Label-Free miRNA-21 Analysis Based on Strand Displacement and Terminal Deoxynucleotidyl Transferase-Assisted Amplification Strategy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Apparatus
2.3. Optimization of the Experimental Conditions
2.4. MiRNA-21 Assay
2.5. Selectivity Assay
2.6. Assay for MiRNA-21 in Biologic Sample
3. Results
3.1. Principle of the MiRNA-21 Detection
3.2. Feasibility of MiRNA-21 Assay
3.3. Optimization of Experimental Conditions
3.4. Quantitative Measurement of MiRNA-21
3.5. Selectivity of the MiRNA-21 Assay
3.6. Application of the Method in the Determination of Biological Systems
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, R.C.; Feinbaum, R.L.; Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993, 75, 843–854. [Google Scholar] [CrossRef]
- Bartel, D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef] [Green Version]
- Garzon, R.; Marcucci, G.; Croce, C.M. Targeting microRNAs in cancer: Rationale, strategies and challenges. Nat. Rev. Drug Discov. 2010, 9, 775–789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, Z.; Huang, J.; He, H.; Ma, C.; Wang, K. Contributing to liquid biopsy: Optical and electrochemical methods in cancer biomarker analysis. Coord. Chem. Rev. 2020, 415, 213317. [Google Scholar] [CrossRef]
- Ge, J.; Hu, Y.; Deng, R.; Li, Z.; Zhang, K.; Shi, M.; Yang, D.; Cai, R.; Tan, W. Highly sensitive MicroRNA detection by coupling nicking-enhanced rolling circle amplification with MoS2 quantum dots. Anal. Chem. 2020, 92, 13588–13594. [Google Scholar] [CrossRef]
- Aushev, V.N.; Lee, E.; Zhu, J.; Gopalakrishnan, K.; Li, Q.; Teitelbaum, S.L.; Wetmur, J.; Esposti, D.D.; Hernandez-Vargas, H.; Herceg, Z.; et al. Novel predictors of breast cancer survival derived from miRNA activity analysis. Clin. Cancer Res. 2018, 24, 581–591. [Google Scholar] [CrossRef] [Green Version]
- Dieckmann, K.-P.; Radtke, A.; Geczi, L.; Matthies, C.; Anheuser, P.; Eckardt, U.; Sommer, J.; Zengerling, F.; Trenti, E.; Pichler, R.; et al. Serum levels of MicroRNA-371a-3p (M371 Test) as a new biomarker of testicular germ cell tumors: Results of a prospective multicentric study. J. Clin. Oncol. 2019, 37, 1412–1423. [Google Scholar] [CrossRef]
- Lim, E.L.; Trinh, D.L.; Ries, R.E.; Wang, J.; Gerbing, R.B.; Ma, Y.; Topham, J.; Hughes, M.; Pleasance, E.; Mungall, A.J.; et al. MicroRNA expression-based model indicates event-free survival in pediatric acute myeloid leukemia. J. Clin. Oncol. 2017, 35, 3964–3977. [Google Scholar] [CrossRef] [Green Version]
- Esquela-Kerscher, A.; Slack, F. Oncomirs—MicroRNAs with a role in cancer. Nat. Cancer 2006, 6, 259–269. [Google Scholar] [CrossRef]
- Jet, T.; Gines, G.; Rondelez, Y.; Taly, V. Advances in multiplexed techniques for the detection and quantification of microRNAs. Chem. Soc. Rev. 2021, 50, 4141–4161. [Google Scholar] [CrossRef]
- Gumireddy, K.; Young, D.D.; Xiong, X.; Hogenesch, J.B.; Huang, Q.; Deiters, A. Small-molecule inhibitors of microrna miR-21 function. Angew. Chem. 2008, 120, 7592–7594. [Google Scholar] [CrossRef]
- Peng, H.; Newbigging, A.M.; Reid, M.S.; Uppal, J.S.; Xu, J.; Zhang, H.; Le, X.C. Signal amplification in living cells: A review of microRNA detection and imaging. Anal. Chem. 2020, 92, 292–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.; Ridzon, D.A.; Broomer, A.J.; Zhou, Z.; Lee, D.H.; Nguyen, J.T.; Barbisin, M.; Xu, N.L.; Mahuvakar, V.R.; Andersen, M.R.; et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 2005, 33, e179. [Google Scholar] [CrossRef] [PubMed]
- Castoldi, M.; Schmidt, S.; Benes, V.; Noerholm, M.; Kulozik, A.E.; Hentze, M.W.; Muckenthaler, M.U. A sensitive array for microRNA expression profiling (miChip) based on locked nucleic acids (LNA). RNA 2006, 12, 913–920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, H.; Lei, J.; Ding, L.; Wen, Y.; Ju, H.; Zhang, X. MicroRNA: Function, detection, and bioanalysis. Chem. Rev. 2013, 113, 6207–6633. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Li, G.; Cao, S.; Liu, B.; Ren, X.; Kang, N.; Qiu, F. Target-triggered entropy-driven amplification system-templated silver nanoclusters for multiplexed microRNA analysis. Biosens. Bioelectron. 2021, 172, 112757. [Google Scholar] [CrossRef]
- Li, Y.; Yue, S.; Qi, H.; Ding, C.; Song, W.; Bi, S. Target-triggered dynamic hairpin assembly for signal amplification of microRNA and oncogenes and its application in live-cell imaging. Chem. Commun. 2019, 55, 4103–4106. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.Y.; Song, J.; Park, H.G. Ultrasensitive isothermal method to detect microRNA based on target-induced chain amplification reaction. Biosens. Bioelectron. 2021, 178, 113048. [Google Scholar] [CrossRef]
- Yuan, R.; Yu, X.; Zhang, Y.; Xu, L.; Cheng, W.; Tu, Z.; Ding, S. Target-triggered DNA nanoassembly on quantum dots and DNAzyme-modulated double quenching for ultrasensitive microRNA biosensing. Biosens. Bioelectron. 2017, 92, 342–348. [Google Scholar] [CrossRef]
- Chen, M.; Ma, C.; Yan, Y.; Zhao, H. A label-free fluorescence method based on terminal deoxynucleotidyl transferase and thioflavin T for detecting prostate-specific antigen. Anal. Bioanal. Chem. 2019, 411, 5779–5784. [Google Scholar] [CrossRef]
- Liu, Y.; Shen, T.; Li, J.; Gong, H.; Chen, C.; Chen, X.; Cai, C. Ratiometric fluorescence sensor for the MicroRNA determination by catalyzed hairpin assembly. ACS Sens. 2017, 2, 1430–1434. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.; Gui, G.-F.; Zhuo, Y.; Chai, Y.-Q.; Xiang, Y.; Yuan, R. Signal-off electrochemiluminescence biosensor based on Phi29 DNA polymerase mediated strand displacement amplification for MicroRNA detection. Anal. Chem. 2015, 87, 6328–6334. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Rong, Q.; Ke, G.; Zhang, M.; Li, J.; Li, Y.; Liu, Y.; Chen, M.; Zhang, X.B. Efficient and reliable MicroRNA imaging in living cells via a FRET-based localized hairpin-DNA cascade amplifier. Anal. Chem. 2019, 91, 3675–3680. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Wang, T.; Bai, Y.; Li, Y.; Qiu, J.; Yu, W.; Zhang, S. Dual-amplified strategy for ultrasensitive electrochemical biosensor based on click chemistry-mediated enzyme-assisted target recycling and functionalized fullerene nanoparticles in the detection of microRNA-141. Biosens. Bioelectron. 2020, 150, 111964. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.; Xu, Z.; Chai, Y.; Wang, H.; Yuan, R. An ultrasensitive electrochemiluminescence biosensor for multiple detection of microRNAs based on a novel dual circuit catalyzed hairpin assembly. Chem. Commun. 2018, 54, 10148–10151. [Google Scholar] [CrossRef]
- Hu, Z.; Xu, F.; Sun, G.; Zhang, S.; Zhang, X. Homogeneous multiplexed digital detection of microRNA with ligation-rolling circle amplification. Chem. Commun. 2020, 56, 5409–5412. [Google Scholar] [CrossRef]
- Chen, M.; Tang, Z.; Ma, C.; Yan, Y. A fluorometric aptamer based assay for prostate specific antigen based on enzyme-assisted target recycling. Sens. Actuators B Chem. 2020, 302, 127178. [Google Scholar] [CrossRef]
- Mohanty, J.; Barooah, N.; Dhamodharan, V.; Harikrishna, S.; Pradeepkumar, P.I.; Bhasikuttan, A.C. Thioflavin T as an Efficient Inducer and Selective Fluorescent Sensor for the Human Telomeric G-Quadruplex DNA. J. Am. Chem. Soc. 2012, 135, 367–376. [Google Scholar] [CrossRef]
- Zhao, H.; Ma, C.; Chen, M. A novel fluorometric method for inorganic pyrophosphatase detection based on G-quadruplex-thioflavin T. Mol. Cell. Probes 2018, 43, 29–33. [Google Scholar] [CrossRef]
- Fakhri, N.; Abarghoei, S.; Dadmehr, M.; Hosseini, M.; Sabahi, H.; Ganjali, M.R. Paper based colorimetric detection of miRNA-21 using Ag/Pt nanoclusters. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 227, 117529. [Google Scholar] [CrossRef]
- Azzouzi, S.; Mak, W.C.; Kor, K.; Turner, A.P.F.; Ali, M.B.; Beni, V. An integrated dual functional recognition/amplification bio-label for the one-step impedimetric detection of Micro-RNA-21. Biosens. Bioelectron. 2017, 92, 154–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miao, X.; Ning, X.; Li, Z.; Cheng, Z. Sensitive detection of miRNA by using hybridization chain reaction coupled with positively charged gold nanoparticles. Sci. Rep. 2016, 6, 32358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.; Lv, W.; Yang, Q.; Li, H.; Li, F. Label-free homogeneous electrochemical detection of MicroRNA based on target-induced anti-shielding against the catalytic activity of two-dimension nanozyme. Biosens. Bioelectron. 2021, 171, 112707. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Wang, S.; Zhao, J.; Sun, J.; Yang, X. Fluorescence light-up biosensor for MicroRNA based on the distance-dependent photoinduced electron transfer. Anal. Chem. 2017, 89, 8429–8436. [Google Scholar] [CrossRef]
- Duan, L.-Y.; Liu, J.-W.; Yu, R.-Q.; Jiang, J.-H. DNAzyme cascade circuits in highly integrated DNA nanomachines for sensitive microRNAs imaging in living cells. Biosens. Bioelectron. 2021, 177, 112976. [Google Scholar] [CrossRef]
- Feng, Y.; Liu, Q.; Zhao, X.; Chen, M.; Sun, X.; Li, H.; Chen, X. Framework nucleic acid-based spatial-confinement amplifier for miRNA imaging in living cells. Anal. Chem. 2022, 94, 2934–2941. [Google Scholar] [CrossRef]
- Wu, Y.; Meng, H.-M.; Chen, J.; Jiang, K.; Yang, R.; Li, Y.; Zhang, K.; Qu, L.; Zhang, X.-B.; Li, Z. Accelerated DNAzyme-based fluorescent nanoprobe for highly sensitive microRNA detection in live cells. Chem. Commun. 2020, 56, 470–473. [Google Scholar] [CrossRef]
- Yang, X.-J.; Cui, M.-R.; Li, X.-L.; Chen, H.-Y.; Xu, J.-J. A self-powered 3D DNA walker with programmability and signal-amplification for illuminating microRNA in living cells. Chem. Commun. 2020, 56, 2135–2138. [Google Scholar] [CrossRef]
Methods | Materials | LOD (nM) | Dynamic Range (pM) | Reference |
---|---|---|---|---|
Colorimetric | Ag/Pt nanocluster | 0.01–1 | 4.1 | [30] |
Electrochemical | Au nanoparticle | 0.001–1 | 0.3 | [31] |
Electrochemical | Au nanoparticle | 0.002–10 | 6.8 | [32] |
Electrochemical | MnO2 nanoflake | 0.4–100 | 250.0 | [33] |
Fluorescence | Ag nanocluster | 0.1–8000 | 60.0 | [34] |
Fluorescence | 2-Aminopurine/ThT | 0.5–50 | 72.0 | [21] |
Fluorescence | DNA nanomachine | 0.1–10 | 80.0 | [35] |
Fluorescence | Framework nucleic acid | 0–500 | 40 | [36] |
Fluorescence | DNA nanowire | 0.01–1 | 1.2 | [37] |
Fluorescence | ThT | 0.002–10 | 1.7 | This work |
Sample | Added (nM) | Found (nM) | Recovery (%) | RSD (%) |
---|---|---|---|---|
1 | 3 | 2.834 ± 0.308 | 94.45 | 9.6 |
2 | 5 | 5.290 ± 0.571 | 105.8 | 9.55 |
3 | 7 | 6.878 ± 0.103 | 98.26 | 1.49 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Y.; Zhao, H.; Fang, Y.; Ma, C.; Chen, J. Label-Free miRNA-21 Analysis Based on Strand Displacement and Terminal Deoxynucleotidyl Transferase-Assisted Amplification Strategy. Biosensors 2022, 12, 328. https://doi.org/10.3390/bios12050328
Yan Y, Zhao H, Fang Y, Ma C, Chen J. Label-Free miRNA-21 Analysis Based on Strand Displacement and Terminal Deoxynucleotidyl Transferase-Assisted Amplification Strategy. Biosensors. 2022; 12(5):328. https://doi.org/10.3390/bios12050328
Chicago/Turabian StyleYan, Ying, Han Zhao, Yukang Fang, Changbei Ma, and Junxiang Chen. 2022. "Label-Free miRNA-21 Analysis Based on Strand Displacement and Terminal Deoxynucleotidyl Transferase-Assisted Amplification Strategy" Biosensors 12, no. 5: 328. https://doi.org/10.3390/bios12050328
APA StyleYan, Y., Zhao, H., Fang, Y., Ma, C., & Chen, J. (2022). Label-Free miRNA-21 Analysis Based on Strand Displacement and Terminal Deoxynucleotidyl Transferase-Assisted Amplification Strategy. Biosensors, 12(5), 328. https://doi.org/10.3390/bios12050328