Constructing the Mo2C@MoOx Heterostructure for Improved SERS Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthesis of Mo2C
2.3. Preparing the Mo2C@MoOx Films
2.4. Measurements and Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Langer, J.; Jimenez de Aberasturi, D.; Aizpurua, J.; Alvarez-Puebla, R.A.; Auguié, B.; Baumberg, J.J.; Bazan, G.C.; Bell, S.E.J.; Boisen, A.; Brolo, A.G.; et al. Present and future of surface-enhanced Raman scattering. ACS Nano 2020, 14, 28–117. [Google Scholar] [CrossRef] [Green Version]
- Tian, Y.; Liu, H.; Chen, Y.; Gu, C.; Wei, G.; Jiang, T. Quantitative SERS-based detection and elimination of mixed hazardous additives in food mediated by the intrinsic Raman signal of TiO2 and magnetic enrichment. ACS Sustain. Chem. Eng. 2020, 8, 16990–16999. [Google Scholar] [CrossRef]
- Liu, C.; Yang, M.; Yu, J.; Lei, F.; Wei, Y.; Peng, Q.; Li, C.; Li, Z.; Zhang, C.; Man, B. Fast multiphase analysis: Self-separation of mixed solution by a wettability-controlled CuO@Ag SERS substrate and its applications in pollutant detection. Sens. Actuators B Chem. 2020, 307, 127663. [Google Scholar] [CrossRef]
- Ben-Jaber, S.; Peveler, W.J.; Quesada-Cabrera, R.; Cortés, E.; Sotelo-Vazquez, C.; Abdul-Karim, N.; Maier, S.A.; Parkin, I.P. Photo-induced enhanced Raman spectroscopy for universal ultra-trace detection of explosives, pollutants and biomolecules. Nat. Comm. 2016, 7, 12189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, K.; Zhou, R.; Takei, K.; Hong, M. Toward flexible surface-enhanced Raman scattering (SERS) sensors for point-of-care diagnostics. Adv. Sci. 2019, 6, 1900925. [Google Scholar] [CrossRef]
- Ning, C.-F.; Wang, L.; Tian, Y.-F.; Yin, B.-C.; Ye, B.-C. Multiple and sensitive SERS detection of cancer-related exosomes based on gold–silver bimetallic nanotrepangs. Analyst 2020, 145, 2795–2804. [Google Scholar] [CrossRef] [PubMed]
- Mosier-Boss, P.A. Review of SERS substrates for chemical sensing. Nanomaterials 2017, 7, 142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Jiménez, A.I.; Lyu, D.; Lu, Z.; Liu, G.; Ren, B. Surface-enhanced Raman spectroscopy: Benefits, trade-offs and future developments. Chem. Sci. 2020, 11, 4563–4577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.K.; Lee, Y.H.; Koh, C.S.L.; Phan-Quang, G.C.; Han, X.; Lay, C.L.; Sim, H.Y.F.; Kao, Y.-C.; An, Q.; Ling, X.Y. Designing surface-enhanced Raman scattering (SERS) platforms beyond hotspot engineering: Emerging opportunities in analyte manipulations and hybrid materials. Chem. Rev. 2019, 48, 731–756. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Du, Y.; Chen, Y.; Gu, C.; Jiang, T.; Wei, G.; Zhou, J. Intrinsic Raman signal of polymer matrix induced quantitative multiphase SERS analysis based on stretched PDMS film with anchored Ag nanoparticles/Au nanowires. Chem. Eng. J. 2020, 381, 122710. [Google Scholar] [CrossRef]
- Tan, L.-L.; Wei, M.; Shang, L.; Yang, Y.-W. Cucurbiturils-mediated noble metal nanoparticles for applications in sensing, SERS, theranostics, and catalysis. Adv. Funct. Mater. 2021, 31, 2007277. [Google Scholar] [CrossRef]
- Wei, W.; Du, Y.; Zhang, L.; Yang, Y.; Gao, Y. Improving SERS hot spots for on-site pesticide detection by combining silver nanoparticles with nanowires. J. Mater. Chem. C 2018, 6, 8793–8803. [Google Scholar] [CrossRef]
- Li, M.; Fan, X.; Gao, Y.; Qiu, T. W18O49/monolayer MoS2 heterojunction-enhanced Raman scattering. J. Phys. Chem. Lett. 2019, 10, 4038–4044. [Google Scholar] [CrossRef]
- Zhou, C.; Sun, L.; Zhang, F.; Gu, C.; Zeng, S.; Jiang, T.; Shen, X.; Ang, D.S.; Zhou, J. Electrical tuning of the SERS enhancement by precise defect density control. ACS Appl. Mater. Interfaces 2019, 11, 34091–34099. [Google Scholar] [CrossRef] [PubMed]
- Cheng, R.; Hu, T.; Hu, M.; Li, C.; Liang, Y.; Wang, Z.; Zhang, H.; Li, M.; Wang, H.; Lu, H.; et al. MXenes induce epitaxial growth of size-controlled noble nanometals: A case study for surface enhanced Raman scattering (SERS). J. Mater. Res. Technol. 2020, 40, 119–127. [Google Scholar] [CrossRef]
- Yang, L.; Gong, M.; Jiang, X.; Yin, D.; Qin, X.; Zhao, B.; Ruan, W. Investigation on SERS of different phase structure TiO2 nanoparticles. J. Raman Spectrosc. 2015, 46, 287–292. [Google Scholar] [CrossRef]
- Zhou, X.; Wu, D.; Jin, Z.; Song, X.; Wang, X.; Suib, S.L. Significantly increased Raman enhancement on defect-rich O-incorporated 1T-MoS2 nanosheets. J. Mater. Sci. 2020, 55, 16374–16384. [Google Scholar] [CrossRef]
- He, R.; Lai, H.; Wang, S.; Chen, T.; Xie, F.; Chen, Q.; Liu, P.; Chen, J.; Xie, W. Few-layered vdW MoO3 for sensitive, uniform and stable SERS applications. Appl. Surf. Sci. 2020, 507, 145116. [Google Scholar] [CrossRef]
- Jing, X.-X.; Li, D.-Q.; Zhang, Y.; Hou, X.-Y.; Jiang, J.; Fan, X.-C.; Wang, M.-C.; Feng, S.-P.; Yu, Y.-f.; Lu, J.-P.; et al. Surface-enhanced Raman scattering of hydrogen plasma-treated few-layer MoTe2. Chin. Phys. Lett. 2021, 38, 074203. [Google Scholar] [CrossRef]
- Jiang, J.; Liu, H.; Li, X.; Chen, Y.; Gu, C.; Wei, G.; Zhou, J.; Jiang, T. Nonmetallic SERS-based immunosensor byintegrating MoS2 nanoflower and nanosheet towards the direct serum detection of carbohydrate antigen 19-9. Biosens. Bioelectron. 2021, 193, 113481. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Li, X.; Ma, Q.; Zhang, Q.; Bai, H.; Yi, W.; Liu, J.; Han, J.; Xi, G. A metallic molybdenum dioxide with high stability for surface enhanced Raman spectroscopy. Nat. Comm. 2017, 8, 14903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, S.; Chen, D.; Gu, C.; Jiang, T.; Zeng, S.; Wang, Y.Y.; Ni, Z.; Shen, X.; Zhou, J. Molybdenum oxide/tungsten oxide nano-heterojunction with improved surface-enhanced Raman scattering performance. ACS Appl. Mater. Interfaces 2021, 13, 33345–33353. [Google Scholar] [CrossRef]
- Wu, C.M.; Naseem, S.; Chou, M.-H.; Wang, J.; Jian, Y. Recent Advances in Tungsten-Oxide-Based Materials and Their Applications. Front. Mater. Sci. 2019, 6, 49. [Google Scholar] [CrossRef] [Green Version]
- Kang, Z.; Cheng, Y.; Zheng, Z.; Cheng, F.; Chen, Z.; Li, L.; Tan, X.; Xiong, L.; Zhai, T.; Gao, Y. MoS2-based photodetectors powered by asymmetric contact structure with large work function difference. Nanomicro Lett. 2019, 11, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, L.; Chen, W.; Yang, R.; Chen, A.; Zhang, H.; Sun, Y.; Jia, Y.; Li, X.; Tang, Z.; Gui, X. Fabrication of MoOx/Mo2C-layered hybrid structures by direct thermal oxidation of Mo2C. ACS Appl. Mater. Interfaces 2020, 12, 10755–10762. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Wang, H.; Li, G. Metal oxide semiconductor SERS-active substrates by defect engineering. Analyst 2017, 142, 326–335. [Google Scholar] [CrossRef]
- Zhang, C.; Jiang, S.Z.; Huo, Y.Y.; Liu, A.H.; Xu, S.C.; Liu, X.Y.; Sun, Z.C.; Xu, Y.Y.; Li, Z.; Man, B.Y. SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure. Opt. Express 2015, 23, 24811–24821. [Google Scholar] [CrossRef]
- Cui, W.; Cheng, N.; Liu, Q.; Ge, C.; Asiri, A.M.; Sun, X. Mo2C nanoparticles decorated graphitic carbon sheets: Biopolymer-derived solid-state synthesis and application as an efficient electrocatalyst for hydrogen generation. ACS Catal. 2014, 4, 2658–2661. [Google Scholar] [CrossRef]
- Gu, C.; Li, D.; Zeng, S.; Jiang, T.; Shen, X.; Zhang, H. Synthesis and defect engineering of molybdenum oxides and their SERS applications. Nanoscale 2021, 13, 5620–5651. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Chen, J.; McBride, J.R.; Lian, T. Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition. Science 2015, 349, 632–635. [Google Scholar] [CrossRef] [Green Version]
- Jing, X.; Peng, X.; Sun, X.; Zhou, W.; Wang, W.; Wang, S. Design and synthesis of Mo2C/MoO3 with enhanced visible-light photocatalytic performance for reduction of Cr (VI) and degradation of organic pollutants. Mater. Sci. Semicond. Process. 2019, 100, 262–269. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, K.; Yuan, K.; Ye, Q.; Chen, A.; Chen, D.; Chen, D.; Gu, C. Constructing the Mo2C@MoOx Heterostructure for Improved SERS Application. Biosensors 2022, 12, 50. https://doi.org/10.3390/bios12020050
Lai K, Yuan K, Ye Q, Chen A, Chen D, Chen D, Gu C. Constructing the Mo2C@MoOx Heterostructure for Improved SERS Application. Biosensors. 2022; 12(2):50. https://doi.org/10.3390/bios12020050
Chicago/Turabian StyleLai, Kui, Kaibo Yuan, Qinli Ye, Anqi Chen, Dong Chen, Da Chen, and Chenjie Gu. 2022. "Constructing the Mo2C@MoOx Heterostructure for Improved SERS Application" Biosensors 12, no. 2: 50. https://doi.org/10.3390/bios12020050
APA StyleLai, K., Yuan, K., Ye, Q., Chen, A., Chen, D., Chen, D., & Gu, C. (2022). Constructing the Mo2C@MoOx Heterostructure for Improved SERS Application. Biosensors, 12(2), 50. https://doi.org/10.3390/bios12020050