Preparation of a Highly Sensitive Electrochemical Aptasensor for Measuring Epirubicin Based on a Gold Electrode Boosted with Carbon Nano-Onions and MB
Abstract
:1. Introduction
2. Experimental Methods
2.1. Materials and Apparatus
2.2. Synthesis of CNOs
2.3. Preparation of the Electrochemical Aptasensor
3. Result and Discussion
3.1. Characterization
3.2. Electrochemical Performance of Electrodes
3.3. Optimization
3.4. Analytical Activity of Epirubicin
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lehmann, J.; Retz, M.; Wellek, S.; Stockle, M.; Trial, P. Adjuvant cisplatin plus methotrexate versus methotrexate, vinblastine, epirubicin, and cisplatin for locally advanced bladder cancer: Results of a randomised, multicenter phase III study in Germany. Eur. Urol. Suppl. 2003, 1, 126. [Google Scholar] [CrossRef]
- Munster, P.; Marchion, D.; Bicaku, E.; Schmitt, M.; Lee, J.H.; DeConti George Simon, R.; Fishman, M.; Minton, S.; Garrett, C.; Chiappori, A.; et al. Phase I trial of histone deacetylase inhibition by valproic acid followed by the topoisomerase II inhibitor epirubicin in advanced solid tumors: A clinical and translational study. J. Clin. Oncol. 2007, 25, 1979–1985. [Google Scholar] [CrossRef] [PubMed]
- Bastholt, L.; Dalmark, M.; Gjedde, S.B.; Pfeiffer, P.; Pedersen, D.; Sandberg, E.; Kjaer, M.; Mouridsen, H.T.; Rose, C.; Nielsen, O.S.; et al. Dose-response relationship of epirubicin in the treatment of postmenopausal patients with metastatic breast cancer: A randomized study of epirubicin at four different dose levels performed by the Danish Breast Cancer Cooperative Group. J. Clin. Oncol. 1996, 14, 1146–1155. [Google Scholar] [CrossRef] [PubMed]
- Cassinelli, G.; Configliacchi, E.; Penco, S.; Rivola, G.; Arcamone, F.; Pacciarini, A.; Ferrari, L. Separation, characterization, and analysis of epirubicin (4′-epidoxorubicin) and its metabolites from human urine. Drug Metab. Dispos. 1984, 12, 506–510. [Google Scholar]
- Casazza, A.M. Experimental evaluation of anthracycline analogs. Cancer Treat Rep. 1979, 63, 835–844. [Google Scholar]
- Plosker, G.L.; Faulds, D. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in cancer chemotherapy. Drugs 1993, 45, 788–856. [Google Scholar] [CrossRef]
- Cersosimo, R.J.; Hong, W.K. Epirubicin: A review of the pharmacology, clinical activity, and adverse effects of an adriamycin analogue. J. Clin. Oncol. 1986, 4, 425–439. [Google Scholar] [CrossRef]
- Charak, S.; Jangir, D.K.; Tyagi, G.; Mehrotra, R. Interaction studies of Epirubicin with DNA using spectroscopic techniques. J. Mol.Struct. 2011, 1000, 150–154. [Google Scholar] [CrossRef]
- Li, R.; Dong, L.; Huang, J. Ultra performance liquid chromatography–tandem mass spectrometry for the determination of epirubicin in human plasma. Anal. Chim. Acta 2005, 546, 167–173. [Google Scholar] [CrossRef]
- Gopinath, P.; Veluswami, S.; Thangarajan, R.; Gopisetty, G. RP-HPLC-UV method for estimation of fluorouracil–Epirubicin–cyclophosphamide and their metabolite mixtures in human plasma (matrix). J. Chromatogr. Sci. 2018, 56, 488–497. [Google Scholar] [CrossRef] [Green Version]
- Sottani, C.; Rinaldi, P.; Leoni, E.; Poggi, G.; Teragni, C.; Delmonte, A.; Minoia, C. Simultaneous determination of cyclophosphamide, ifosfamide, doxorubicin, epirubicin and daunorubicin in human urine using high-performance liquid chromatography/electrospray ionization tandem mass spectrometry: Bioanalytical method validation. Rapid Commun. Mass Spectrom. Int. J. Devoted Rapid Dissem. Up—Minute Res. Mass Spectrom. 2008, 22, 2645–2659. [Google Scholar] [CrossRef] [PubMed]
- Helgason, H.; Engwegen, J.; Cats, A.; Boot, H.; Kuiper, M.; Zapatka, M.; Joerger, M.; Beijnen, J.H.; Schellens, J.H. Serum proteomic profiling of advanced gastric cancer and identification of proteomic changes following response to epirubicin, cisplatin and capecitabine chemotherapy as diagnostic and predictive biomarkers. J. Clin. Oncol. 2007, 25, 4537. [Google Scholar] [CrossRef]
- Mehmandoust, M.; Erk, N.; Karaman, C.; Karimi, F.; Salmanpour, S. Sensitive and selective electrochemical detection of epirubicin as anticancer drug based on nickel ferrite decorated with gold nanoparticles. Micromachines 2021, 12, 1334. [Google Scholar] [CrossRef]
- Kurbanoglu, S.; Bozal-Palabiyik, B.; Gumustas, M.; Uslu, B.; Ozkan, S.A. Investigation of voltammetric behavior and electroanalytical determination of anticancer epirubicin via glassy carbon electrode using differential pulse and square wave voltammetry techniques. Rev. Roum. Chim. 2015, 60, 491–499. [Google Scholar]
- Bozal-Palabiyik, B.; Kurbanoglu, S.; Gumustas, M.; Uslu, B.; Ozkan, S.A. Electrochemical approach for the sensitive determination of anticancer drug epirubicin in pharmaceuticals in the presence of anionic surfactant. Rev. Roum. Chim. 2013, 58, 647–658. [Google Scholar]
- Shams, A.; Yari, A. A new sensor consisting of Ag-MWCNT nanocomposite as the sensing element for electrochemical determination of Epirubicin. Sens. Actuators B Chemical. 2019, 286, 131–138. [Google Scholar] [CrossRef]
- Thomas, T.; Mascarenhas, R.J.; Swamy, B.K.; Martis, P.; Mekhalif, Z.; Sherigara, B. Multi-walled carbon nanotube/poly (glycine) modified carbon paste electrode for the determination of dopamine in biological fluids and pharmaceuticals. Colloids Surf. B Biointerfaces 2013, 110, 458–465. [Google Scholar] [CrossRef]
- Ghalkhani, M.; Mirzaie, R.A.; Banimostafa, A.; Sohouli, E.; Hashemi, E. Electrosynthesis of ternary nonprecious Ni, Cu, Fe oxide nanostructure as efficient electrocatalyst for ethanol electro-oxidation: Design strategy and electrochemical performance. Int. J. Hydrog. Energy 2022. [Google Scholar] [CrossRef]
- Sohouli, E.; Ghalkhani, M.; Shahdost-fard, F.; Khosrowshahi, E.M.; Rahimi-Nasrabadi, M.; Ahmadi, F. Sensitive sensor based on TiO2NPs nano-composite for the rapid analysis of Zolpidem, a psychoactive drug with cancer-causing potential. Mater. Today Commun. 2021, 26, 101945. [Google Scholar] [CrossRef]
- Ghalkhani, M.; Sohouli, E. Synthesis of the decorated carbon nano onions with aminated MCM-41/Fe3O4 NPs: Morphology and electrochemical sensing performance for methotrexate analysis. Microporous Mesoporous Mater. 2022, 331, 111658. [Google Scholar] [CrossRef]
- Ghalkhani, M.; Khosrowshahi, E.M.; Sohouli, E. Carbon nano-onions: Synthesis, characterization, and application. In Handbook of Carbon-Based Nanomaterials; Elsevier: Amsterdam, The Netherlands, 2021; pp. 159–207. [Google Scholar]
- Sohouli, E.; Adib, K.; Maddah, B.; Najafi, M. Manganese dioxide/cobalt tungstate/nitrogen-doped carbon nano-onions nanocomposite as new supercapacitor electrode. Ceram. Int. 2022, 48, 295–303. [Google Scholar] [CrossRef]
- Sohouli, E.; Adib, K.; Maddah, B.; Najafi, M. Preparation of a supercapacitor electrode based on carbon nano-onions/manganese dioxide/iron oxide nanocomposite. J. Energy Storage 2022, 52, 104987. [Google Scholar] [CrossRef]
- Kumari, P.; Tripathi, K.M.; Awasthi, K.; Gupta, R. Sustainable carbon nano-onions as an adsorbent for the efficient removal of oxo-anions. Environ. Sci. Pollut. Res. 2022. [Google Scholar] [CrossRef]
- Sohouli, E.; Ghalkhani, M.; Zargar, T.; Joseph, Y.; Rahimi-Nasrabadi, M.; Ahmadi, F.; Plonska-Brzezinska, M.E.; Ehrlich, H. A new electrochemical aptasensor based on gold/nitrogen-doped carbon nano-onions for the detection of Staphylococcus aureus. Electrochim. Acta 2022, 403, 139633. [Google Scholar] [CrossRef]
- Lee, J.O.; So, H.M.; Jeon, E.K.; Chang, H.; Won, K.; Kim, Y.H. Aptamers as molecular recognition elements for electrical nanobiosensors. Anal. Bioanal. Chem. 2008, 390, 1023–1032. [Google Scholar] [CrossRef] [Green Version]
- Javaherian, S.; Musheev, M.U.; Kanoatov, M.; Berezovski, M.V.; Krylov, S.N. Selection of aptamers for a protein target in cell lysate and their application to protein purification. Nucleic Acids Res. 2009, 37, e62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Centi, S.; Messina, G.; Tombelli, S.; Palchetti, I.; Mascini, M. Different approaches for the detection of thrombin by an electrochemical aptamer-based assay coupled to magnetic beads. Biosens. Bioelectron. 2008, 23, 1602–1609. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, X.; Yang, Y.; Yuan, Q. Aptamer-functionalized carbon nanomaterials electrochemical sensors for detecting cancer relevant biomolecules. Carbon 2018, 129, 380–395. [Google Scholar] [CrossRef]
- Goud, K.Y.; Reddy, K.K.; Satyanarayana, M.; Kummari, S.; Gobi, K.V. A review on recent developments in optical and electrochemical aptamer-based assays for mycotoxins using advanced nanomaterials. Microchim. Acta 2020, 187, 29. [Google Scholar] [CrossRef]
- Lee, J.H.; Yigit, M.V.; Mazumdar, D.; Lu, Y. Molecular diagnostic and drug delivery agents based on aptamer-nanomaterial conjugates. Adv. Drug Deliv. Rev. 2010, 62, 592–605. [Google Scholar] [CrossRef] [Green Version]
- He, P.; Shen, L.; Cao, Y.; Li, D. Ultrasensitive electrochemical detection of proteins by amplification of aptamer-nanoparticle bio bar codes. Anal. Chem. 2007, 79, 8024–8029. [Google Scholar] [CrossRef]
- Jandaghi, N.; Jahani, S.; Foroughi, M.M.; Kazemipour, M.; Ansari, M. Cerium-doped flower-shaped ZnO nano-crystallites as a sensing component for simultaneous electrochemical determination of epirubicin and methotrexate. Microchim. Acta 2020, 187, 24. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xie, J.; Tao, L.; Tian, H.; Wang, S.; Ding, H. Simultaneous electrochemical determination of epirubicin and methotrexate in human blood using a disposable electrode modified with nano-Au/MWNTs-ZnO composites. Sens. Actuators B Chem. 2014, 204, 360–367. [Google Scholar] [CrossRef]
- Hajian, R.; Ekhlasi, E.; Daneshvar, R. Spectroscopic and electrochemical studies on the interaction of epirubicin with fish sperm DNA. E-J. Chem. 2012, 9, 1587–1598. [Google Scholar] [CrossRef]
- Hashkavayi, A.B.; Raoof, J.B. Design an aptasensor based on structure-switching aptamer on dendritic gold nanostructures/Fe3O4@SiO2/DABCO modified screen printed electrode for highly selective detection of epirubicin. Biosens. Bioelectron. 2017, 91, 650–657. [Google Scholar] [CrossRef] [PubMed]
- Abedi, R.; Raoof, J.B.; Hashkavayi, A.B.; Asghary, M. Highly sensitive and label-free electrochemical biosensor based on gold nanostructures for studying the interaction of prostate cancer gene sequence with epirubicin anti-cancer drug. Microchem. J. 2021, 170, 106668. [Google Scholar] [CrossRef]
Modified Electrode | Technique | Linear Range (nM) | LOD (nM) | Ref. |
---|---|---|---|---|
NiFe2O4/AuNPs/SPCE | DPV | 700–3600 | 5.3 | [13] |
Ce-ZnO/GCE | DPV | 10–600 | 2.3 | [33] |
DNA/GCE | DPV | 50–500 | 10 | [35] |
AuNPs/Fe3O4/SiO2/SPCE | DPV | 70–2100 | 40 | [36] |
DNA/AuNPs/SPCE | DPV | 40–2000 | 10 | [37] |
Au/Apt/epirubicin/ox-CNO/MB | DPV | 1–75 | 0.33 | This Work |
Sample | Added (nM) | Found (nM) | Recovery (%) (n = 3) | RSD % |
---|---|---|---|---|
Plasma | 0 | - | - | - |
5 | 4.85 | 97.00 | 4.19 | |
10 | 9.76 | 97.60 | 4.31 | |
15 | 14.80 | 98.66 | 3.95 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sohouli, E.; Ghalkhani, M.; Zargar, T.; Ahmadi, F. Preparation of a Highly Sensitive Electrochemical Aptasensor for Measuring Epirubicin Based on a Gold Electrode Boosted with Carbon Nano-Onions and MB. Biosensors 2022, 12, 1139. https://doi.org/10.3390/bios12121139
Sohouli E, Ghalkhani M, Zargar T, Ahmadi F. Preparation of a Highly Sensitive Electrochemical Aptasensor for Measuring Epirubicin Based on a Gold Electrode Boosted with Carbon Nano-Onions and MB. Biosensors. 2022; 12(12):1139. https://doi.org/10.3390/bios12121139
Chicago/Turabian StyleSohouli, Esmail, Masoumeh Ghalkhani, Tahereh Zargar, and Farhad Ahmadi. 2022. "Preparation of a Highly Sensitive Electrochemical Aptasensor for Measuring Epirubicin Based on a Gold Electrode Boosted with Carbon Nano-Onions and MB" Biosensors 12, no. 12: 1139. https://doi.org/10.3390/bios12121139
APA StyleSohouli, E., Ghalkhani, M., Zargar, T., & Ahmadi, F. (2022). Preparation of a Highly Sensitive Electrochemical Aptasensor for Measuring Epirubicin Based on a Gold Electrode Boosted with Carbon Nano-Onions and MB. Biosensors, 12(12), 1139. https://doi.org/10.3390/bios12121139