Gurevich, E.L.; Esen, C.; Medenbach, O.; Cheng, W.; Chichkov, B.; Ostendorf, A. Comparison of in Situ and Ex Situ Methods for Synthesis of Two-Photon Polymerization Polymer Nanocomposites. Polymers 2014, 6, 2037–2050. [Google Scholar] [CrossRef]
- Adnan, M.M.; Dalod, A.R.M.; Balci, M.H.; Glaum, J.; Einarsrud, M.-A. In Situ Synthesis of Hybrid Inorganic–Polymer Nanocomposites. Polymers 2018, 10, 1129. [Google Scholar] [CrossRef] [Green Version]
- Aliofkhazraei, M.; Ali, N. Fabrication and Properties of Micro- and Nanostructured Coatings Using Electrochemical Depositions; Hashmi, S., Batalha, G.F., Van Tyne, C.J., Yilbas, B.B.T.-C.M.P., Eds.; Elsevier: Oxford, UK, 2014; pp. 119–156. [Google Scholar]
- Sahoo, P.; Das, S.K.; Davim, J.P. 3.3 Surface Finish Coatings; Hashmi, M.S.J.B.T.-C.M.F., Ed.; Elsevier: Oxford, UK, 2017; pp. 38–55. [Google Scholar]
- Karatutlu, A.; Barhoum, A.; Sapelkin, A. Chapter 1—Liquid-Phase Synthesis of Nanoparticles and Nanostructured Materials. In Micro and Nano Technologies; Barhoum, A., Makhlouf, A.S., Barhoum, A., Eds.; Elsevier: Oxford, UK, 2018; pp. 1–28. [Google Scholar]
- Bera, D.; Kuiry, S.C.; Seal, S. Synthesis of Nanostructured Materials Using Template-Assisted Electrodeposition. JOM 2004, 56, 49–53. [Google Scholar] [CrossRef]
- Cai, Z.; Yao, Q.; Chen, X.; Wang, X. Chapter 14—Nanomaterials With Different Dimensions for Electrocatalysis. In Novel Nanomaterials for Biomedical, Environmental and Energy Applications, Micro and Nano Technologies; Wang, X., Chen, X., Eds.; Elsevier: London, UK, 2019; pp. 435–464. [Google Scholar]
- Escoubas, L.; Simon, J.J.; Le Rouzo, J.; Bermudez, V. Innovative Approaches in Thin Film Photovoltaic Cells. In Woodhead Publishing Series in Electronic and Optical Materials; Piegari, A., Flory, F., Eds.; Woodhead Publishing: Cambridge, UK, 2013; pp. 596–630. [Google Scholar]
- Yang, S.; Lu, Z.; Luo, S.; Liu, C.; Tang, Y. Direct Electrodeposition of a Biocomposite Consisting of Reduced Graphene Oxide, Chitosan and Glucose Oxidase on a Glassy Carbon Electrode for Direct Sensing of Glucose. Microchim. Acta 2013, 180, 127–135. [Google Scholar] [CrossRef]
- Feng, S.-H.; Li, G.-H. Chapter 4—Hydrothermal and Solvothermal Syntheses. In Modern Inorganic Synthetic Chemistry, 2nd ed.; Xu, R., Xu, Y., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 73–104. [Google Scholar]
- Byrappa, K.; Yoshimura, M. Hydrothermal Technology—Principles and Applications. In Handbook of Hydrothermal Technology; Byrappa, K., Yoshimura, M.B.T.-H., Eds.; William Andrew Publishing: Norwich, NY, USA, 2001; pp. 1–52. [Google Scholar]
- Dang, T.M.D.; Le, T.T.T.; Fribourg-Blanc, E.; Dang, M.C. Synthesis and Optical Properties of Copper Nanoparticles Prepared by a Chemical Reduction Method. Adv. Nat. Sci. Nanosci. Nanotechnol. 2011, 2, 15009. [Google Scholar] [CrossRef]
- Lee, S.M.; Song, K.C.; Lee, B.S. Antibacterial Activity of Silver Nanoparticles Prepared by a Chemical Reduction Method. Korean J. Chem. Eng. 2010, 27, 688–692. [Google Scholar] [CrossRef]
- Govindasamy, M.; Mani, V.; Chen, S.M.; Karthik, R.; Manibalan, K.; Umamaheswari, R. MoS2 Flowers Grown on Graphene/Carbon Nanotubes: A Versatile Substrate for Electrochemical Determination of Hydrogen Peroxide. Int. J. Electrochem. Sci. 2016, 11, 2954–2961. [Google Scholar] [CrossRef]
- Li, C.; Zhang, D.; Wang, J.; Hu, P.; Jiang, Z. Magnetic MoS2 on Multiwalled Carbon Nanotubes for Sulfide Sensing. Anal. Chim. Acta 2017, 975, 61–69. [Google Scholar] [CrossRef]
- Yang, T.; Chen, H.; Ge, T.; Wang, J.; Li, W.; Jiao, K. Highly Sensitive Determination of Chloramphenicol Based on Thin-Layered MoS2/Polyaniline Nanocomposite. Talanta 2015, 144, 1324–1328. [Google Scholar] [CrossRef]
- Sadeghi, M.; Jahanshahi, M.; Javadian, H. Highly Sensitive Biosensor for Detection of DNA Nucleobases: Enhanced Electrochemical Sensing Based on Polyaniline/Single-Layer MoS2 Nanosheets Nanocomposite Modified Carbon Paste Electrode. Microchem. J. 2020, 152, 104315. [Google Scholar] [CrossRef]
- Li, Y.; Lin, H.; Peng, H.; Qi, R.; Luo, C. A Glassy Carbon Electrode Modified with MoS2 Nanosheets and Poly(3,4-Ethylenedioxythiophene) for Simultaneous Electrochemical Detection of Ascorbic Acid, Dopamine and Uric Acid. Microchim. Acta 2016, 183, 2517–2523. [Google Scholar] [CrossRef]
- Huang, K.-J.; Wang, L.; Li, J.; Liu, Y.-M. Electrochemical Sensing Based on Layered MoS2–Graphene Composites. Sens. Actuators B Chem. 2013, 178, 671–677. [Google Scholar] [CrossRef]
- Lee, C.; Rathi, S.; Khan, M.A.; Lim, D.; Kim, Y.; Yun, S.J.; Youn, D.-H.; Watanabe, K.; Taniguchi, T.; Kim, G.-H. Comparison of Trapped Charges and Hysteresis Behavior in HBN Encapsulated Single MoS2 Flake Based Field Effect Transistors on SiO2 and HBN Substrates. Nanotechnology 2018, 29, 335202. [Google Scholar] [CrossRef]
- Mak, K.F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T.F. Atomically thin MoS 2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kadantsev, E.S.; Hawrylak, P. Electronic Structure of a Single MoS2 Monolayer. Solid State Commun. 2012, 152, 909–913. [Google Scholar] [CrossRef]
- Kuc, A.; Zibouche, N.; Heine, T. Influence of Quantum Confinement on the Electronic Structure of the Transition Metal Sulfide T S 2. Phys. Rev. B 2011, 83, 245213. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Galli, G. Electronic Properties of MoS2 Nanoparticles. J. Phys. Chem. C 2007, 111, 16192–16196. [Google Scholar] [CrossRef]
- Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C.-Y.; Galli, G.; Wang, F. Emerging Photoluminescence in Monolayer MoS2. Nano Lett. 2010, 10, 1271–1275. [Google Scholar] [CrossRef] [PubMed]
- Chhowalla, M.; Shin, H.S.; Eda, G.; Li, L.-J.; Loh, K.P.; Zhang, H. The Chemistry of Two-Dimensional Layered Transition Metal Dichalcogenide Nanosheets. Nat. Chem. 2013, 5, 263–275. [Google Scholar] [CrossRef]
- Kim, I.S.; Sangwan, V.K.; Jariwala, D.; Wood, J.D.; Park, S.; Chen, K.-S.; Shi, F.; Ruiz-Zepeda, F.; Ponce, A.; Jose-Yacaman, M.; et al. Influence of Stoichiometry on the Optical and Electrical Properties of Chemical Vapor Deposition Derived MoS2. ACS Nano 2014, 8, 10551–10558. [Google Scholar] [CrossRef] [Green Version]
- Chaabani, R.; Lamouchi, A.; Mari, B.; Chtourou, R. Effect of Sulfurization on Physical and Electrical Properties of MoS2 Films Synthesized by Electrodeposition Route. Mater. Res. Express 2019, 6, 115902. [Google Scholar] [CrossRef]
- Zhan, Y.; Liu, Z.; Najmaei, S.; Ajayan, P.M.; Lou, J. Large-Area Vapor-Phase Growth and Characterization of MoS2 Atomic Layers on a SiO2 Substrate. Small 2012, 8, 966–971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chamlagain, B.; Bhanu, U.; Mou, S.; Khondaker, S.I. Tailoring the Potential Landscape and Electrical Properties of 2D MoS2 Using Gold Nanostructures of Different Coverage Density. J. Phys. Chem. C 2020, 124, 6461–6466. [Google Scholar] [CrossRef]
- Wang, S.Y.; Ko, T.S.; Huang, C.C.; Lin, D.Y.; Huang, Y.S. Optical and Electrical Properties of MoS2and Fe-Doped MoS2. Jpn. J. Appl. Phys. 2014, 53, 04EH07. [Google Scholar] [CrossRef]
- Da Cunha, W.F.; dos Santos, R.M.; de Sousa Júnior, R.T.; Santos, R.B.; e Silva, G.M.; Ribeiro Júnior, L.A. Tuning the Electronic Structure Properties of MoS2 Monolayers with Carbon Doping. Phys. Chem. Chem. Phys. 2019, 21, 11168–11174. [Google Scholar] [CrossRef]
- Zhao, X.; Chen, P.; Xia, C.; Wang, T.; Dai, X. Electronic and Magnetic Properties of N-Type and p-Doped MoS2 Monolayers. RSC Adv. 2016, 6, 16772–16778. [Google Scholar] [CrossRef]
- Khan, M.F.; Nazir, G.; Lermolenko, V.M.; Eom, J. Electrical and Photo-Electrical Properties of MoS2 Nanosheets with and without an Al2O3 Capping Layer under Various Environmental Conditions. Sci. Technol. Adv. Mater. 2016, 17, 166–176. [Google Scholar] [CrossRef] [Green Version]
- Bonaccorso, F.; Bartolotta, A.; Coleman, J.N.; Backes, C. 2D-Crystal-Based Functional Inks. Adv. Mater. 2016, 28, 6136–6166. [Google Scholar] [CrossRef]
- El-Mahalawy, S.H.; Evans, B.L. Temperature Dependence of the Electrical Conductivity and Hall Coefficient in 2H-MoS2, MoSe2, WSe2, and MoTe2. Phys. Status Solidi 1977, 79, 713–722. [Google Scholar] [CrossRef]
- El-Mahalawy, S.H.; Evans, B.L. Pressure Dependence of the Electrical Conductivity in 2H-MoS2 and 2H-WSe2. Phys. Status Solidi 1978, 86, 151–157. [Google Scholar] [CrossRef]
- Kim, E.; Lee, Y.; Ko, C.; Park, Y.; Yeo, J.; Chen, Y.; Choe, H.S.; Allen, F.I.; Rho, J.; Tongay, S.; et al. Tuning the Optical and Electrical Properties of MoS2 by Selective Ag Photo-Reduction. Appl. Phys. Lett. 2018, 113, 13105. [Google Scholar] [CrossRef]
- Wilcoxon, J.P.; Newcomer, P.P.; Samara, G.A. Synthesis and Optical Properties of MoS2 and Isomorphous Nanoclusters in the Quantum Confinement Regime. J. Appl. Phys. 1997, 81, 7934–7944. [Google Scholar] [CrossRef]
- Edvinsson, T. Optical Quantum Confinement and Photocatalytic Properties in Two-, One- and Zero-Dimensional Nanostructures. R. Soc. Open Sci. 2020, 5, 180387. [Google Scholar] [CrossRef] [Green Version]
- Qiao, W.; Yan, S.; Song, X.; Zhang, X.; He, X.; Zhong, W.; Du, Y. Luminescent Monolayer MoS2 Quantum Dots Produced by Multi-Exfoliation Based on Lithium Intercalation. Appl. Surf. Sci. 2015, 359, 130–136. [Google Scholar] [CrossRef]
- Molina-Sánchez, A.; Hummer, K.; Wirtz, L. Vibrational and Optical Properties of MoS2: From Monolayer to Bulk. Surf. Sci. Rep. 2015, 70, 554–586. [Google Scholar] [CrossRef] [Green Version]
- Yim, C.; O’Brien, M.; McEvoy, N.; Winters, S.; Mirza, I.; Lunney, J.G.; Duesberg, G.S. Investigation of the Optical Properties of MoS2 Thin Films Using Spectroscopic Ellipsometry. Appl. Phys. Lett. 2014, 104, 103114. [Google Scholar] [CrossRef] [Green Version]
- Sundaram, R.S.; Engel, M.; Lombardo, A.; Krupke, R.; Ferrari, A.C.; Avouris, P.; Steiner, M. Electroluminescence in Single Layer MoS2. Nano Lett. 2013, 13, 1416–1421. [Google Scholar] [CrossRef] [Green Version]
- Vikraman, D.; Akbar, K.; Hussain, S.; Yoo, G.; Jang, J.-Y.; Chun, S.-H.; Jung, J.; Park, H.J. Direct Synthesis of Thickness-Tunable MoS2 Quantum Dot Thin Layers: Optical, Structural and Electrical Properties and Their Application to Hydrogen Evolution. Nano Energy 2017, 35, 101–114. [Google Scholar] [CrossRef]
- Li, W.; Birdwell, A.G.; Amani, M.; Burke, R.A.; Ling, X.; Lee, Y.-H.; Liang, X.; Peng, L.; Richter, C.A.; Kong, J.; et al. Broadband Optical Properties of Large-Area Monolayer CVD Molybdenum Disulfide. Phys. Rev. B 2014, 90, 195434. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Yan, H.; Brus, L.E.; Heinz, T.F.; Hone, J.; Ryu, S. Anomalous Lattice Vibrations of Single- and Few-Layer MoS2. ACS Nano 2010, 4, 2695–2700. [Google Scholar] [CrossRef] [Green Version]
- Ye, M.; Winslow, D.; Zhang, D.; Pandey, R.; Yap, Y.K. Recent Advancement on the Optical Properties of Two-Dimensional Molybdenum Disulfide (MoS2) Thin Films. Photonics 2015, 2, 288–307. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Xu, J.; Chen, H. Progress in the Studies of Photoelectrochemical Sensors. Sci. China Ser. B Chem. 2009, 52, 1789. [Google Scholar] [CrossRef]
- Shu, J.; Tang, D. Recent Advances in Photoelectrochemical Sensing: From Engineered Photoactive Materials to Sensing Devices and Detection Modes. Anal. Chem. 2020, 92, 363–377. [Google Scholar] [CrossRef] [PubMed]
- Zang, Y.; Lei, J.; Ju, H. Principles and Applications of Photoelectrochemical Sensing Strategies Based on Biofunctionalized Nanostructures. Biosens. Bioelectron. 2017, 96, 8–16. [Google Scholar] [CrossRef]
- Qiu, Z.; Tang, D. Nanostructure-Based Photoelectrochemical Sensing Platforms for Biomedical Applications. J. Mater. Chem. B 2020, 8, 2541–2561. [Google Scholar] [CrossRef] [PubMed]
- Hun, X.; Wang, S.; Wang, S.; Zhao, J.; Luo, X. A Photoelectrochemical Sensor for Ultrasensitive Dopamine Detection Based on Single-Layer NanoMoS2 Modified Gold Electrode. Sens. Actuators B Chem. 2017, 249, 83–89. [Google Scholar] [CrossRef]
- Wang, X.; Deng, H.; Wang, C.; Wei, Q.; Wang, Y.; Xiong, X.; Li, C.; Li, W. A Pro-Gastrin-Releasing Peptide Imprinted Photoelectrochemical Sensor Based on the in Situ Growth of Gold Nanoparticles on a MoS2 Nanosheet Surface. Analyst 2020, 145, 1302–1309. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, Q.; Zhai, T.-T.; Zhou, Y.; Yang, D.-R.; Wang, F.-B.; Xia, X.-H. Localized Surface Plasmon Resonance Enhanced Label-Free Photoelectrochemical Immunoassay by Au-MoS2 Nanohybrid. Electrochim. Acta 2018, 271, 361–369. [Google Scholar] [CrossRef]
- Zhou, W.; Yin, Z.; Du, Y.; Huang, X.; Zeng, Z.; Fan, Z.; Liu, H.; Wang, J.; Zhang, H. Synthesis of Few-Layer MoS2 Nanosheet-Coated TiO2 Nanobelt Heterostructures for Enhanced Photocatalytic Activities. Small 2013, 9, 140–147. [Google Scholar] [CrossRef]
- Ma, C.; Cao, Y.; Gou, X.; Zhu, J.-J. Recent Progress in Electrochemiluminescence Sensing and Imaging. Anal. Chem. 2020, 92, 431–454. [Google Scholar] [CrossRef]
- Li, L.; Chen, Y.; Zhu, J.-J. Recent Advances in Electrochemiluminescence Analysis. Anal. Chem. 2017, 89, 358–371. [Google Scholar] [CrossRef]
- Truong, C.K.P.; Nguyen, T.D.D.; Shin, I.-S. Electrochemiluminescent Chemosensors for Clinical Applications: A Review. BioChip J. 2019, 13, 203–216. [Google Scholar] [CrossRef]
- Rizwan, M.; Mohd-Naim, N.F.; Ahmed, M.U. Trends and Advances in Electrochemiluminescence Nanobiosensors. Sensors 2018, 18, 166. [Google Scholar] [CrossRef] [Green Version]
- Miao, W. 13—Electrogenerated Chemiluminescence. In Handbook of Electrochemistry; Zoski, C.G., Ed.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 541–590. [Google Scholar]
- Chen, Y.; Cao, Y.; Ma, C.; Zhu, J.-J. Carbon-Based Dots for Electrochemiluminescence Sensing. Mater. Chem. Front. 2020, 4, 369–385. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Bai, L.; Lv, H.; Huang, W.; Liu, S.; Ding, S.; Zhao, M. Ultrasensitive Electrochemiluminescent Immunosensing Based on Trimetallic Au–Pd–Pt/MoS2 Nanosheet as Coreaction Accelerator and Self-Enhanced ABEI-Centric Complex. Anal. Chim. Acta 2020, 1125, 86–93. [Google Scholar] [CrossRef]
- Liu, Y.-M.; Zhou, M.; Liu, Y.-Y.; Shi, G.-F.; Zhang, J.-J.; Cao, J.-T.; Huang, K.-J.; Chen, Y.-H. Fabrication of Electrochemiluminescence Aptasensor Based on in Situ Growth of Gold Nanoparticles on Layered Molybdenum Disulfide for Sensitive Detection of Platelet-Derived Growth Factor-BB. RSC Adv. 2014, 4, 22888–22893. [Google Scholar] [CrossRef]
- Kalantar-zadeh, K.; Ou, J.Z. Biosensors Based on Two-Dimensional MoS2. ACS Sensors 2016, 1, 5–16. [Google Scholar] [CrossRef]
- Karunadasa, H.I.; Montalvo, E.; Sun, Y.; Majda, M.; Long, J.R.; Chang, C.J. A Molecular MoS2 Edge Site Mimic for Catalytic Hydrogen Generation. Science 2012, 335, 698–702. [Google Scholar] [CrossRef] [Green Version]
- Tuxen, A.; Kibsgaard, J.; Gøbel, H.; Lægsgaard, E.; Topsøe, H.; Lauritsen, J.V.; Besenbacher, F. Size Threshold in the Dibenzothiophene Adsorption on MoS2 Nanoclusters. ACS Nano 2010, 4, 4677–4682. [Google Scholar] [CrossRef]
- Chia, X.; Ambrosi, A.; Sedmidubský, D.; Sofer, Z.; Pumera, M. Precise Tuning of the Charge Transfer Kinetics and Catalytic Properties of MoS2 Materials via Electrochemical Methods. Chem. A Eur. J. 2014, 20, 17426–17432. [Google Scholar] [CrossRef]
- Wang, D.; Wang, Z.; Wang, C.; Zhou, P.; Wu, Z.; Liu, Z. Distorted MoS2 Nanostructures: An Efficient Catalyst for the Electrochemical Hydrogen Evolution Reaction. Electrochem. Commun. 2013, 34, 219–222. [Google Scholar] [CrossRef]
- Ambrosi, A.; Chia, X.; Sofer, Z.; Pumera, M. Enhancement of Electrochemical and Catalytic Properties of MoS2 through Ball-Milling. Electrochem. Commun. 2015, 54, 36–40. [Google Scholar] [CrossRef]
- Lauritsen, J.V.; Kibsgaard, J.; Olesen, G.H.; Moses, P.G.; Hinnemann, B.; Helveg, S.; Nørskov, J.K.; Clausen, B.S.; Topsøe, H.; Lægsgaard, E.; et al. Location and Coordination of Promoter Atoms in Co- and Ni-Promoted MoS2-Based Hydrotreating Catalysts. J. Catal. 2007, 249, 220–233. [Google Scholar] [CrossRef]
- Keçili, R.; Büyüktiryaki, S.; Hussain, C.M. Chapter 57—Engineered Nanosensors Based on Molecular Imprinting Technology. In Micro and Nano Technologies; Hussain, C.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1031–1046. [Google Scholar]
- Ananda Murthy, H.C.; Wagassa, A.N.; Ravikumar, C.R.; Nagaswarupa, H.P. 17—Functionalized Metal and Metal Oxide Nanomaterial-Based Electrochemical Sensors. In Woodhead Publishing Series in Electronic and Optical Materials; Hussain, C.M., Manjunatha, J.G., Eds.; Woodhead Publishing: Cambridge, UK, 2022; pp. 369–392. [Google Scholar]
- Yogeswaran, U.; Chen, S.-M. A Review on the Electrochemical Sensors and Biosensors Composed of Nanowires as Sensing Material. Sensors 2008, 8, 290–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chao, J.; Zou, M.; Zhang, C.; Sun, H.; Pan, D.; Pei, H.; Su, S.; Yuwen, L.; Fan, C.; Wang, L. A MoS2–Based System for Efficient Immobilization of Hemoglobin and Biosensing Applications. Nanotechnology 2015, 26, 274005. [Google Scholar] [CrossRef]
- Yang, H. Enzyme-Based Ultrasensitive Electrochemical Biosensors. Curr. Opin. Chem. Biol. 2012, 16, 422–428. [Google Scholar] [CrossRef]
- Putzbach, W.; Ronkainen, N.J. Immobilization Techniques in the Fabrication of Nanomaterial-Based Electrochemical Biosensors: A Review. Sensors 2013, 13, 4811–4840. [Google Scholar] [CrossRef]
- Wang, X.; Nan, F.; Zhao, J.; Yang, T.; Ge, T.; Jiao, K. A Label-Free Ultrasensitive Electrochemical DNA Sensor Based on Thin-Layer MoS2 Nanosheets with High Electrochemical Activity. Biosens. Bioelectron. 2015, 64, 386–391. [Google Scholar] [CrossRef]
- Sha, R.; Vishnu, N.; Badhulika, S. MoS2 Based Ultra-Low-Cost, Flexible, Non-Enzymatic and Non-Invasive Electrochemical Sensor for Highly Selective Detection of Uric Acid in Human Urine Samples. Sens. Actuators B Chem. 2019, 279, 53–60. [Google Scholar] [CrossRef]
- Tan, C.; Zhang, H. Two-Dimensional Transition Metal Dichalcogenide Nanosheet-Based Composites. Chem. Soc. Rev. 2015, 44, 2713–2731. [Google Scholar] [CrossRef]
- Bankar, S.B.; Bule, M.V.; Singhal, R.S.; Ananthanarayan, L. Glucose Oxidase—An Overview. Biotechnol. Adv. 2009, 27, 489–501. [Google Scholar] [CrossRef]
- Zhai, Y.; Zhai, S.; Chen, G.; Zhang, K.; Yue, Q.; Wang, L.; Liu, J.; Jia, J. Effects of Morphology of Nanostructured ZnO on Direct Electrochemistry and Biosensing Properties of Glucose Oxidase. J. Electroanal. Chem. 2011, 656, 198–205. [Google Scholar] [CrossRef]
- Ma, K.; Sinha, A.; Dang, X.; Zhao, H. Electrochemical Preparation of Gold Nanoparticles-Polypyrrole Co-Decorated 2D MoS2 Nanocomposite Sensor for Sensitive Detection of Glucose. J. Electrochem. Soc. 2019, 166, B147–B154. [Google Scholar] [CrossRef]
- Waqas, M.; Zulfiqar, A.; Ahmad, H.B.; Akhtar, N.; Hussain, M.; Shafiq, Z.; Abbas, Y.; Mehmood, K.; Ajmal, M.; Yang, M. Fabrication of Highly Stable Silver Nanoparticles with Shape-Dependent Electrochemical Efficacy. Electrochim. Acta 2018, 271, 641–651. [Google Scholar] [CrossRef]
- Su, S.; Cao, W.; Liu, W.; Lu, Z.; Zhu, D.; Chao, J.; Weng, L.; Wang, L.; Fan, C.; Wang, L. Dual-Mode Electrochemical Analysis of MicroRNA-21 Using Gold Nanoparticle-Decorated MoS2 Nanosheet. Biosens. Bioelectron. 2017, 94, 552–559. [Google Scholar] [CrossRef]
- Lin, X.; Ni, Y.; Kokot, S. Electrochemical Cholesterol Sensor Based on Cholesterol Oxidase and MoS2-AuNPs Modified Glassy Carbon Electrode. Sens. Actuators B Chem. 2016, 233, 100–106. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, H.; Huang, C.; Yang, D.; Jia, N. Electrochemical Non-Enzyme Sensor for Detecting Clenbuterol (CLB) Based on MoS2-Au-PEI-Hemin Layered Nanocomposites. Biosens. Bioelectron. 2017, 89, 461–467. [Google Scholar] [CrossRef]
- Bao, J.; Qi, Y.; Huo, D.; Hou, J.; Geng, X.; Samalo, M.; Liu, Z.; Luo, H.; Yang, M.; Hou, C. A Sensitive and Selective Non-Enzymatic Glucose Sensor Based on AuNPs/CuO NWs-MoS2 Modified Electrode. J. Electrochem. Soc. 2019, 166, B1179–B1185. [Google Scholar] [CrossRef]
- Lin, M.; Wan, H.; Zhang, J.; Wang, Q.; Hu, X.; Xia, F. Electrochemical DNA Sensors Based on MoS2-AuNPs for Polynucleotide Kinase Activity and Inhibition Assay. ACS Appl. Mater. Interfaces 2020, 12, 45814–45821. [Google Scholar] [CrossRef]
- Liu, L.; Zhu, S.; Wei, Y.; Liu, X.; Jiao, S.; Yang, J. Ultrasensitive Detection of MiRNA-155 Based on Controlled Fabrication of AuNPs@MoS2 Nanostructures by Atomic Layer Deposition. Biosens. Bioelectron. 2019, 144, 111660. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, Y.; Liang, W.; Yu, X.; Tan, H.; Wang, G.; Li, A.; Jin, J.; Huang, L. Copper Sulfide-Functionalized Molybdenum Disulfide Nanohybrids as Nanoenzyme Mimics for Electrochemical Immunoassay of Myoglobin in Cardiovascular Disease. RSC Adv. 2017, 7, 2486–2493. [Google Scholar] [CrossRef] [Green Version]
- Wan, Y.; Su, Y.; Zhu, X.; Liu, G.; Fan, C. Development of Electrochemical Immunosensors towards Point of Care Diagnostics. Biosens. Bioelectron. 2013, 47, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Lin, Y. Nanomaterial Labels in Electrochemical Immunosensors and Immunoassays. Talanta 2007, 74, 308–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kukkar, M.; Tuteja, S.K.; Kumar, P.; Kim, K.-H.; Bhadwal, A.S.; Deep, A. A Novel Approach for Amine Derivatization of MoS2 Nanosheets and Their Application toward Label-Free Immunosensor. Anal. Biochem. 2018, 555, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Bohli, N.; Belkilani, M.; Mora, L.; Abdelghani, A. Antibody-Functionalised Gold Nanoparticles-Based Impedimetric Immunosensor: Detection Methods for Better Sensitivity. Micro Nano Lett. 2019, 14, 629–633. [Google Scholar] [CrossRef]
- Li, Q.; Liu, D.; Xu, L.; Xing, R.; Liu, W.; Sheng, K.; Song, H. Wire-in-Tube IrOx Architectures: Alternative Label-Free Immunosensor for Amperometric Immunoassay toward α-Fetoprotein. ACS Appl. Mater. Interfaces 2015, 7, 22719–22726. [Google Scholar] [CrossRef]
- Su, S.; Sun, Q.; Wan, L.; Gu, X.; Zhu, D.; Zhou, Y.; Chao, J.; Wang, L. Ultrasensitive Analysis of Carcinoembryonic Antigen Based on MoS2-Based Electrochemical Immunosensor with Triple Signal Amplification. Biosens. Bioelectron. 2019, 140, 111353. [Google Scholar] [CrossRef]
- Wang, X.; Chu, C.; Shen, L.; Deng, W.; Yan, M.; Ge, S.; Yu, J.; Song, X. An Ultrasensitive Electrochemical Immunosensor Based on the Catalytical Activity of MoS2-Au Composite Using Ag Nanospheres as Labels. Sens. Actuators B Chem. 2015, 206, 30–36. [Google Scholar] [CrossRef]
- Ding, H.; Yang, L.; Jia, H.; Fan, D.; Zhang, Y.; Sun, X.; Wei, Q.; Ju, H. Label-Free Electrochemical Immunosensor with Palladium Nanoparticles Functionalized MoS2/NiCo Heterostructures for Sensitive Procalcitonin Detection. Sens. Actuators B Chem. 2020, 312, 127980. [Google Scholar] [CrossRef]
- Yagati, A.K.; Go, A.; Vu, N.H.; Lee, M.-H. A MoS2–Au Nanoparticle-Modified Immunosensor for T3 Biomarker Detection in Clinical Serum Samples. Electrochim. Acta 2020, 342, 136065. [Google Scholar] [CrossRef]
- Giang, H.; Pali, M.; Fan, L.; Suni, I.I. Impedance Biosensing atop MoS2 Thin Films with Mo−S Bond Formation to Antibody Fragments Created by Disulphide Bond Reduction. Electroanalysis 2019, 31, 957–965. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Y.; Yu, H.; Rong, S.; Gao, H.; Meng, L.; Dai, J.; Pan, H.; Chang, D. Spherical Carrier Amplification Strategy for Electrochemical Immunosensor Based on Polystyrene-Gold Nanorods @L-Cysteine/MoS2 for Determination of Tacrolimus. Talanta 2020, 220, 121321. [Google Scholar] [CrossRef]
- Zhou, Q.; Tang, D. Recent Advances in Photoelectrochemical Biosensors for Analysis of Mycotoxins in Food. TrAC Trends Anal. Chem. 2020, 124, 115814. [Google Scholar] [CrossRef]
- Syrek, K.; Skolarczyk, M.; Zych, M.; Sołtys-Mróz, M.; Sulka, G.D. A Photoelectrochemical Sensor Based on Anodic TiO2 for Glucose Determination. Sensors 2019, 19, 4981. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Zhan, W.; Jia, X.; Liu, Q.; Chen, R.; Li, D.; Huang, Y.; Zhang, G.; Ni, H. Rapid Synthesis of Vertically-Aligned Zinc Oxide Nanorods on Stainless Steel for Non-Enzymatic Glucose and H2O2 Photoelectrochemical Sensor. Appl. Surf. Sci. 2019, 480, 341–348. [Google Scholar] [CrossRef]
- Zhang, N.; Ruan, Y.-F.; Ma, Z.-Y.; Zhao, W.-W.; Xu, J.-J.; Chen, H.-Y. Simultaneous Photoelectrochemical and Visualized Immunoassay of β-Human Chorionic Gonadotrophin. Biosens. Bioelectron. 2016, 85, 294–299. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, Y.; Xu, L.; Han, Z.; Yin, H.; Ai, S. Photoelectrochemical Apta-Biosensor for Zeatin Detection Based on Graphene Quantum Dots Improved Photoactivity of Graphite-like Carbon Nitride and Streptavidin Induced Signal Inhibition. Sens. Actuators B Chem. 2018, 257, 237–244. [Google Scholar] [CrossRef]
- Wu, P.; Shao, Q.; Hu, Y.; Jin, J.; Yin, Y.; Zhang, H.; Cai, C. Direct Electrochemistry of Glucose Oxidase Assembled on Graphene and Application to Glucose Detection. Electrochim. Acta 2010, 55, 8606–8614. [Google Scholar] [CrossRef]
- Han, F.; Song, Z.; Nawaz, M.H.; Dai, M.; Han, D.; Han, L.; Fan, Y.; Xu, J.; Han, D.; Niu, L. MoS2/ZnO-Heterostructures-Based Label-Free, Visible-Light-Excited Photoelectrochemical Sensor for Sensitive and Selective Determination of Synthetic Antioxidant Propyl Gallate. Anal. Chem. 2019, 91, 10657–10662. [Google Scholar] [CrossRef]
- Jalali, M.; Moakhar, R.S.; Abdelfattah, T.; Filine, E.; Mahshid, S.S.; Mahshid, S. Nanopattern-Assisted Direct Growth of Peony-like 3D MoS2/Au Composite for Nonenzymatic Photoelectrochemical Sensing. ACS Appl. Mater. Interfaces 2020, 12, 7411–7422. [Google Scholar] [CrossRef]
- Çakıroğlu, B.; Özacar, M. A Photoelectrochemical Biosensor Fabricated Using Hierarchically Structured Gold Nanoparticle and MoS2 on Tannic Acid Templated Mesoporous TiO2. Electroanalysis 2020, 32, 166–177. [Google Scholar] [CrossRef]
- Fu, N.; Hu, Y.; Shi, S.; Ren, S.; Liu, W.; Su, S.; Zhao, B.; Weng, L.; Wang, L. Au Nanoparticles on Two-Dimensional MoS2 Nanosheets as a Photoanode for Efficient Photoelectrochemical MiRNA Detection. Analyst 2018, 143, 1705–1712. [Google Scholar] [CrossRef]
- Sun, J.; Sun, H.; Liang, Z. Nanomaterials in Electrochemiluminescence Sensors. ChemElectroChem 2017, 4, 1651–1662. [Google Scholar] [CrossRef] [Green Version]
- Ravalli, A.; Voccia, D.; Palchetti, I.; Marrazza, G. Electrochemical, Electrochemiluminescence, and Photoelectrochemical Aptamer-Based Nanostructured Sensors for Biomarker Analysis. Biosensors 2016, 6, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Guo, S.; Wang, E. Recent Advances in New Luminescent Nanomaterials for Electrochemiluminescence Sensors. RSC Adv. 2012, 2, 3579–3586. [Google Scholar] [CrossRef]
- Chen, X.; Liu, Y.; Ma, Q. Recent Advances in Quantum Dot-Based Electrochemiluminescence Sensors. J. Mater. Chem. C 2018, 6, 942–959. [Google Scholar] [CrossRef]
- Francis, P.S.; Hogan, C.F. Chapter 13—Luminescence. In Advances in Flow Injection Analysis and Related Techniques; Kolev, S.D., Mckelvie, I.D., Eds.; Elsevier: Amsterdam, The Netherlands, 2008; Volume 54, pp. 343–373. [Google Scholar]
- Fu, X.-L.; Hou, F.; Liu, F.-R.; Ren, S.-W.; Cao, J.-T.; Liu, Y.-M. Electrochemiluminescence Energy Resonance Transfer in 2D/2D Heterostructured g-C3N4/MnO2 for Glutathione Detection. Biosens. Bioelectron. 2019, 129, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wang, C.; Chen, L.; Liu, D. A Novel Electrochemiluminescence Sensor Based on Resonance Energy Transfer System between Nitrogen Doped Graphene Quantum Dots and Boron Nitride Quantum Dots for Sensitive Detection of Folic Acid. Anal. Chim. Acta 2019, 1090, 57–63. [Google Scholar] [CrossRef]
- Zhang, W.; Xiong, H.; Chen, M.; Zhang, X.; Wang, S. Surface-Enhanced Molecularly Imprinted Electrochemiluminescence Sensor Based on Ru@SiO2 for Ultrasensitive Detection of Fumonisin B1. Biosens. Bioelectron. 2017, 96, 55–61. [Google Scholar] [CrossRef]
- Gan, X.; Zhao, H.; Quan, X. Two-Dimensional MoS2: A Promising Building Block for Biosensors. Biosens. Bioelectron. 2017, 89, 56–71. [Google Scholar] [CrossRef]
MoS2-NS Composites | Method of Functionalization | Metal and Metal Oxides Structural Morphology | Size (Diameter) | Type of Sensor | Ref. | |
---|---|---|---|---|---|---|
Ex situ functionalization | MoS2-Au | Post immobilization | Nanoparticles | 5 nm | Electrochemical biosensor | [69] |
TTR-MoS2-Au | Post immobilization | Nanocrystals | - | Photoelectrochemical immunosensor | [80] | |
MoS2-PEI-Au | Post immobilization | Nanoparticles | 12 nm | Electrochemiluminescence immunosensor | [81] | |
CuO-MoS2 | Post immobilization | Nanotubes | 20 nm | Electrochemical sensor | [82] | |
In situ functionalization | MoS2-Au | Electrodeposition | Nanoparticles | 10 m | Electrochemical aptasensor | [13] |
MoS2-MWCNT/Au | Electrodeposition | Nanoparticles | 3–5 nm | Electrochemical sensor | [83] | |
MoS2-Au/Pt | Electrodeposition | Nanoparticles | 100 nm | Electrochemical biosensor | [84] | |
Cu-MoS2 | Electrodeposition | Nanoflowers | - | Electrochemical biosensor | [85] | |
ZnO-MoS2 | Electrodeposition | Nanosheets | 50 nm | Electrochemical sensor | [86] | |
Ni-MoS2-Naf | Chemical reduction | Nanoparticles | 6 nm | Electrochemical sensor | [35] | |
Au-MoS2 | Chemical reduction | Nanoparticles | 80 nm | Electrochemical sensor | [87] | |
N/F/MoS2-Ag | Chemical reduction | Nanoparticles | 3 nm | Electrochemical sensor | [88] | |
Au-Pd/MoS2 | Chemical reduction | Nanoparticles | - | Electrochemical sensor | [89] | |
TiO2-MoS2-Au | Chemical reduction | Nanoparticles | 5–10 nm | Photoelectrochemical aptasensor | [90] | |
Pt-MoS2 | Chemical reduction | Nanoparticles | 2.5 nm | Electrochemical biosensor | [91] | |
PtNi-MoS2 | Chemical reduction | Nanoparticles | 1.35–6.26 nm | Electrochemical sensor | [92] | |
Cu2O-MoS2 | Chemical reduction | Nanoparticles | 6–18 nm | Electrochemical sensor | [93] | |
PtW-MoS2 | Chemical reduction | Nanocubes | 10 nm | Electrochemical sensor | [94] | |
Pd–MoS2 | Chemical reduction | Nanoparticles | - | Electrochemical aptasensor | [95] | |
PtPd-MoS2 | Chemical reduction | Nanocubes | 50 nm | Electrochemical immunosensor | [96] | |
Pt-MoS2 | Chemical reduction | Nanoparticles | - | Electrochemical sensor | [97] | |
Ag-MoS2 | Chemical reduction | Nanoparticles | 5 nm | Electrochemical sensor | [98] | |
MoS2-Pt | Chemical reduction | Clover-like nanoparticles | 15.3–2 nm | Electrochemical sensor | [99] | |
Au−Pd−Pt/MoS2 | Chemical reduction | Nanoflowers | 14–26 nm | Electrochemical sensor | [100] | |
PdNi-MoS2 | Chemical reduction | Nanowires | 0.5–3 nm | Electrochemical sensor | [101] | |
MoS2-Cu2O-Au | Hydrothermal reaction | Nanocrystals | 20–30 nm | Electrochemical immunosensor | [102] | |
NiO-MoS2 | Hydrothermal reaction | Nanoparticles | 38–72 nm | Electrochemical sensor | [103] | |
Fe2O3-MoS2 | Hydrothermal reaction | Nanoflowers | - | Electrochemical sensor | [104] | |
Fe3O4-MoS2 | Hydrothermal reaction | Nanospheres | 20–30 nm | Electrochemical sensor | [105] | |
MoS2-TiO2 | Hydrothermal reaction | Nanorods | 20 nm | Photoelectrochemical biosensing | [106] | |
Ag/MoS2@Fe3O4 | Hydrothermal reaction | Nanospheres | 50 nm | Electrochemical immunosensor | [107] | |
MoS2-Cu2O/Pt | Solvothermal reaction | Nanoparticles | 15 and 3 nm | Electrochemical immunosensor | [70] | |
Cu-MoS2-Naf | Solvothermal reaction | Nanoparticles | 1–5 nm | Electrochemical sensor | [108] | |
NiCo2O4-MoS2 | Solvothermal reaction | Nanorods | - | Electrochemical sensor | [109] |
Sensor | Analyte | Electrochemical Method | Linear Range | LOD | Ref. |
---|---|---|---|---|---|
Au-MoS2/GCE | ATP Thrombin | SWV | 1 nM–10 mM 0.01 nM–10 µM | 0.32 nM 0.0014 nM | [13] |
GCE/Ni-MoS2/Naf | Glucose | Amperometry | 0–4 mM | 0.31 M | [35] |
MoS2/Au/GOx | Glucose | Amperometry | 0.25–13.2 mM | 0.042 µM | [69] |
CuO/MoS2/GCE | Glucose | Amperometry | 35–800 μM | 0.017 μM | [82] |
MoS2−Au/Pt@GCE | H2O2 | Amperometry | 10 μM–19.07 mM | 0.39 μM | [84] |
Cu-MoS2/GCE | H2O2 glucose | Amperometry | 0.04–35.6 μM 1–70 μM | 0.021 μM 0.32 μM | [85] |
ZnO/MoS2/GCE | DNA | DPV | 1.0 fM–1.0 µM | 0.66 fM | [86] |
Au@MoS2/GCE | AA DA UA | DPV | 20–300 µmol/L 5–200 µmol/L 20–400 µmol/L | 3.0 µmol/L 1.0 µmol/L 5.0 µmol/L | [87] |
Au-Pd/MoS2/GCE | H2O2 Glucose | DPV Amperometry | 0.8 µM–10 Mm 0.5–20 mM | 0.16 µM 0.40 mM | [89] |
Pt-MoS2/GCE | H2O2 | Amperometry | 0.004–48.5 mM | 0.001 mM | [91] |
PtNi@MoS2/GCE | DA UA | DPV | 0.5–250 µM 0.5–1800 µM | 0.1 µM 0.1 µM | [92] |
Cu2O/MoS2/GCE | Glucose | Amperometry | 0.01–4.0 mM | 1.0 µM | [93] |
PtW/MoS2/GCE | H2O2 | Chronoamperometry | 1 μM–0.2 mM | 5 nM | [94] |
Pd/PDDA–G–MoS2/GCE | TB | DPV | 0.0001–40 nM | 0.062 pM | [95] |
PtNPs@MoS2/GCE | DA UA | DPV | 0.5–150 μmol/L 5–1000 μmol/L | 0.12 μmol/L 0.8 μmol/L | [97] |
Ag@MoS2/GCE | DA | DPV | 1−500 μM | 0.2 μM | [98] |
MoS2-CPtNPs/GCE | DA UA | DPV | 5–200 µΜ 20–500 μM | 0.39 μM 1.8 μM | [99] |
Laminin/Au−Pd−Pt/MoS2/SPCE | H2O2 | Amperometry | 1–100 nM | 0.3 nM | [100] |
NiO/MoS2/GCE | Glucose | Amperometry | 0.01–10 mM | 1.62 μM | [103] |
GCE/Cu-MoS2/Nafion | Glucose | Amperometry | 0–4 mM | - | [108] |
NiCo2O4-MoS2/chitosan/GCE | Glucose | Amperometry | 0.0007–13.78 mM | 0.23 µM | [109] |
MoS2-PPY-AuNPs/GCE | Glucose | DPV | 0.1–80 nM | 0.08 nM | [206] |
AuNPs@MoS2/GCE | miRNA-21 | DPV | 10 fM–1 nM | 0.78 fM | [208] |
Chox/MoS2-AuNPs/GCE | Cholesterol | Amperometry | 0.5–48 μM | 0.26 ± 0.015 μM | [209] |
MoS2-Au-PEI-hemin | Clenbuterol (CLB) | DPV | 10 ng/mL–2 μg/mL | 1.92 ng/mL | [210] |
NF/AuNPs/CuO-MoS2 | Glucose | Chronoamperometry | 0.5 μM–5.67 mΜ | 0.5 μM | [211] |
MCH/dsDNA/MoS2-AuNPs/GCE | T4 polynucleotide kinase (PNK) | SWV | 0.001–10 U/mL | 2.18 × 10−4 U/mL | [212] |
miRNA/MCH/SH-RNA/AuNPs-MoS2/FTO | MicroRNA-155 | DPV | 1 fM–10 nM | 0.32 fM | [213] |
Sensor | Analyte | Electrochemical Method | Linear Range | LOD | Ref. |
---|---|---|---|---|---|
MoS2@Cu2O-Pt/Ab2 | hepatitis B antigen | Amperometry | 0.5 pg/mL–200 ng/mL | 0.15 pg/mL | [70] |
BSA/anti-HBs/PtPd NCs@MoS2/ GCE | Hepatitis B antigen | DPV | 32 fg/mL–100 ng/mL | 10.2 fg/mL | [96] |
MoS2@Cu2O-Au-Ab2 | Alpha fetoprotein (AFP) | Amperometry | 0.1 pg/mL–50 ng/mL | 0.037 pg/mL | [102] |
Ab2-Ag/MoS2@Fe3O4/MGCE | carcinoembryonic antigen (CEA) | DPV | 0.0001–20 ng/mL | 0.03 pg/mL | [107] |
HRP/HRP-anti-CEA/MoS2-AuNPs | carcinoembryonic antigen (CEA) | DPV | 10 fg/mL–1 ng/mL | 1.2 fg/mL | [220] |
GCE/MoS2-Au-Ab1 | CEA | DPV | 1 pg/mL–50 ng/mL | 0.27 pg/mL | [221] |
Pd NPs@MoS2/NiCo | Procalcitonin | Chronoamperometry | 0.001–50 ng/mL | 0.36 pg/mL | [222] |
Au-MoS2/ITO | Triiodothyronine (T3) | EIS | 0.01–100 ng/mL | 2.5 pg/mL | [223] |
Cu-MoS2/GCE | 3-phenoxybenzoic acid (3-PBA), | EIS | 0–6 µg/mL | 3.8 µM | [224] |
Tac/BSA/Ab/PS-AuNRs@L-Cys-MoS2/GCE | Tacrolimus (Tac) | DPV | 1.0–30 ng/mL | 0.17 ng/mL | [225] |
Sensor | Analyte | Linear Range | LOD | Ref. |
---|---|---|---|---|
TTR/AuCNs/MoS2/GCE | Tetrabromobisphenol A | 0.1 nM−1.0 µM. | 0.045 nM | [80] |
BSA|aptamer|TiO2-MoS2-AuNP|ITO | kanamycin | 0.2 nM−450 nM | 0.05 nM | [90] |
GOx|MoS2-TiO2|ITO | Glucose | 0.1−10.5 mM | 0.015 mM | [106] |
MoS2-ZnO|ITO | Propyl gallate | 0.1249−1643 μmol/L | 1.2 × 10−8 mol/L | [232] |
Au/MoS2/TiO2 | Glucose | 5−1000 μM | 1.3 nM | [233] |
Pro-GRP-MIP/AuNPs/2D-MoS2/GCE | Pro-gastrin-releasing peptide (Pro-GRP) | 0.02–5 ng/mL | 0.0032 ng/mL | [177] |
Au-MoS2/FTO | anti-human IgG | 41.7 nM–4.17 μM | 4.17 nM | [178] |
ITO/MTiO2-AuNPs-MoS2-GOx | Glucose | 0.004–1.75 mM | 1.2 μM | [234] |
biotin DNA/MoS2-AuNPs/ITO | miRNA | 10 fM–1 nM | 4.21 fM | [235] |
Sensor | Analyte | Linear Range | LOD | Ref. |
---|---|---|---|---|
luminol-Au@BSA-Ab2/AFP/BSAT/Ab1/Chi/MoS2-PEI-Au/GCE. | Alpha fetal protein (AFP), | 0.0001−200.0 ng/mL | 1.0 × 10−5 ng/mL | [81] |
BSA/Ab2/ABEI-Cys/Au–Pd–Pt/MoS2 | cystatin C (CYSC) | 1.0 fg/mL−5.0 ng/mL | 0.35 fg/mL | [186] |
QDs–Apt2/PDGF-BB/Apt1/MoS2–AuNPs/GCE | platelet-derived growth factor-BB | 0.01−100 pmol/L | 1.1 fmol/L | [187] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mphuthi, N.; Sikhwivhilu, L.; Ray, S.S. Functionalization of 2D MoS2 Nanosheets with Various Metal and Metal Oxide Nanostructures: Their Properties and Application in Electrochemical Sensors. Biosensors 2022, 12, 386. https://doi.org/10.3390/bios12060386
Mphuthi N, Sikhwivhilu L, Ray SS. Functionalization of 2D MoS2 Nanosheets with Various Metal and Metal Oxide Nanostructures: Their Properties and Application in Electrochemical Sensors. Biosensors. 2022; 12(6):386. https://doi.org/10.3390/bios12060386
Chicago/Turabian StyleMphuthi, Ntsoaki, Lucky Sikhwivhilu, and Suprakas Sinha Ray. 2022. "Functionalization of 2D MoS2 Nanosheets with Various Metal and Metal Oxide Nanostructures: Their Properties and Application in Electrochemical Sensors" Biosensors 12, no. 6: 386. https://doi.org/10.3390/bios12060386
APA StyleMphuthi, N., Sikhwivhilu, L., & Ray, S. S. (2022). Functionalization of 2D MoS2 Nanosheets with Various Metal and Metal Oxide Nanostructures: Their Properties and Application in Electrochemical Sensors. Biosensors, 12(6), 386. https://doi.org/10.3390/bios12060386