Investigation of the Therapeutic Potential of New Antidiabetic Compounds Using Islet-on-a-Chip Microfluidic Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Three-Dimensional Islet-on-a-Chip Model
2.2. The Influence of PAHSA on Cell Proliferation
2.3. Immunostaining
2.4. The Effect of 5- and 9-PAHSA on Glucose Stimulated Insulin Secretion (GSIS)
2.5. The Effect of 5- and 9-PAHSA on Glucagon Secretion
2.6. Statistical Analysis
3. Results and Discussion
3.1. The Influence of PAHSA Isomers on Cell Proliferation in 3D Pseudoislet Model
3.2. Study of Pseudoislet Structures and Hormones Fluorescence Intensity
3.3. The Effect of 5- and 9-PAHSA on Glucose Stimulated Insulin Secretion (GSIS)
3.4. The Effect of 5- and 9-PAHSA on Glucagon Secretion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Schuster, D.P.; Duvuuri, V. Diabetes Mellitus. Clin. Podiatr. Med. Surg. 2002, 19, 79–107. [Google Scholar] [CrossRef]
- Da Silva Xavier, G. The Cells of the Islets of Langerhans. J. Clin. Med. 2018, 7, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.; Ding, Y.; Tanaka, Y.; Zhang, W. Risk Factors Contributing to Type 2 Diabetes and Recent Advances in the Treatment and Prevention. Int. J. Med. Sci. 2014, 11, 1185–1200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jun, Y.; Lee, J.; Choi, S.; Yang, J.H.; Sander, M.; Chung, S.; Lee, S.-H. In Vivo-Mimicking Microfluidic Perfusion Culture of Pancreatic Islet Spheroids. Sci. Adv. 2019, 5, eaax4520. [Google Scholar] [CrossRef] [Green Version]
- Sokolowska, P.; Zukowski, K.; Janikiewicz, J.; Jastrzebska, E.; Dobrzyn, A.; Brzozka, Z. Islet-on-a-Chip: Biomimetic Micropillar-Based Microfluidic System for Three-Dimensional Pancreatic Islet Cell Culture. Biosens. Bioelectron. 2021, 183, 113215. [Google Scholar] [CrossRef]
- Schulze, T.; Mattern, K.; Früh, E.; Hecht, L.; Rustenbeck, I.; Dietzel, A. A 3D Microfluidic Perfusion System Made from Glass for Multiparametric Analysis of Stimulus-Secretioncoupling in Pancreatic Islets. Biomed. Microdevices 2017, 19, 47. [Google Scholar] [CrossRef]
- Mohammed, J.S.; Wang, Y.; Harvat, T.A.; Oberholzer, J.; Eddington, D.T. Microfluidic Device for Multimodal Characterization of Pancreatic Islets. Lab Chip 2009, 9, 97–106. [Google Scholar] [CrossRef] [Green Version]
- Kongsuphol, P.; Gupta, S.; Liu, Y.; Bhuvanendran Nair Gourikutty, S.; Biswas, S.K.; Ramadan, Q. In Vitro Micro-Physiological Model of the Inflamed Human Adipose Tissue for Immune-Metabolic Analysis in Type II Diabetes. Sci. Rep. 2019, 9, 4887. [Google Scholar] [CrossRef]
- Ortega, M.A.; Rodríguez-Comas, J.; Yavas, O.; Velasco-Mallorquí, F.; Balaguer-Trias, J.; Parra, V.; Novials, A.; Servitja, J.M.; Quidant, R.; Ramón-Azcón, J. In Situ LSPR Sensing of Secreted Insulin in Organ-on-Chip. Biosensors 2021, 11, 138. [Google Scholar] [CrossRef]
- Singh, R.; Chandel, S.; Dey, D.; Ghosh, A.; Roy, S.; Ravichandiran, V.; Ghosh, D. Epigenetic Modification and Therapeutic Targets of Diabetes Mellitus. Biosci. Rep. 2020, 40, BSR20202160. [Google Scholar] [CrossRef]
- Gallwitz, B. New Therapeutic Strategies for the Treatment of Type 2 Diabetes Mellitus Based on Incretins. Rev. Diabet. Stud. 2005, 2, 61–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paschou, S.A.; Marina, L.V.; Spartalis, E.; Anagnostis, P.; Alexandrou, A.; Goulis, D.G.; Lambrinoudaki, I. Therapeutic Strategies for Type 2 Diabetes Mellitus in Women after Menopause. Maturitas 2019, 126, 69–72. [Google Scholar] [CrossRef] [PubMed]
- Bux Rodeman, K.; Hatipoglu, B. Beta-Cell Therapies for Type 1 Diabetes: Transplants and Bionics. Clevel. Clin. J. Med. 2018, 85, 931–937. [Google Scholar] [CrossRef] [PubMed]
- Steiner, D.J.; Kim, A.; Miller, K.; Hara, M. Pancreatic Islet Plasticity: Interspecies Comparison of Islet Architecture and Composition. Islets 2010, 2, 135–145. [Google Scholar] [CrossRef] [Green Version]
- Wood, P.L. Fatty Acyl Esters of Hydroxy Fatty Acid (FAHFA) Lipid Families. Metabolites 2020, 10, 512. [Google Scholar] [CrossRef]
- Brejchova, K.; Balas, L.; Paluchova, V.; Brezinova, M.; Durand, T.; Kuda, O. Understanding FAHFAs: From Structure to Metabolic Regulation. Prog. Lipid Res. 2020, 79, 101053. [Google Scholar] [CrossRef]
- Yore, M.M.; Syed, I.; Moraes-Vieira, P.M.; Zhang, T.; Herman, M.A.; Homan, E.A.; Patel, R.T.; Lee, J.; Chen, S.; Peroni, O.D.; et al. Discovery of a Class of Endogenous Mammalian Lipids with Anti-Diabetic and Anti-Inflammatory Effects. Cell 2014, 159, 318–332. [Google Scholar] [CrossRef] [Green Version]
- Pflimlin, E.; Bielohuby, M.; Korn, M.; Breitschopf, K.; Löhn, M.; Wohlfart, P.; Konkar, A.; Podeschwa, M.; Bärenz, F.; Pfenninger, A.; et al. Acute and Repeated Treatment with 5-PAHSA or 9-PAHSA Isomers Does Not Improve Glucose Control in Mice. Cell Metab. 2018, 28, 217–227.e13. [Google Scholar] [CrossRef] [Green Version]
- Syed, I.; Lee, J.; Moraes-Vieira, P.M.; Donaldson, C.J.; Sontheimer, A.; Aryal, P.; Wellenstein, K.; Kolar, M.J.; Nelson, A.T.; Siegel, D.; et al. Palmitic Acid Hydroxy Stearic Acids Activate GPR40 Which Is Involved in Their Beneficial Effects on Glucose Homeostasis. Cell Metab. 2018, 27, 419–427.e4. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Moraes-Vieira, P.M.; Castoldi, A.; Aryal, P.; Yee, E.U.; Vickers, C.; Parnas, O.; Donaldson, C.J.; Saghatelian, A.; Kahn, B.B. Branched Fatty Acid Esters of Hydroxy Fatty Acids (FAHFAs) Protect against Colitis by Regulating Gut Innate and Adaptive Immune Responses. J. Biol. Chem. 2016, 291, 22207–22217. [Google Scholar] [CrossRef] [Green Version]
- Schultz Moreira, A.R.; Rüschenbaum, S.; Schefczyk, S.; Hendgen-Cotta, U.; Rassaf, T.; Broering, R.; Hardtke-Wolenski, M.; Buitrago-Molina, L.E. 9-PAHSA Prevents Mitochondrial Dysfunction and Increases the Viability of Steatotic Hepatocytes. Int. J. Mol. Sci. 2020, 21, 8279. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Santoro, A.; Peroni, O.D.; Nelson, A.T.; Saghatelian, A.; Siegel, D.; Kahn, B.B. PAHSAs Enhance Hepatic and Systemic Insulin Sensitivity through Direct and Indirect Mechanisms. J. Clin. Investig. 2019, 129, 4138–4150. [Google Scholar] [CrossRef] [PubMed]
- Syed, I.; de Celis, M.F.R.; Mohan, J.F.; Moraes-Vieira, P.M.; Vijayakumar, A.; Nelson, A.T.; Siegel, D.; Saghatelian, A.; Mathis, D.; Kahn, B.B. PAHSAs Attenuate Immune Responses and Promote β Cell Survival in Autoimmune Diabetic Mice. J. Clin. Investig. 2019, 129, 3717–3731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.-M.; Liu, H.-X.; Fang, N.-Y. High Glucose Concentration Impairs 5-PAHSA Activity by Inhibiting AMP-Activated Protein Kinase Activation and Promoting Nuclear Factor-Kappa-B-Mediated Inflammation. Front. Pharmacol. 2019, 9, 1491. [Google Scholar] [CrossRef] [PubMed]
- Sokolowska, P.; Janikiewicz, J.; Jastrzebska, E.; Brzozka, Z.; Dobrzyn, A. Combinations of Regenerative Medicine and Lab-on-a-Chip Systems: New Hope to Restoring the Proper Function of Pancreatic Islets in Diabetes. Biosens. Bioelectron. 2020, 167, 112451. [Google Scholar] [CrossRef] [PubMed]
- Liberati-Čizmek, A.-M.; Biluš, M.; Brkić, A.L.; Barić, I.C.; Bakula, M.; Hozić, A.; Cindrić, M. Analysis of Fatty Acid Esters of Hydroxyl Fatty Acid in Selected Plant Food. Plant Foods Hum. Nutr. 2019, 74, 235–240. [Google Scholar] [CrossRef]
- Sjöholm, A. Diabetes Mellitus and Impaired Pancreatic Beta-Cell Proliferation. J. Intern. Med. 1996, 239, 211–220. [Google Scholar] [CrossRef]
- Cabrera, O.; Berman, D.M.; Kenyon, N.S.; Ricordi, C.; Berggren, P.-O.; Caicedo, A. The Unique Cytoarchitecture of Human Pancreatic Islets Has Implications for Islet Cell Function. Proc. Natl. Acad. Sci. USA 2006, 103, 2334–2339. [Google Scholar] [CrossRef] [Green Version]
- Bandak, B.; Yi, L.; Roper, M.G. Microfluidic-Enabled Quantitative Measurements of Insulin Release Dynamics from Single Islets of Langerhans in Response to 5-Palmitic Acid Hydroxy Stearic Acid. Lab Chip 2018, 18, 2873–2882. [Google Scholar] [CrossRef]
- Mann, E.; Sunni, M.; Bellin, M.D. Secretion of Insulin in Response to Diet and Hormones. Pancreapedia Exocrine Pancreas Knowl. Base 2020. [Google Scholar] [CrossRef]
- Henquin, J.-C.; Nenquin, M.; Sempoux, C.; Guiot, Y.; Bellanné-Chantelot, C.; Otonkoski, T.; de Lonlay, P.; Nihoul-Fékété, C.; Rahier, J. In Vitro Insulin Secretion by Pancreatic Tissue from Infants with Diazoxide-Resistant Congenital Hyperinsulinism Deviates from Model Predictions. J. Clin. Investig. 2011, 121, 3932–3942. [Google Scholar] [CrossRef] [PubMed]
- Komatsu, H.; Gonzalez, N.; Salgado, M.; Cook, C.A.; Li, J.; Rawson, J.; Omori, K.; Tai, Y.-C.; Kandeel, F.; Mullen, Y. A Subcutaneous Pancreatic Islet Transplantation Platform Using a Clinically Applicable, Biodegradable Vicryl Mesh Scaffold—An Experimental Study. Transpl. Int. 2020, 33, 806–818. [Google Scholar] [CrossRef] [PubMed]
- Hughes, J.W.; Ustione, A.; Lavagnino, Z.; Piston, D.W. Regulation of Islet Glucagon Secretion: Beyond Calcium. Diabetes Obes. Metab. 2018, 20, 127–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulina, G.R.; Rayfield, E.J. The role of glucagon in the pathophysiology and management of diabetes. Endocr. Pract. 2016, 22, 612–621. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sokolowska, P.; Jastrzebska, E.; Dobrzyn, A.; Brzozka, Z. Investigation of the Therapeutic Potential of New Antidiabetic Compounds Using Islet-on-a-Chip Microfluidic Model. Biosensors 2022, 12, 302. https://doi.org/10.3390/bios12050302
Sokolowska P, Jastrzebska E, Dobrzyn A, Brzozka Z. Investigation of the Therapeutic Potential of New Antidiabetic Compounds Using Islet-on-a-Chip Microfluidic Model. Biosensors. 2022; 12(5):302. https://doi.org/10.3390/bios12050302
Chicago/Turabian StyleSokolowska, Patrycja, Elzbieta Jastrzebska, Agnieszka Dobrzyn, and Zbigniew Brzozka. 2022. "Investigation of the Therapeutic Potential of New Antidiabetic Compounds Using Islet-on-a-Chip Microfluidic Model" Biosensors 12, no. 5: 302. https://doi.org/10.3390/bios12050302
APA StyleSokolowska, P., Jastrzebska, E., Dobrzyn, A., & Brzozka, Z. (2022). Investigation of the Therapeutic Potential of New Antidiabetic Compounds Using Islet-on-a-Chip Microfluidic Model. Biosensors, 12(5), 302. https://doi.org/10.3390/bios12050302