Near-Infrared Transflectance Spectroscopy Discriminates Solutions Containing Two Commercial Formulations of Botulinum Toxin Type A Diluted at Recommended Volumes for Clinical Reconstitution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation and Dilutions of the Samples: Commercially Available Formulations of Botulinum Toxin, Excipients, Saline, and Water
2.2. Spectra Acquisition and Data Handling
2.3. Spectra Pre–Processing and Exploratory Analysis
2.4. Classification Models
3. Results
3.1. Exploratory Analysis
3.2. Classification Models for Discriminating Solutions of Incobotulinum A Toxin and Abobotulinum A Toxin
4. Discussion
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Johnson, E.A.; Bradshaw, M. Clostridium botulinum and its neurotoxins: A metabolic and cellular perspective. Toxicon 2001, 39, 1703–1722. [Google Scholar] [CrossRef]
- Singh, M.; Dutta, S.R.; Passi, D.; Singh, P.; Sharma, S.; Sharma, A. Botulinum toxin the poison that heals: A brief review. Natl. J. Maxillofac. Surg. 2016, 7, 10–16. [Google Scholar] [CrossRef]
- Frevert, J. Content of botulinum neurotoxin in botox®/vistabel®, dysport®/azzalure®, and xeomin®/bocouture®. Drugs R D 2010, 10, 67–73. [Google Scholar] [CrossRef]
- Arnon, S.S.; Schechter, R.; Inglesby, T.V.; Henderson, D.A.; Bartlett, J.G.; Ascher, M.S.; Eitzen, E.; Fine, A.D.; Hauer, J.; Layton, M. Botulinum toxin as a biological weapon: Medical and public health management. JAMA 2001, 285, 1059–1070. [Google Scholar] [CrossRef] [PubMed]
- Rummel, A.; Mahrhold, S.; Bigalke, H.; Binz, T. The HCC-domain of botulinum neurotoxins A and B exhibits a singular ganglioside binding site displaying serotype specific carbohydrate interaction. Mol. Microbiol. 2003, 51, 631–643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schiavo, G.; Shone, C.; Rossetto, O.; Alexander, F.; Montecucco, C. Botulinum neurotoxin serotype F is a zinc endopeptidase specific for VAMP/synaptobrevin. J. Biol. Chem. 1993, 268, 11516–11519. [Google Scholar] [CrossRef]
- Singh, B.R.; Fuller, M.P.; DasGupta, B.R. Botulinum neurotoxin type A: Structure and interaction with the micellar concentration of SDS determined by FT-IR spectroscopy. J. Protein Chem. 1991, 10, 637–649. [Google Scholar] [CrossRef] [PubMed]
- Savage, A.C.; Buckley, N.; Halliwell, J.; Gwenin, C. Botulinum Neurotoxin Serotypes Detected by Electrochemical Impedance Spectroscopy. Toxins 2015, 7, 1544–1555. [Google Scholar] [CrossRef] [Green Version]
- Pasquini, C. Near Infrared Spectroscopy: Fundamentals, practical aspects and analytical applications. J. Braz. Chem. Soc. 2003, 14, 198–219. [Google Scholar] [CrossRef] [Green Version]
- Illman, D. Chemometrics. In Kirk-Othmer Encyclopedia of Chemical Technology; John Wiley & Sons: New York, NY, USA, 2004; Volume 6, pp. 25–72. [Google Scholar]
- Luypaert, J.; Massart, D.; Heyden, Y.V. Near-infrared spectroscopy applications in pharmaceutical analysis. Talanta 2007, 72, 865–883. [Google Scholar] [CrossRef] [PubMed]
- Pasquini, C. Near infrared spectroscopy: A mature analytical technique with new perspectives—A review. Anal. Chim. Acta 2018, 1026, 8–36. [Google Scholar] [CrossRef] [PubMed]
- Danner, M.; Locherer, M.; Hank, T.; Richter, K. Spectral Sampling with the ASD FIELDSPEC 4. 2015. Available online: https://gfzpublic.gfz-potsdam.de/rest/items/item_1388298/component/file_1388299/content (accessed on 23 March 2021).
- Rinnan, Å. Van Den Berg, F.; Engelsen, S.B. Review of the most common pre-processing techniques for near-infrared spectra. TrAC Trends Anal. Chem. 2009, 28, 1201–1222. [Google Scholar] [CrossRef]
- Barnes, R.; Dhanoa, M.S.; Lister, S.J. Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Appl. Spectrosc. 1989, 43, 772–777. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Wold, S.; Esbensen, K.; Geladi, P. Principal Component Analysis, Chemometr; Intell. Lab.: Santa Clara, CA, USA, 1987; Volume 2, pp. 37–52. [Google Scholar]
- Barker, M.; Rayens, W. Partial least squares for discrimination. J. Chemom. A J. Chemom. Soc. 2003, 17, 166–173. [Google Scholar] [CrossRef]
- Wise, B.M.; Gallagher, N.B.; Bro, R.; Shaver, J.M.; Windig, W.; Koch, R.S. Chemometrics Tutorial for PLS_Toolbox and Solo; Eigenvector Research, Inc.: Wenatchee, WA, USA, 2006; Volume 3905, pp. 102–159. [Google Scholar]
- Chong, I.-G.; Jun, C.-H. Performance of some variable selection methods when multicollinearity is present. Chemom. Intell. Lab. Syst. 2005, 78, 103–112. [Google Scholar] [CrossRef]
- Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Siesler, H.W.; Ozaki, Y.; Kawata, S.; Heise, H.M. Near-Infrared Spectroscopy: Principles, Instruments, Applications; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Gu, S.; Rumpel, S.; Zhou, J.; Strotmeier, J.; Bigalke, H.; Perry, K.; Shoemaker, C.B.; Rummel, A.; Jin, R. Botulinum neurotoxin is shielded by NTNHA in an interlocked complex. Science 2012, 335, 977–981. [Google Scholar] [CrossRef] [Green Version]
- Dong, M.; Masuyer, G.; Stenmark, P. Botulinum and tetanus neurotoxins. Annu. Rev. Biochem. 2019, 88, 811–837. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Gu, S.; Jin, L.; Le, T.T.; Cheng, L.W.; Strotmeier, J.; Kruel, A.M.; Yao, G.; Perry, K.; Rummel, A.; et al. Structure of a bimodular botulinum neurotoxin complex provides insights into its oral toxicity. PLoS Pathog. 2013, 9, e1003690. [Google Scholar] [CrossRef] [Green Version]
- Field, M.; Splevins, A.; Picaut, P.; Van der Schans, M.; Langenberg, J.; Noort, D.; Foster, K. AbobotulinumtoxinA (Dysport®), onabotulinumtoxinA (Botox®), and incobotulinumtoxinA (Xeomin®) neurotoxin content and potential implications for duration of response in patients. Toxins 2018, 10, 535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dashtipour, K.; Chen, J.J.; Espay, A.J.; Mari, Z.; Ondo, W. OnabotulinumtoxinA and AbobotulinumtoxinA dose conversion: A systematic literature review. Mov. Disord. Clin. Pract. 2016, 3, 109–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schantz, E.J.; Johnson, E.A. Properties and use of botulinum toxin and other microbial neurotoxins in medicine. Microbiol. Rev. 1992, 56, 80–99. [Google Scholar] [CrossRef] [PubMed]
- Peters, T., Jr. All about Albumin: Biochemistry, Genetics, and Medical Applications; Academic Press: Cambridge, MA, USA, 1995. [Google Scholar]
- He, X.M.; Carter, D.C. Atomic structure and chemistry of human serum albumin. Nature 1992, 358, 209–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DasGupta, B.R.; Sathyamoorthy, V. Purification and amino acid composition of type A botulinum neurotoxin. Toxicon 1984, 22, 415–424. [Google Scholar] [CrossRef]
- Imberti, S.; McLain, S.E.; Rhys, N.H.; Bruni, F.; Ricci, M.A. Role of water in sucrose, lactose, and sucralose taste: The sweeter, the wetter? ACS Omega 2019, 4, 22392–22398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, S.; Kojić, D.; Tsenkova, R.; Yasui, M. Quantification of anomeric structural changes of glucose solutions using near-infrared spectra. Carbohydr. Res. 2018, 463, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Bázár, G.; Kovacs, Z.; Tanaka, M.; Furukawa, A.; Nagai, A.; Osawa, M.; Itakura, Y.; Sugiyama, H.; Tsenkova, R. Water revealed as molecular mirror when measuring low concentrations of sugar with near infrared light. Anal. Chim. Acta 2015, 896, 52–62. [Google Scholar] [CrossRef]
- Šašić, S.; Ozaki, Y. Short-wave near-infrared spectroscopy of biological fluids. 1. Quantitative analysis of fat, protein, and lactose in raw milk by partial least-squares regression and band assignment. Anal. Chem. 2001, 73, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Williams, P. Influence of water on prediction of composition and quality factors: The aquaphotomics of low moisture agricultural materials. J. Near Infrared Spectrosc. 2009, 17, 315–328. [Google Scholar] [CrossRef]
- Tsenkova, R. Aquaphotomics: Dynamic spectroscopy of aqueous and biological systems describes peculiarities of water. J. Near Infrared Spectrosc. 2009, 17, 303–313. [Google Scholar] [CrossRef]
- Muncan, J.; Tsenkova, R. Aquaphotomics—From innovative knowledge to integrative platform in science and technology. Molecules 2019, 24, 2742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jinendra, B.; Tamaki, K.; Kuroki, S.; Vassileva, M.; Yoshida, S.; Tsenkova, R. Near infrared spectroscopy and aquaphotomics: Novel approach for rapid in vivo diagnosis of virus infected soybean. Biochem. Biophys. Res. Commun. 2010, 397, 685–690. [Google Scholar] [CrossRef] [PubMed]
- Tsenkova, R.; Munćan, J.; Pollner, B.; Kovacs, Z. Essentials of aquaphotomics and its chemometrics approaches. Front. Chem. 2018, 6, 363. [Google Scholar] [CrossRef] [PubMed]
Sample ID | Composition | Temperature (°C) | pH |
---|---|---|---|
NC09 | Saline solution (NaCl 0.9%) | 18 | 5.5 |
alb1 | 1 mg of albumin in 1 mL NaCl 0.9% | 18 | 5.5 |
sac46 | 4.6 mg of sucrose in 1 mL NaCl 0.9% | 18 | 5.5 |
lact1 | 1 mg of lactose in 1 mL NaCl 0.9% | 18 | 5.5 |
AD | Ultrapure Water | 18 | 5.8 |
abo400alb01lat2 | 500 U/1.25 mL abobotulinum A toxin (**) | 18 | 5.5 |
abo100alb0025lat05 | 100 U/mL abobotulinum A toxin (*) | 18 | 5.5 |
inco100alb1sac46 | 100/1 mL incobotulinum A (*) | 18 | 6.0 |
EccAbo | 0.125 mg albumine; 2.5 lactose; saline (NaCl 0.9%) 2.5 mL | 18 | 5.5 |
Eccinco1 | 1 mg albumine, 4.6 mg sucrose; saline (NaCl 0.9%) 1 mL | 18 | 5.5 |
Botulinum Toxin Type A | Abobotulinumtoxin A | Incobotulinumtoxin A |
---|---|---|
Presentation | Freeze-died (lyophilized) powder for reconstitution | Freeze-died (lyophilized) powder for reconstitution |
Isolation process | Precipitation and chromatography | Precipitation and chromatography |
Composition | Clostridium botulinum toxin type A; hemagglutinin (HA) and non-HA proteins | Clostridium botulinum toxin type A |
Excipientsa | 500 U vial: human serum albumin 125 µg; lactose 2.5 mg | 500 U vial: human serum albumin 1 mg; sucrose 4.6 mg |
Molecular weight (neurotoxin, kDa) | Not published (150) | 150 |
Approximate total clostridial protein content (ng per 100 U) | 4.87 | 0.44 |
Neurotoxin protein load (ng neurotoxin potency per 100 U a) | 0.65 | 0.44 |
Specific neurotoxin potency (U/ng) | 154 | 227 |
Class | Sensitivity | Specificity | Number of Spectra | Error | Precision | Accuracy | |
---|---|---|---|---|---|---|---|
Calibration | abo400alb01lat2 | 1.000 | 1.000 | 37 | 0.000 | 1.000 | 1.000 |
inco100alb1sac46 | 1.000 | 1.000 | 33 | 0.000 | 1.000 | 1.000 | |
Cross-validation | abo400alb01lat2 | 1.000 | 1.000 | 37 | 0.000 | 1.000 | 1.000 |
inco100alb1sac46 | 1.000 | 1.000 | 33 | 0.000 | 1.000 | 1.000 | |
Prediction | abo400alb01lat2 | 1.000 | 1.000 | 13 | 0.000 | 1.000 | 1.000 |
inco100alb1sac46 | 1.000 | 1.000 | 17 | 0.000 | 1.000 | 1.000 |
Class | Sensitivity | Specificity | Number of Spectra | Error | Precision | Accuracy | |
---|---|---|---|---|---|---|---|
Calibration | abo400alb01lat2 | 1.000 | 1.000 | 37 | 0.000 | 1.000 | 1.000 |
inco100alb1sac46 | 1.000 | 1.000 | 33 | 0.000 | 1.000 | 1.000 | |
Cross-validation | abo400alb01lat2 | 1.000 | 1.000 | 37 | 0.000 | 1.000 | 1.000 |
inco100alb1sac46 | 1.000 | 1.000 | 33 | 0.000 | 1.000 | 1.000 | |
Prediction | abo400alb01lat2 | 1.000 | 1.000 | 13 | 0.000 | 1.000 | 1.000 |
inco100alb1sac46 | 1.000 | 1.000 | 17 | 0.000 | 1.000 | 1.000 |
BoNT-A | NTNHA Type A | HA-70 Type C | HA-33 Type C | HA-17 Type D | HSA | |
---|---|---|---|---|---|---|
-OH | 145 | 234 | 150 | 66 | 41 | 48 |
-COOH | 165 | 145 | 62 | 23 | 11 | 98 |
-NH2 -NR2CO | 323 | 304 | 156 | 93 | 35 | 140 |
-SH | 9 | 12 | 4 | 3 | 1 | 35 |
H-Bonds | 1.926 | 2.085 | 1.116 | 555 | 264 | 963 |
M.W. | 149 kDa | 138 kDa | 70.6 K kDa | 33.7 K kDa | 16.7 K kDa | 69 kDa |
I.p. | 5.50 | 4.89 | 5.18 | 8.25 | 5.23 | 5.92 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Currà, A.; Gasbarrone, R.; Bonifazi, G.; Serranti, S.; Fattapposta, F.; Trompetto, C.; Marinelli, L.; Missori, P.; Lendaro, E. Near-Infrared Transflectance Spectroscopy Discriminates Solutions Containing Two Commercial Formulations of Botulinum Toxin Type A Diluted at Recommended Volumes for Clinical Reconstitution. Biosensors 2022, 12, 216. https://doi.org/10.3390/bios12040216
Currà A, Gasbarrone R, Bonifazi G, Serranti S, Fattapposta F, Trompetto C, Marinelli L, Missori P, Lendaro E. Near-Infrared Transflectance Spectroscopy Discriminates Solutions Containing Two Commercial Formulations of Botulinum Toxin Type A Diluted at Recommended Volumes for Clinical Reconstitution. Biosensors. 2022; 12(4):216. https://doi.org/10.3390/bios12040216
Chicago/Turabian StyleCurrà, Antonio, Riccardo Gasbarrone, Giuseppe Bonifazi, Silvia Serranti, Francesco Fattapposta, Carlo Trompetto, Lucio Marinelli, Paolo Missori, and Eugenio Lendaro. 2022. "Near-Infrared Transflectance Spectroscopy Discriminates Solutions Containing Two Commercial Formulations of Botulinum Toxin Type A Diluted at Recommended Volumes for Clinical Reconstitution" Biosensors 12, no. 4: 216. https://doi.org/10.3390/bios12040216
APA StyleCurrà, A., Gasbarrone, R., Bonifazi, G., Serranti, S., Fattapposta, F., Trompetto, C., Marinelli, L., Missori, P., & Lendaro, E. (2022). Near-Infrared Transflectance Spectroscopy Discriminates Solutions Containing Two Commercial Formulations of Botulinum Toxin Type A Diluted at Recommended Volumes for Clinical Reconstitution. Biosensors, 12(4), 216. https://doi.org/10.3390/bios12040216