Paper-Based Electrodes Conjugated with Tungsten Disulfide Nanostructure and Aptamer for Impedimetric Detection of Listeria monocytogenes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Apparatus
2.3. Bacteria Culture
2.4. Synthesis of Tungsten Disulfide (WS2) Nanoflakes
2.5. Development of Paper-Based Sensor Drop Cast with Tungsten Disulfide Nanoflakes (WS2NFs)
2.6. Fabrication of Listeria Aptamer ssDNA/WS2NF/ePAD
2.7. Bacteria Detection
2.8. Repeatability and Storage Stability
2.9. Application of ssDNA/WS2NS/ePAD in Food Samples
3. Results and Discussion
3.1. Surface Characterization of WS2 Nanostructures
3.2. Electrochemical Characterization of ePADs
3.3. Electrochemical Impedance Spectroscopic Analysis of Listeria monocytogenes
3.4. Selectivity of the Aptasensor
3.5. Reproducibility and Storage Stability
3.6. Application of the Aptasensor in Real Sample Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization, Food Safety. 2019. Available online: https://www.who.int/news-room/fact-sheets/detail/food-safety (accessed on 4 June 2019).
- Chiu, C.H.; Wu, T.L.; Su, L.H.; Chu, C.; Chia, J.H.; Kuo, A.J.; Chien, M.S.; Lin, T.Y. The emergence in Taiwan of fluoroquinolone resistance in Salmonella enterica Serotype Choleraesuis. N. Engl. J. Med. 2002, 346, 413–419. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Available online: https://www.cdc.gov/listeria/faq.html (accessed on 12 December 2016).
- Bagheryan, Z.; Raoof, J.B.; Golabi, M.; Turner, A.P.F.; Beni, V. Diazonium-based impedimetric aptasensor for the rapid label-free detection of Salmonella typhimurium in food sample. Biosens. Bioelectron. 2016, 80, 566–573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heredia, N.; Garcia, S. Animals as sources of food-borne pathogens: A review. Anim. Nutr. 2018, 4, 250–255. [Google Scholar] [CrossRef] [PubMed]
- Law, J.W.-F.; Ab Mutalib, N.S.; Chan, K.G.; Lee, L.H. Rapid methods for the detection of foodborne bacterial pathogens: Principles, applications, advantages and limitations. Front. Microbiol. 2014, 5, 770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, I.H.; Ku, S. Current technical approaches for the early detection of foodborne pathogens: Challenges and opportunities. Int. J. Mol. Sci. 2017, 18, 2078. [Google Scholar] [CrossRef] [PubMed]
- Grieshaber, D.; MacKenzie, R.; Vörös, J.; Reimhult, E. Electrochemical biosensors—Sensor principles and architectures. Sensors 2008, 8, 1400–1458. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.; Chauhan, R.; Solanki, P.R.; Basu, T. Development of impedimetric biosensor for total cholesterol estimation based on polypyrrole and platinum nanoparticle multi layer nanocomposite. Int. J. Org. Chem. 2013, 3, 262–274. [Google Scholar] [CrossRef] [Green Version]
- Mathur, A.; Gupta, R.; Kondal, S.; Wadhwa, S.; Pudake, R.N.; Shivani Kansal, R.; Pundir, C.S.; Narang, J. A new tactics for the detection of S. aureus via paper based geno-interface incorporated with graphene nano dots and zeolites. Int. J. Biol. Macromol. 2018, 112, 364–370. [Google Scholar] [CrossRef] [PubMed]
- Sidhu, R.J.; Claussen, J.; Rong, Y.; Mclamore, E. Smart Biomedical and Physiological Sensor Technology XII. In Proceedings of the SPIE Sensing Technology + Applications, Baltimore, MD, USA, 20–24 April 2015. [Google Scholar]
- Singhal, C.; Dubey, A.; Mathur, A.; Pundir, C.S.; Narang, J. Paper based DNA biosensor for detection of chikungunya virus using gold shells coated magnetic nanocubes. Process Biochem. 2018, 74, 35–42. [Google Scholar] [CrossRef]
- Ashraf, W.; Fatima, T.; Srivastava, K.; Khanuja, M. Superior photocatalytic activity of tungsten disulfide nanostructures: Role of morphology and defects. Appl. Nanosci. 2019, 9, 1–15. [Google Scholar] [CrossRef]
- Narang, J.; Singhal, C.; Khanuja, M.; Mathur, A.; Jain, A.; Pundir, C.S. Hydrothermally synthesized zinc oxide nanorods incorporated on lab-on-paper device for electrochemical detection of recreational drug. Artif. Cells Nanomed. Biotechnol. 2018, 46, 1586–1593. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Liu, T.; Hussain, S.; Zeng, W.; Peng, X.; Pan, F. Synthesis and characterization of novel chrysanthemum-like tungsten disulfide (WS2) nanostructure: Structure, growth and optical absorption property. Mater. Lett. 2014, 129, 205–208. [Google Scholar] [CrossRef]
- Ghorai, A.; Bayan, S.; Gogurla, N.; Midya, A.; Ray, S.K. Highly luminescent WS2 quantum Dots/ZnO heterojunctions for light emitting devices. ACS Appl. Mater. Interfaces 2016, 9, 558–565. [Google Scholar] [CrossRef] [PubMed]
- Lvovich, V.F. Fundamentals of electrochemical impedance spectroscopy. In Impedance Spectroscopy; Wiley: New York, NY, USA, 2012; pp. 1–21. [Google Scholar]
- Mathur, A.; Nayak, H.C.; Rajput, S.; Roy, S.; Nagabooshanam, S.; Wadhwa, S.; Kumar, R. An enzymatic multiplexed impedimetric sensor based on α-MnO2/GQD nano-composite for the detection of diabetes and diabetic foot ulcer using micro-fluidic platform. Chemosensors 2021, 9, 339. [Google Scholar] [CrossRef]
- Khanna, M.; Roy, S.; Kumar, R.; Wadhwa, S.; Mathur, A.; Dubey, A.K. MnO2 based bisphenol—A electrochemical sensor using micro-fluidic platform. IEEE Sens. J. 2018, 18, 2206–2209. [Google Scholar] [CrossRef]
- Roy, S.; John, A.; Nagabooshanam, S.; Mishra, A.; Wadhwa, S.; Mathur, A.; Narang, J.; Singh, J.; Dilawar, N.; Davis, J. Self-aligned TiO2—Photo reduced graphene oxide hybrid surface for smart bandage application. Appl. Surf. Sci. 2019, 488, 261–268. [Google Scholar] [CrossRef]
- Ma, X.; Jiang, Y.; Jia, F.; Yu, Y.; Chen, J.; Wang, Z.J. An aptamer-based electrochemical biosensor for the detection of Salmonella. Microbiol. Methods 2014, 98, 94–98. [Google Scholar] [CrossRef] [PubMed]
- Meier, P.C.; Zünd, R.E. SMAC-Statistical Methods in Analytical Chemistry; Wiley Analytical Science, Wiley: New York, NY, USA, 2000; p. 153. ISBN 978-0-471-72611-1. [Google Scholar]
Sl No. | Listeria Concentration (CFU/mL) | Rs (Ω) | Rct (Ω) | CPE (F) | Ws (Ω) |
---|---|---|---|---|---|
1 | 101 | 5 × 103 | 58 × 103 | 2 × 10−6 | 1 × 102 |
2 | 108 | 5 × 103 | 96 × 103 | 5 × 10−9 | 6 × 102 |
S. No. | Spiked Concentration (CFU/mL) | Cheese | Milk | ||
---|---|---|---|---|---|
Detected Concentration (CFU/mL) | % Recovery | Detected Concentration (CFU/mL) | % Recovery | ||
1. | 10 | 10.7 | 107 | 10.13 | 101.3 |
2. | 1000 | 1023.1 | 102.3 | 1021.2 | 102.1 |
3. | 100,000 | 104,712.8 | 104.7 | 100,461.5 | 100.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mishra, A.; Pilloton, R.; Jain, S.; Roy, S.; Khanuja, M.; Mathur, A.; Narang, J. Paper-Based Electrodes Conjugated with Tungsten Disulfide Nanostructure and Aptamer for Impedimetric Detection of Listeria monocytogenes. Biosensors 2022, 12, 88. https://doi.org/10.3390/bios12020088
Mishra A, Pilloton R, Jain S, Roy S, Khanuja M, Mathur A, Narang J. Paper-Based Electrodes Conjugated with Tungsten Disulfide Nanostructure and Aptamer for Impedimetric Detection of Listeria monocytogenes. Biosensors. 2022; 12(2):88. https://doi.org/10.3390/bios12020088
Chicago/Turabian StyleMishra, Annu, Roberto Pilloton, Swati Jain, Souradeep Roy, Manika Khanuja, Ashish Mathur, and Jagriti Narang. 2022. "Paper-Based Electrodes Conjugated with Tungsten Disulfide Nanostructure and Aptamer for Impedimetric Detection of Listeria monocytogenes" Biosensors 12, no. 2: 88. https://doi.org/10.3390/bios12020088