Development of a Linear Immobilization Carrier-Based Immunoassay for Aflatoxin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Linear Material
2.3. Development of Anti-AFB1 Monoclonal Antibody (mAb)
2.4. Preparation of Linear Materials
2.5. Screening of Immobilizable Materials for Antibody Protein
2.6. ELISA Experiment Based on Linear Materials
2.7. Matrix Effect of Line-Load ELISA
2.8. Evaluation of Line-Load ELISA Detection Technology
2.9. 96-Well Microplate Sensitivity Determination
3. Results and Discussion
3.1. Determination of Linear Material Pretreatment Scheme
3.2. Material Screening to Demonstrate That mAb Can Be Immobilized
3.3. Establishment of Standard Curves Based on Linear Material
3.4. Matrix Effect of Line-Load ELISA
3.5. Evaluation of Line-Load ELISA Detection Technology
3.6. Comparison of Traditional Detection Methods for AFB1
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, S.; Ge, L.; Song, X.; Yu, J.; Ge, S.; Huang, J.; Zeng, F. Paper-based chemiluminescence ELISA: Lab-on-paper based on chitosan modified paper device and wax-screen-printing. Biosens. Bioelectron. 2012, 31, 212–218. [Google Scholar] [CrossRef]
- Wang, P.; Ge, L.; Yan, M.; Song, X.; Ge, S.; Yu, J. Paper-based three-dimensional electrochemical immunodevice based on multi-walled carbon nanotubes functionalized paper for sensitive point-of-care testing. Biosens. Bioelectron. 2012, 32, 238–243. [Google Scholar] [CrossRef]
- Lei, K.F.; Yang, S.I.; Tsai, S.W.; Hsu, H.T. Paper-based microfluidic sensing device for label-free immunoassay demonstrated by biotin-avidin binding interaction. Talanta 2015, 134, 264–270. [Google Scholar] [CrossRef]
- Shim, B.S.; Chen, W.; Doty, C.; Xu, C.; Kotov, N.A. Smart Electronic Yarns and Wearable Fabrics for Human Biomonitoring made by Carbon Nanotube Coating with Polyelectrolytes. Nano Lett. 2008, 8, 4151–4157. [Google Scholar] [CrossRef]
- Abouraddy, A.F.; Bayindir, M.; Benoit, G.; Hart, S.D.; Kuriki, K.; Orf, N.; Shapira, O.; Sorin, F.; Temelkuran, B.; Fink, Y.J.N.M. Towards multimaterial multifunctional fibres that see, hear, sense and communicate. Nat. Mater. 2007, 6, 336–347. [Google Scholar] [CrossRef]
- Hamedi, M.; Forchheimer, R.; Ingans, O.J.N.M. Towards woven logic from organic electronic fibres. Nat. Mater. 2007, 6, 357–362. [Google Scholar] [CrossRef]
- Zhou, G.; Mao, X.; Juncker, D. Immunochromatographic assay on thread. Anal. Chem. 2012, 84, 7736–7743. [Google Scholar] [CrossRef]
- Seth, M.; Mdetele, D.; Buza, J. Immunochromatographic thread-based test platform for diagnosis of infectious diseases. Microfluid. Nanofluidics 2018, 22, 45. [Google Scholar] [CrossRef]
- Meng, L.-L.; Song, T.-T.; Mao, X. Novel immunochromatographic assay on cotton thread based on carbon nanotubes reporter probe. Talanta 2017, 167, 379–384. [Google Scholar] [CrossRef]
- Mao, X.; Du, T.E.; Wang, Y.; Meng, L. Disposable dry-reagent cotton thread-based point-of-care diagnosis devices for protein and nucleic acid test. Biosens. Bioelectron. 2015, 65, 390–396. [Google Scholar] [CrossRef]
- Mao, X.; Du, T.-E.; Meng, L.; Song, T. Novel gold nanoparticle trimer reporter probe combined with dry-reagent cotton thread immunoassay device for rapid human ferritin test. Anal. Chim. Acta 2015, 889, 172–178. [Google Scholar] [CrossRef]
- Jia, X.; Song, T.; Liu, Y.; Meng, L.; Mao, X. An immunochromatographic assay for carcinoembryonic antigen on cotton thread using a composite of carbon nanotubes and gold nanoparticles as reporters. Anal. Chim. Acta 2017, 969, 57–62. [Google Scholar] [CrossRef]
- Barany, A.; Guilloto, M.; Cosano, J.; de Boevre, M.; Oliva, M.; de Saeger, S.; Fuentes, J.; Martínez-Rodriguez, G.; Mancera, J.M. Dietary aflatoxin B1 (AFB1) reduces growth performance, impacting growth axis, metabolism, and tissue integrity in juvenile gilthead sea bream (Sparus aurata). Aquaculture 2021, 533, 736189. [Google Scholar] [CrossRef]
- Akhtar, S.; Riaz, M.; Naeem, I.; Gong, Y.Y.; Ismail, A.; Hussain, M.; Akram, K. Risk assessment of aflatoxins and selected heavy metals through intake of branded and non-branded spices collected from the markets of Multan city of Pakistan. Food Control 2020, 112, 107132. [Google Scholar] [CrossRef]
- Pires, S.M.; Devleesschauwer, B. Estimates of global disease burden associated with foodborne pathogens. In Foodborne Infections and Intoxications; Academic Press: Cambridge, MA, USA, 2021. [Google Scholar]
- Yu, L.; Ma, F.; Ding, X.; Wang, H.; Li, P. Silica/graphene oxide nanocomposites: Potential adsorbents for solid phase extraction of trace aflatoxins in cereal crops coupled with high performance liquid chromatography. Food Chem. 2018, 245, 1018–1024. [Google Scholar] [CrossRef]
- Sobolev, V.; Arias, R.; Goodman, K.; Walk, T.; Orner, V.; Faustinelli, P.; Massa, A. Suppression of aflatoxin production in aspergillus species by selected peanut (Arachis hypogaea) stilbenoids. J. Agric. Food Chem. 2018, 66, 118–126. [Google Scholar] [CrossRef] [Green Version]
- Aristil, J.; Venturini, G.; Maddalena, G.; Toffolatti, S.L.; Spada, A. Fungal contamination and aflatoxin content of maize, moringa and peanut foods from rural subsistence farms in South Haiti. J. Stored Prod. Res. 2020, 85, 101550. [Google Scholar] [CrossRef]
- Mary, V.S.; Valdehita, A.; Navas, J.M.; Rubinstein, H.R.; Fernandez-Cruz, M.L. Effects of aflatoxin B1, fumonisin B1 and their mixture on the aryl hydrocarbon receptor and cytochrome P450 1A induction. Food Chem. Toxicol. 2015, 75, 104–111. [Google Scholar] [CrossRef]
- Wang, L.; He, L.; Zeng, H.; Fu, W.; Wang, J.; Tan, Y.; Zheng, C.; Qiu, Z.; Luo, J.; Lv, C.; et al. Low-dose microcystin-LR antagonizes aflatoxin B1 induced hepatocarcinogenesis through decreasing cytochrome P450 1A2 expression and aflatoxin B1-DNA adduct generation. Chemosphere 2020, 248, 126036. [Google Scholar] [CrossRef]
- Dai, Y.; Huang, K.; Zhang, B.; Zhu, L.; Xu, W. Aflatoxin B1-induced epigenetic alterations: An overview. Food Chem. Toxicol. 2017, 109, 683–689. [Google Scholar] [CrossRef]
- Klvana, M.; Bren, U.J.M. Aflatoxin B1–Formamidopyrimidine DNA Adducts: Relationships between structures, free energies, and melting temperatures. Molecules 2019, 24, 150. [Google Scholar] [CrossRef] [Green Version]
- Ivanovics, B.; Gazsi, G.; Reining, M.; Berta, I.; Poliska, S.; Toth, M.; Domokos, A.; Nagy, B., Jr.; Staszny, A.; Cserhati, M.; et al. Embryonic exposure to low concentrations of aflatoxin B1 triggers global transcriptomic changes, defective yolk lipid mobilization, abnormal gastrointestinal tract development and inflammation in zebrafish. J. Hazard. Mater. 2021, 416, 125788. [Google Scholar] [CrossRef]
- Qu, L.-L.; Jia, Q.; Liu, C.; Wang, W.; Duan, L.; Yang, G.; Han, C.-Q.; Li, H. Thin layer chromatography combined with surface-enhanced raman spectroscopy for rapid sensing aflatoxins. J. Chromatogr. A 2018, 1579, 115–120. [Google Scholar] [CrossRef]
- Nouri, N.; Sereshti, H. Electrospun polymer composite nanofiber-based in-syringe solid phase extraction in tandem with dispersive liquid-liquid microextraction coupled with HPLC-FD for determination of aflatoxins in soybean. Food Chem. 2019, 289, 33–39. [Google Scholar] [CrossRef]
- Beltran, E.; Ibanez, M.; Portoles, T.; Ripolles, C.; Sancho, J.V.; Yusa, V.; Marin, S.; Hernandez, F. Development of sensitive and rapid analytical methodology for food analysis of 18 mycotoxins included in a total diet study. Anal. Chim. Acta 2013, 783, 39–48. [Google Scholar] [CrossRef]
- Chen, J.; Liu, F.; Li, Z.; Tan, L.; Zhang, M.; Xu, D. Solid phase extraction based microfluidic chip coupled with mass spectrometry for rapid determination of aflatoxins in peanut oil. Microchem. J. 2021, 167, 106298. [Google Scholar] [CrossRef]
- Xu, X.; Xu, X.; Han, M.; Qiu, S.; Hou, X. Development of a modified QuEChERS method based on magnetic multiwalled carbon nanotubes for the simultaneous determination of veterinary drugs, pesticides and mycotoxins in eggs by UPLC-MS/MS. Food Chem. 2019, 276, 419–426. [Google Scholar] [CrossRef]
- Zhang, D.; Li, P.; Zhang, Q.; Zhang, W.; Huang, Y.; Ding, X.; Jiang, J. Production of ultrasensitive generic monoclonal antibodies against major aflatoxins using a modified two-step screening procedure. Anal. Chim. Acta 2009, 636, 63–69. [Google Scholar] [CrossRef]
- Butler, J.E.; Heyermann, H.; Borca, M.; Bielecka, M.; Frenyo, L.V. The isotypic, allotypic and idiotypic heterogeneity of bovine IgG2. Vet. Immunol. Immunopathol. 1987, 17, 125–134. [Google Scholar] [CrossRef]
Number | Name of Material | Number | Name of Material |
---|---|---|---|
N.1 | Nylon monofilament | N.15 | Aramid thread |
N.2 | Polyester monofilament | N.16 | Silk thread |
N.3 | Acrylic monofilament | N.17 | Egyptian cotton thread |
N.4 | Polypropylene monofilament | N.18 | Steel wire |
N.5 | Polyphenylene sulfide fiber | N.19 | Elastic line |
N.6 | Flat wax line | N.20 | Fibrous hair |
N.7 | Polyvinylidene fluoride filaments | N.21 | Cotton hemp thread |
N.8 | Polyethylene line | N.22 | Aluminum steel |
N.9 | Reflective thread | N.23 | Mercerized cotton |
N.10 | Rattan thread | N.24 | Silk thread |
N.11 | Nylon thread | N.25 | Cotton thread |
N.12 | Hemp thread | N.26 | Dyneema |
N.13 | Conducting monofilament | N.27 | EP monofilament |
N.14 | Cashmere thread | N.28 | Polyethylene line |
Spiked (ng/mL) | Line-Load ELISA Mean ± SD (μg/mL) | Recovery (%) | CV (%) | |
---|---|---|---|---|
Intra-assay (n = 5) | 0.5 | 0.48 ± 0.04 | 95.88 | 8.32 |
1 | 1.12 ± 0.09 | 112.88 | 8.10 | |
2 | 1.99 ± 0.20 | 99.64 | 10.12 | |
Inter-assay (n = 5) | 0.5 | 0.44 ± 0.05 | 87.88 | 11.80 |
1 | 0.95 ± 0.12 | 95.26 | 12.87 | |
2 | 1.80 ± 0.13 | 90.18 | 7.27 |
Detection Method | Carrier Elements | Characteristics |
---|---|---|
Thin layer chromatography (TLC) | Thin plate | Low cost; Qualitative; Semi-quantitative |
High-performance liquid chromatography (HPLC) | Liquid phase | Accurate results; Complex pre-processing; Expensive instruments |
Immunochromatography | NC membrane | Fast; Wide detection range; Import dependence |
ELISA | Enzymatic plate | High throughput; High cost |
Immunochip analysis | Electronic chip | Complex process; High cost |
Biosensors | Biofilm; transducer | Complex production; High cost |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, H.; Tang, X.; Liu, X.; Zheng, Y.; Zhang, M.; Zhao, Y.; Zhang, Q. Development of a Linear Immobilization Carrier-Based Immunoassay for Aflatoxin. Biosensors 2022, 12, 317. https://doi.org/10.3390/bios12050317
Yan H, Tang X, Liu X, Zheng Y, Zhang M, Zhao Y, Zhang Q. Development of a Linear Immobilization Carrier-Based Immunoassay for Aflatoxin. Biosensors. 2022; 12(5):317. https://doi.org/10.3390/bios12050317
Chicago/Turabian StyleYan, Honglin, Xiaoqian Tang, Xiaohan Liu, Yating Zheng, Minhui Zhang, Yueju Zhao, and Qi Zhang. 2022. "Development of a Linear Immobilization Carrier-Based Immunoassay for Aflatoxin" Biosensors 12, no. 5: 317. https://doi.org/10.3390/bios12050317
APA StyleYan, H., Tang, X., Liu, X., Zheng, Y., Zhang, M., Zhao, Y., & Zhang, Q. (2022). Development of a Linear Immobilization Carrier-Based Immunoassay for Aflatoxin. Biosensors, 12(5), 317. https://doi.org/10.3390/bios12050317