A Study on Dictionary Selection in Compressive Sensing for ECG Signals Compression and Classification
Abstract
:1. Introduction
- An approach that is based on the direct CS obtaining of the signal, without preprocessing it prior acquiring the projections. This “genuine” CS we call patient-specific classical compressed sensing (PSCCS), since the dictionary is constructed from a patient’s initial signals.
- A variant that involves a module of pre-processing and segmentation of the ECG signal. This stage aims at improving the scatter and recoverability of the ECG signal. In this additional stage of preprocessing, the ECG signal results in the rhythmicization of the ECG signal and divides it into cardiac cycles—hereinafter referred to as cardiac patterns compressed sensing (CPCS). Now the acquired signals and atoms of dictionary are segmented heartbeats pre-processed without or with the R-waves centered.
2. Compressed Sensed Overview
- (i)
- seeking for a suboptimal solution of problem (2) and
- (ii)
- using the Basis Pursuit (BP) procedure [1] that consists of replacing with minimization, by resolving problem (4) instead of the initial one:
3. Sample Vectors, Projection Matrices and Dictionaries
3.1. Sample Vectors
3.2. Projection Matrices
- As so far shown in Introduction and CS theory, projecting on a matrix Φ results in a system. A simple approach is to use as Φ a random matrix with i.i.d. normal elements. Nevertheless, this matrix has a higher Restricted Isometry Property (RIP) constant and, thus, it is inappropriate for reconstruction [7].
- Another possibility is to build a projection matrix specific to the dictionary used in the reconstruction phase. Thus, we can define such a matrix as a product of the random matrix and the transposition of a square matrix containing an arbitrary selection of N dictionary atoms [7]. In this way, the reconstruction errors will be smaller. In the tables with results, we denote this matrix with “Random * Dict †”.
- A third possibility of projection matrix analyzed in this paper is the Bernoulli type matrix built only of elements of 0s and 1s, with symmetric distribution (half of the inputs of a row are created with the Bernoulli distribution and the other half reversing the first half) [14]. The advantage of this matrix is the low computational complexity, and thus, saving of IT resources.
3.3. Dictionaries
3.3.1. Patient-Specific Dictionaries
3.3.2. Universal Mega-Dictionaries
3.3.3. Pathology-Specific Dictionaries
4. Proposed Methods for Dictionary-Based ECG Compression
4.1. Patient-Specific Classical Compressed Sensing—PSCCS
4.2. Cardiac Patterns Compressed Sensing—CPCS
4.3. Acceptance of the Compression Methods
5. Experimental Results
5.1. Results for the Patient-Specific Classical Compressed Sensing (PSCCS) Method
5.2. Results for the Cardiac Patterns Compressed Sensing (CPCS) Method
5.2.1. Universal Mega-Dictionary
5.2.2. Pathology-Specific Dictionaries
- Classifying the patterns reconstructed with the mega-dictionary (with patterns out of all classes) yielded an accuracy of 92.5%.
- Classifying the patterns reconstructed with the class-specific dictionaries provided an accuracy of 95.5%.
5.2.3. Patient-Specific Dictionaries
6. Discussions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, S.; Donoho, D.; Saunders, M. Atomic decomposition by basis pursuit. SIAM Rev. 2001, 43, 129–159. [Google Scholar] [CrossRef] [Green Version]
- Djelouat, H.; Amira, A.; Bensaali, F.; Boukhennoufa, I. Secure compressive sensing for ECG monitoring. Comput. Secur. 2020, 88, 101649. [Google Scholar] [CrossRef]
- Daponte, P.; De Vito, L.; Iadarola, G.; Picariello, F. ECG Monitoring Based on Dynamic Compressed Sensing of multi-lead signals. Sensors 2021, 21, 7003. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Liu, J.; Sun, J. Compression algorithm for electrocardiograms based on sparse decomposition. Front. Electr. Electron. Eng. China 2009, 4, 10–14. [Google Scholar] [CrossRef]
- Mitra, D.; Zanddizari, H.; Rajan, S. Investigation of Kronecker-based recovery of compressed ECG signal. IEEE Trans. Instrum. Meas. 2020, 69, 3642–3653. [Google Scholar] [CrossRef]
- Craven, D.; McGinley, B.; Kilmartin, L.; Glavin, M.; Jones, E. Compressed sensing for bioelectric signals: A review. IEEE J. Biomed. Health Inform. 2015, 19, 529–540. [Google Scholar] [CrossRef] [PubMed]
- Cleju, N.; Fira, M.; Barabasa, C.; Goras, L. Robust reconstruction of compressively sensed ECG patterns. In Proceedings of the ISSCS 2011 (The 10-th International Symposium on Signals, Circuits and Systems), Iasi, Romania, 30 June–1 July 2011; pp. 507–510. [Google Scholar]
- Shannon, C.E. Communication in the presence of noise. Proc. Inst. Radio Eng. 1949, 37, 10–21. [Google Scholar] [CrossRef]
- Elad, M. Optimized projections for compressed sensing. IEEE Trans. Signal Process. 2007, 55, 5695–5702. [Google Scholar] [CrossRef]
- Duarte, M.; Davenport, M.; Wakin, M.; Laska, J.; Takhar, D.; Kelly, K.; Baraniuk, R. Multiscale random projections for compressive classification. In Proceedings of the 2007 IEEE International Conference on Image Processing (ICIP), San Antonio, TX, USA, 16–19 September 2007. [Google Scholar]
- Donoho, D. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [Google Scholar] [CrossRef]
- Candès, E. Compressive sampling. In Proceedings of the international Congress of Mathematicians, Madrid, Spain, 22–30 August 2006; Volume 3, pp. 1433–1452. [Google Scholar]
- Fira, M.C.; Goras, L.; Barabasa, C.; Cleju, N. On ECG compressed sensing using specific overcomplete dictionaries. Adv. Electr. Comput. Eng. 2010, 10, 23–28. [Google Scholar] [CrossRef]
- Fira, M.C.; Goras, L.; Barabasa, C. Reconstruction of compressed sensed ECG signals using patient specific dictionaries. In Proceedings of the International Symposium on Signals, Circuits and Systems (ISSCS 2013), Iasi, Romania, 11–12 July 2013. [Google Scholar]
- Fira, M.C.; Goras, L.; Barabasa, C.; Cleju, N. ECG compressed sensing based on classification in compressed space and specified dictionaries. In Proceedings of the 2011 European Signal Processing Conference (EUSIPCO 2011), Barcelona, Spain, 29 August–2 September 2011; pp. 1573–1577. [Google Scholar]
- Fira, M.C.; Goras, L.; Cleju, N.; Barabasa, C. Results on ECG compressed sensing using specific dictionaries and its validation. In Proceedings of the International Conference on Information Technology Interfaces–ITI 2012, Dubrovnik, Croatia, 25–28 June 2012; pp. 423–428. [Google Scholar]
- Fira, M.C.; Goras, L.; Cleju, N.; Barabasa, C. On the projection matrices influence in the classification of compressed sensed ECG signals. Int. J. Adv. Comput. Sci. Appl. IJACSA 2012, 3, 141–145. [Google Scholar] [CrossRef] [Green Version]
- MIT-BIH. Arrhythmia Database. Available online: http://www.physionet.org/physiobank/database/mitdb/ (accessed on 27 December 2021).
- Fira, M.C.; Goras, L. An ECG signals compression method and its validation using NNs. IEEE Trans. Biomed. Eng. 2008, 55, 1319–1326. [Google Scholar] [CrossRef]
- Polania, L.F.; Carrillo, R.E.; Blanco-Velasco, M.; Barner, K.E. ECG compression via matrix completion. In Proceedings of the 19th European Signal Processing Conference (EUSIPCO), Barcelona, Spain, 29 August–22 September 2011. [Google Scholar]
- Polania, L.F.; Carrillo, R.E.; Blanco-Velasco, M.; Barner, K.E. Compressed sensing based method for ECG compression. In Proceedings of the 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic, 22–27 May 2011. [Google Scholar]
- Mamaghanian, H.; Khaled, N.; Atienza, D.; Vandergheynst, P. Compressed sensing for real-time energy-efficient ECG compression on wireless body sensor nodes. IEEE Trans. Biomed. Eng. 2011, 58, 2456–2466. [Google Scholar] [CrossRef] [Green Version]
- Al-Shrouf, A.; Abo-Zahhad, M.; Ahmed, S.M. A novel compression algorithm for electrocardiogram signal based on the linear prediction of the wavelet coefficients. Digit. Signal Process. 2003, 13, 604–622. [Google Scholar] [CrossRef]
- Lu, Z.; Kim, D.Y.; Pearlman, W.A. Wavelet Compression of ECG signals by the set partitioning in hierarchical trees (SPIHT) algorithm. IEEE Trans. Biomed. Eng. 2000, 47, 849–856. [Google Scholar] [PubMed]
- Bilgin, A.; Marcellin, M.W.; Altbach, M.I. Wavelet compression of ECG signals by JPEG2000. In Proceedings of the Data Compression Conference DDC2004, Snowbird, UT, USA, 23–25 March 2004; p. 527. [Google Scholar]
- Kim, H.; Yazicioglu, R.F.; Merken, P.; Van Hoof, C.; Yoo, H.-J. ECG signal compression and classification algorithm with quad level vector for ECG Holter system. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 93–100. [Google Scholar] [PubMed]
- Chou, C.-Y.; Chang, E.-J.; Li, H.-T.; Wu, A.-Y. Low-complexity privacy-preserving compressive analysis using subspace-based dictionary for ECG telemonitoring system. IEEE Trans. Biomed. Circuits Syst. 2018, 12, 801–811. [Google Scholar] [PubMed]
- Fira, M.; Goras, L. On projection matrices and dictionaries in ECG compressive sensing—A comparative study. In Proceedings of the 12th Symposium on Neural Network Applications in Electrical Engineering (NEUREL), Belgrade, Serbia, 25–27 November 2014; pp. 3–8. [Google Scholar] [CrossRef]
- Mathworks. Available online: https://www.mathworks.com/help/dsp/ug/real-time-ecg-qrs-detection.html (accessed on 27 December 2021).
- Turnip, A.; Turnip, M.; Dharma, A.; Paninsari, D.; Nababan, T.; Ginting, C.N. An application of modified filter algorithm fetal electrocardiogram signals with various subjects. Int. J. Artif. Intell. 2020, 18, 207–217. [Google Scholar]
- Ciucu, R.I.; Dragomir, D.A.; Adochiei, I.R.; Seritan, G.C.; Cepisca, C.; Adochiei, F.C. A non-contact heart-rate monitoring system for long-term assessments of HRV. In Proceedings of the 2017 10th International Symposium on Advanced Topics in Electrical Engineering (ATEE), Bucharest, Romania, 23–25 March 2017. [Google Scholar]
- Seritan, G.; Bujanovschi, M.; Adochiei, F.C.; Voiculescu, D.; Argatu, F.C.; Grigorescu, S.D. Alert and surveillance system for newborns. In Proceedings of the 2019 E-Health and Bioengineering Conference (EHB), Iasi, Romania, 21–23 November 2019. [Google Scholar] [CrossRef]
- Lopes, A.R.; Nihei, O.K. Depression, anxiety and stress symptoms in Brazilian university students during the COVID-19 pandemic: Predictors and association with life satisfaction, psychological well-being and coping strategies. PLoS ONE 2021, 16, e0258493. [Google Scholar] [CrossRef]
- Nasimi, F.; Khayyambashi, M.R.; Movahhedinia, N.; Law, Y.W. Exploiting similar prior knowledge for compressing ECG signals. Biomed. Signal Process. Control 2020, 60, 101960. [Google Scholar] [CrossRef]
- Lin, Y.-M.; Chen, Y.; Kuo, H.-C.; Wu, A.-Y.A. Compressive sensing based ECG telemonitoring with personalized dictionary basis. In Proceedings of the 2015 IEEE Biomedical Circuits and Systems Conference (BioCAS), Atlanta, GA, USA, 22–24 October 2015; pp. 1–4. [Google Scholar] [CrossRef]
- Ravelomanantsoa, A.; Rabah, H.; Rouane, A. Compressed sensing: A simple deterministic measurement matrix and a fast recovery algorithm. IEEE Trans. Instrum. Meas. 2015, 64, 3405–3413. [Google Scholar] [CrossRef]
- Picariello, F.; Iadarola, G.; Balestrieri, E.; Tudosa, I.; De Vito, L. A novel compressive sampling method for ECG wearable measurement systems. Measurement 2020, 167, 108259. [Google Scholar] [CrossRef]
Projection Matrix and Its Size | CR | AVG. PRD | AVG. PRDN | QS |
---|---|---|---|---|
Gaussian distribution Random * Dict † | 4:1 | 0.31 | 6.47 | 12.9 |
Bernoulli with 0 and 1 (75 × 300) | 4:1 | 0.41 | 7.96 | 9.75 |
Gaussian distribution Random (75 × 300) | 4:1 | 0.43 | 8.56 | 9.30 |
Gaussian distribution Random * Dict † | 10:1 | 0.67 | 13.42 | 14.92 |
Bernoulli with 0 and 1 (30 × 300) | 10:1 | 0.81 | 15.49 | 12.34 |
Gaussian distribution Random (30 × 300) | 10:1 | 0.82 | 16.48 | 12.19 |
Gaussian distribution Random * Dict † | 15:1 | 0.97 | 21.31 | 15.46 |
Bernoulli with 0 and 1 (20 × 300) | 15:1 | 1.31 | 23.28 | 11.45 |
Gaussian distribution Random (20 × 300) | 15:1 | 1.13 | 25.37 | 13.27 |
Projection Matrix and Its Size | CR | AVG. PRD | AVG. PRDN | QS |
---|---|---|---|---|
Gaussian distribution Random * Dict † | 4:1 | 0.19 | 4.69 | 21.05 |
Bernoulli with 0 and 1 (75 × 300) | 4:1 | 0.40 | 7.20 | 10 |
Gaussian distribution Random (75 × 300) | 4:1 | 0.45 | 8.12 | 8.88 |
Gaussian distribution Random * Dict † | 10:1 | 0.45 | 11.19 | 22.22 |
Bernoulli with 0 and 1 (30 × 300) | 10:1 | 0.70 | 12.67 | 14.28 |
Gaussian distribution Random (30 × 300) | 10:1 | 0.73 | 13.21 | 13.69 |
Gaussian distribution Random * Dict † | 15:1 | 0.63 | 15.61 | 23.80 |
Bernoulli with 0 and 1 (20 × 300) | 15:1 | 0.96 | 17.28 | 15.62 |
Gaussian distribution Random (20 × 300) | 15:1 | 1.01 | 18.24 | 14.85 |
Projection Matrix and Its Size | CR | AVG. PRD | AVG. PRDN | Classif. Rate with KNN | Classif. Rate with MLP |
---|---|---|---|---|---|
Patient-specific dictionary with a non-centered R-wave | |||||
Gaussian distribution Random * Dict † (20 × 301) | 15:1 | 0.78 | 11.98 | 92.24% | 93.7% |
Bernoulli with 0 and 1 (20 × 301) | 15:1 | 0.94 | 16.06 | 84.71% | 86.2% |
Gaussian distribution Random (20 × 301) | 15:1 | 0.82 | 13.82 | 91.14% | 93.4% |
Patient-specific dictionary with a centered R-wave | |||||
Gaussian distribution Random * Dict † (20 × 301) | 15:1 | 0.51 | 9 | 93.41% | 95.2% |
Bernoulli with 0 and 1 (20 × 301) | 15:1 | 0.71 | 12.4 | 88.06% | 90.3% |
Gaussian distribution Random (20 × 301) | 15:1 | 0.72 | 12.51 | 89.70% | 91.6% |
Projection matrix and Its Size | CR | AVG. PRD | AVG. PRDN | QS |
---|---|---|---|---|
Mega-dictionary with a non-centered R-waves | ||||
Gaussian distribution Random * Dict † | 15:1 | 0.88 | 13.67 | 17.04 |
Bernoulli with 0 and 1 (20 × 301) | 15:1 | 1.44 | 21.43 | 10.41 |
Gaussian distribution Random (20 × 301) | 15:1 | 1.62 | 24.33 | 9.25 |
Mega-dictionary with a centered R-waves | ||||
Gaussian distribution Random * Dict † | 15:1 | 0.67 | 9.99 | 22.38 |
Bernoulli with 0 and 1 (20 × 301) | 15:1 | 1.08 | 15.47 | 13.88 |
Gaussian distribution Random (20 × 301) | 15:1 | 1.19 | 17.18 | 12.60 |
Projection Matrix and Its Size | CR | AVG. PRD | AVG. PRDN | QS |
---|---|---|---|---|
Pathological specific dictionaries with a non-centered R-wave | ||||
Gaussian distribution Random * Dict † | 15:1 | 0.77 | 11.76 | 19.48 |
Bernoulli with 0 and 1 (20 × 301) | 15:1 | 1.23 | 17.90 | 12.19 |
Gaussian distribution Random (20 × 301) | 15:1 | 1.37 | 20.25 | 10.94 |
Pathological specific dictionaries with a centered R-wave | ||||
Gaussian distribution Random * Dict † | 15:1 | 0.62 | 6.14 | 24.19 |
Bernoulli with 0 and 1 (20 × 301) | 15:1 | 0.97 | 13.93 | 15.46 |
Gaussian distribution Random (20 × 301) | 15:1 | 1.04 | 14.80 | 14.42 |
Dictionary with a Centered R-Wave | Compression Rate | AVG. PRD | AVG. PRDN | KNN Classif. Rate | MLP Classif. Rate |
---|---|---|---|---|---|
mega-dictionary | 10:1 | 0.47 | 6.24 | 93.2% | 93.8% |
mega-dictionary | 15:1 | 0.67 | 9.99 | 92.5% | 93.1% |
specific dictionaries | 10:1 | 0.43 | 6.02 | 95.2% | 96% |
specific dictionaries | 15:1 | 0.62 | 6.14 | 95.5% | 96.2% |
KNN classification results with original patterns | 95.5% | 96% | |||
PRDN and KNN classification rate for the case with correct identification (100%) of the specific dictionary | 0.55 | 8.53 | 93% | 93.7% |
Class1 | Class2 | Class3 | Class4 | Class5 | Class6 | Class7 | Class8 | |
---|---|---|---|---|---|---|---|---|
class1 | 90 | 10 | 0 | 0 | 0 | 0 | 0 | 0 |
class2 | 20 | 70 | 0 | 0 | 0 | 10 | 0 | 0 |
class3 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 |
class4 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 |
class5 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 |
class6 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 |
class7 | 0 | 0 | 0 | 0 | 0 | 0 | 100 | 0 |
class8 | 0 | 10 | 0 | 0 | 0 | 0 | 10 | 80 |
Projection Matrix and Its Size | CR | AVG. PRD | AVG. PRDN | QS |
---|---|---|---|---|
Patient-specific dictionary with a non-centered R-wave | ||||
Gaussian distribution Random * Dict † | 15:1 | 0.78 | 11.98 | 19.23 |
Bernoulli with 0 and 1 (20 × 301) | 15:1 | 0.94 | 16.06 | 15.87 |
Gaussian distribution Random (20 × 301) | 15:1 | 0.82 | 13.82 | 18.29 |
Patient-specific dictionary with a centered R-wave | ||||
Gaussian distribution Random * Dict † | 15:1 | 0.51 | 9 | 29.13 |
Bernoulli with 0 and 1 (20 × 301) | 15:1 | 0.71 | 12.4 | 20.98 |
Gaussian distribution Random (20 × 301) | 15:1 | 0.72 | 12.51 | 20.59 |
Projection Matrix and Its Size | CR | AVG. PRD | AVG. PRDN | QS |
---|---|---|---|---|
PSCCS METHOD | ||||
Gaussian distribution Random * Dict † | 15:1 | 0.97 | 21.31 | 15.46 |
Bernoulli with 0 and 1 (20 × 300) | 15:1 | 1.31 | 23.28 | 11.45 |
Gaussian distribution Random (20 × 300) | 15:1 | 1.13 | 25.37 | 13.27 |
CPCS METHOD | ||||
Universal mega-dictionary without a centered R-wave | ||||
Gaussian distribution Random * Dict † | 15:1 | 0.88 | 13.67 | 17.04 |
Bernoulli with 0 and 1 (20 × 301) | 15:1 | 1.44 | 21.43 | 10.41 |
Gaussian distribution Random (20 × 301) | 15:1 | 1.62 | 24.33 | 9.25 |
Universal mega-dictionary with a centered R-wave | ||||
Gaussian distribution Random * Dict † | 15:1 | 0.67 | 9.99 | 22.38 |
Bernoulli with 0 and 1 (20 × 301) | 15:1 | 1.08 | 15.47 | 13.88 |
Gaussian distribution Random (20 × 301) | 15:1 | 1.19 | 17.18 | 12.60 |
Pathological specific dictionaries without a centered R-wave | ||||
Gaussian distribution Random * Dict † | 15:1 | 0.77 | 11.76 | 19.48 |
Bernoulli with 0 and 1 (20 × 301) | 15:1 | 1.23 | 17.90 | 12.19 |
Gaussian distribution Random (20 × 301) | 15:1 | 1.37 | 20.25 | 10.94 |
Pathological specific dictionaries with a centered R-wave | ||||
Gaussian distribution Random * Dict † | 15:1 | 0.62 | 6.14 | 24.19 |
Bernoulli with 0 and 1 (20 × 301) | 15:1 | 0.97 | 13.93 | 15.46 |
Gaussian distribution Random (20 × 301) | 15:1 | 1.04 | 14.80 | 14.42 |
Patient-specific dictionaries without a centered R-wave | ||||
Gaussian distribution Random * Dict † | 15:1 | 0.78 | 11.98 | 19.23 |
Bernoulli with 0 and 1 (20 × 301) | 15:1 | 0.94 | 16.06 | 15.87 |
Gaussian distribution Random (20 × 301) | 15:1 | 0.82 | 13.82 | 18.29 |
Patient-specific dictionaries with a centered R-wave | ||||
Gaussian distribution Random * Dict † | 15:1 | 0.51 | 9 | 29.13 |
Bernoulli with 0 and 1 (20 × 301) | 15:1 | 0.71 | 12.4 | 20.98 |
Gaussian distribution Random (20 × 301) | 15:1 | 0.72 | 12.51 | 20.59 |
Record/Ave. | CR | AVG. PRD | AVG. PRDN | |
---|---|---|---|---|
Other Compression Algorithms | ||||
Polania [20,21] | 117 | 8:1 | 2.18 | Notspec. |
Polania [20,21] | 117 | 10:1 | 2.5 | Notspec. |
Mamaghanian [22] for before and after inter-packet redundancy removal and Huffman coding | Ave. for 24 records | 4:1 (75) | Before Huffman 35 | |
After Huffman 15 | ||||
10:1 (90) | Before Huffman >45 | |||
After Huffman >45 | ||||
15:1 (93) | Before Huffman >45 | |||
After Huffman >45 |
Algorithm | Average of Errors (PRD or RMS) | Average of CR | QS |
---|---|---|---|
Wavelet [23] | 18.2 RMS | 21.4:1 | |
SPHIT [24] | 3.57 PRD | 12:1 | 3.39 |
4.85 PRD | 16:1 | 3.29 | |
6.49 PRD | 20:1 | 3.08 | |
JPEG2000 [25] | 2.19 PRD | 12:1 | 5.47 |
2.74 PRD | 16:1 | 5.8 | |
3.26 PRD | 20:1 | 6.1 | |
QLV–Skeleton–Huffman * [26] | 0.641 PRD * | 16.9:1 * | 29.36 * |
Skeleton [10] | 1.17 PRD 11.35 RMS | 18.27:1 | 15.61 |
PSCCS method | 0.97 PRD | 15:1 | 15.46 |
CS with patient-specific dictionaries with a centered R-wave | 0.51 PRD | 15:1 | 29.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fira, M.; Costin, H.-N.; Goraș, L. A Study on Dictionary Selection in Compressive Sensing for ECG Signals Compression and Classification. Biosensors 2022, 12, 146. https://doi.org/10.3390/bios12030146
Fira M, Costin H-N, Goraș L. A Study on Dictionary Selection in Compressive Sensing for ECG Signals Compression and Classification. Biosensors. 2022; 12(3):146. https://doi.org/10.3390/bios12030146
Chicago/Turabian StyleFira, Monica, Hariton-Nicolae Costin, and Liviu Goraș. 2022. "A Study on Dictionary Selection in Compressive Sensing for ECG Signals Compression and Classification" Biosensors 12, no. 3: 146. https://doi.org/10.3390/bios12030146
APA StyleFira, M., Costin, H. -N., & Goraș, L. (2022). A Study on Dictionary Selection in Compressive Sensing for ECG Signals Compression and Classification. Biosensors, 12(3), 146. https://doi.org/10.3390/bios12030146