Comparison of Optical and Electrical Sensor Characteristics for Efficient Analysis of Attachment and Detachment of Aptamer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Mechanical Measurement
2.2.1. Fabrication of a Cantilever-Type Mechanical Sensor
2.2.2. Analysis of the Mechanical Sensor’s Output Signal
2.3. Electrical Measurement
2.3.1. Fabrication of the Field-Effect Transistor (FET) Sensor
2.3.2. Analysis of the Electrical Method
2.4. Optical Measurement
Analysis of the Optical Method: Fluorescence Quenching and Restoration
3. Results
3.1. Measurement of Aptamer Adsorption Using Various Types of Sensors
3.1.1. Detection of Aptamer Adsorption via the Mechanical Method
3.1.2. Detection of Aptamer Adsorption Using the Electrical Method
3.1.3. Detection of Aptamer Adsorption Using the Optical Method
3.2. Detection of Thrombin with the TBA-Absorbed Substrate
3.2.1. Detection of Thrombin with the Mechanical Method
3.2.2. Detection of Thrombin with Electric Method
3.2.3. Detection of Thrombin with the Optical Method
3.3. Comparison between the Electrical and Optical Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thevenot, D.R.; Toth, K.; Durst, R.A.; Wilson, G.S. Electrochemical biosensors: Recommended definitions and classification. Biosens. Bioelectron. 2001, 16, 121–131. [Google Scholar] [CrossRef] [Green Version]
- Vo-Dinh, T.; Cullum, B. Biosensors and biochips: Advances in biological and medical diagnostics. Fresenius J. Anal. Chem. 2000, 366, 540–551. [Google Scholar] [CrossRef]
- Ali, J.; Najeeb, J.; Ali, M.A.; Aslam, M.F.; Raza, A. Biosensors: Their Fundamentals, Designs, Types and Most Recent Impactful Applications: A Review. J. Biosens. Bioelectron. 2017, 8, 235. [Google Scholar] [CrossRef]
- Malhotra, B.D.; Ali, M.A. Nanomaterials in Biosensors: Fundamentals and Applications. Nanomater. Biosens. 2018. [Google Scholar] [CrossRef]
- Toh, S.Y.; Citartan, M.; Gopinath, S.C.B.; Tang, T.H. Aptamers as a replacement for antibodies in enzyme-linked immunosorbent assay. Biosens. Bioelectron. 2015, 64, 392–403. [Google Scholar] [CrossRef]
- Duan, N.; Gong, W.H.; Wu, S.J.; Wang, Z.P. Selection and Application of ssDNA Aptamers against Clenbuterol Hydrochloride Based on ssDNA Library Immobilized SELEX. J. Agric. Food Chem. 2017, 65, 1771–1777. [Google Scholar] [CrossRef]
- Mohammadinezhad, R.; Jalali, S.A.H.; Farahmand, H. Evaluation of different direct and indirect SELEX monitoring methods and implementation of melt-curve analysis for rapid discrimination of variant aptamer sequences. Anal. Methods 2020, 12, 3823–3835. [Google Scholar] [CrossRef]
- Amano, R.; Aoki, K.; Miyakawa, S.; Nakamura, Y.; Kozu, T.; Kawai, G.; Sakamoto, T. NMR monitoring of the SELEX process to confirm enrichment of structured RNA. Sci. Rep. 2017, 7, 283. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Zhang, W.; Chen, S.; Zhuang, Z.; Zhang, Y.; Jiang, L.; Lin, J.S. SELEX tool: A novel and convenient gel-based diffusion method for monitoring of aptamer-target binding. J. Biol. Eng. 2020, 14, 1. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Kwon, Y.S.; Kim, J.H.; Gu, M.B. Multiple GO-SELEX for efficient screening of flexible aptamers. Chem. Commun. 2014, 50, 10513–10516. [Google Scholar] [CrossRef]
- Shi, H.; Kou, Q.; Wu, P.; Sun, Q.; Wu, J.; Le, T. Selection and Application of DNA Aptamers Against Sulfaquinoxaline Assisted by Graphene Oxide–Based SELEX. Food Anal. Methods 2021, 14, 250–259. [Google Scholar] [CrossRef]
- Kong, Q.; Yue, F.; Liu, M.; Huang, J.; Yang, F.; Liu, J.; Li, J.; Li, F.; Sun, X.; Guo, Y.; et al. Non-immobilized GO-SELEX of aptamers for label-free detection of thiamethoxam in vegetables. Anal. Chim. Acta 2022, 1202, 339677. [Google Scholar] [CrossRef]
- Park, J.W.; Tatavarty, R.; Kim, D.W.; Jung, H.T.; Gu, M.B. Immobilization-free screening of aptamers assisted by graphene oxide. Chem. Commun. 2012, 48, 2071–2073. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Z.; Wang, J.; Li, J.; Lin, Y. Graphene and graphene oxide: Biofunctionalization and applications in biotechnology. Trends Biotechnol. 2011, 29, 205–212. [Google Scholar] [CrossRef]
- Wu, S.; Duan, N.; Zhang, W.; Zhao, S.; Wang, Z. Screening and development of DNA aptamers as capture probes for colorimetric detection of patulin. Anal. Biochem. 2016, 508, 58–64. [Google Scholar] [CrossRef]
- Chergui, S.; Rhili, K.; Abrego-Martinez, J.C.; Jiménez, G.C.; Siaj, M. Selection of Highly Specific Aptamers by Graphene Oxide-SELEX to Ultrasensitive Label-Free Impedimetric Biosensor Development for Glyphosate Detection. ACS Agric. Sci. Technol. 2021, 1, 655–663. [Google Scholar] [CrossRef]
- Hari Krishna Salila Vijayalal, M.; Wai, K.C.; Yida, L.S.; Nayak Chueh, L.P.; Aaron Voon, Y.T. A highly sensitive graphene oxide based label-free capacitive aptasensor for vanillin detection. Mater. Des. 2020, 186, 108208. [Google Scholar] [CrossRef]
- Sun, H.; Wang, N.; Zhang, L.; Meng, H.; Li, Z. Aptamer-Based Sensors for Thrombin Detection Application. Chemosensors 2022, 10, 255. [Google Scholar] [CrossRef]
- Yu, H.; Zhao, Z.; Xiao, B.; Deng, M.; Wang, Z.; Li, Z.; Zhang, H.; Zhang, L.; Qian, J.; Li, J. Aptamer-Based Solution-Gated Graphene Transistors for Highly Sensitive and Real-Time Detection of Thrombin Molecules. Anal. Chem. 2021, 93, 13673–13679. [Google Scholar] [CrossRef]
- He, B. Sandwich electrochemical thrombin assay using a glassy carbon electrode modified with nitrogen- and sulfur-doped graphene oxide and gold nanoparticles. Microchim. Acta 2018, 185, 344. [Google Scholar] [CrossRef]
- Xing, Y.; Han, J.; Wu, X.; Pierce, D.T.; Zhao, J.X. Graphene/gold nanoparticle composites for ultrasensitive and versatile biomarker assay using single-particle inductively-coupled plasma/mass spectrometry. Analyst 2020, 145, 7932–7940. [Google Scholar] [CrossRef]
- Esmon, C.T.; Owen, W.G.; Duiguid, D.L.; Jackson, C.M. The action of thrombin on blood clotting factor V: Conversion of factor V to a prothrombin-binding protein. Biochim. Biophys. Acta 1973, 310, 289–294. [Google Scholar] [CrossRef]
- Mann, K.G.; Butenas, S.; Brummel, K. The dynamics of thrombin formation. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 17–25. [Google Scholar] [CrossRef]
- Chen, L.; Doerr, C.R.; Chen, Y.K.; Liow, T.Y. Low-Loss and Broadband Cantilever Couplers Between Standard Cleaved Fibers and High-Index-Contrast Si3N4 or Si Waveguides. IEEE Photonics Technol. Lett. 2010, 22, 1744–1746. [Google Scholar] [CrossRef]
- Lee, S.; Song, H.R.; Park, K.; Lee, M.; Lee, A.H.; Roh, S.M.; Park, Y.; Kim, H.J.; Kwon, Y.; Yang, S.H.; et al. Quantitative analysis of PACAP-38 and amyloid beta composition using a dual reaction in reduced graphene oxide biosensor to verify the neuroprotective role of PACAP-38. Sens. Actuators B-Chem. 2022, 361, 131727. [Google Scholar] [CrossRef]
- Chae, M.S.; Yoo, Y.K.; Kim, J.; Kim, T.G.; Hwang, K.S. Graphene-based enzyme-modified field-effect transistor biosensor for monitoring drug effects in Alzheimer’s disease treatment. Sens. Actuators B-Chem. 2018, 272, 448–458. [Google Scholar] [CrossRef]
- Jeong, D.; Kim, J.; Chae, M.S.; Lee, W.; Yang, S.H.; Kim, Y.; Kim, S.M.; Lee, J.S.; Lee, J.H.; Choi, J.; et al. Multifunctionalized Reduced Graphene Oxide Biosensors for Simultaneous Monitoring of Structural Changes in Amyloid-beta 40. Sensors 2018, 18, 1738. [Google Scholar] [CrossRef] [Green Version]
- Gao, L.; Lian, C.; Zhou, Y.; Yan, L.; Li, Q.; Zhang, C.; Chen, L.; Chen, K. Graphene oxide-DNA based sensors. Biosens. Bioelectron. 2014, 60, 22–29. [Google Scholar] [CrossRef]
- Lakhin, A.V.; Tarantul, V.Z.; Gening, L.V. Aptamers: Problems, solutions and prospects. Acta Nat. 2013, 5, 34–43. Available online: https://www.ncbi.nlm.nih.gov/pubmed/24455181 (accessed on 21 August 2022). [CrossRef] [Green Version]
- Gao, L.; Li, Q.; Li, R.; Yan, L.; Zhou, Y.; Chen, K.; Shi, H. Highly sensitive detection for proteins using graphene oxide-aptamer based sensors. Nanoscale 2015, 7, 10903–10907. [Google Scholar] [CrossRef]
- de la Escosura-Muniz, A.; Chunglok, W.; Surareungchai, W.; Merkoci, A. Nanochannels for diagnostic of thrombin-related diseases in human blood. Biosens. Bioelectron. 2013, 40, 24–31. [Google Scholar] [CrossRef] [Green Version]
- Gosai, A.; Hau Yeah, B.S.; Nilsen-Hamilton, M.; Shrotriya, P. Label free thrombin detection in presence of high concentration of albumin using an aptamer-functionalized nanoporous membrane. Biosens. Bioelectron. 2019, 126, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Allsop, T.; Mou, C.; Neal, R.; Mariani, S.; Nagel, D.; Tombelli, S.; Poole, A.; Kalli, K.; Hine, A.; Webb, D.J.; et al. Real-time kinetic binding studies at attomolar concentrations in solution phase using a single-stage opto- biosensing platform based upon infrared surface plasmons. Opt. Express 2017, 25, 39–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.-Y.; Gao, A.; Lu, C.-C.; He, X.-W.; Yin, X.-B. An electrochemiluminescence aptasensor for thrombin using graphene oxide to immobilize the aptamer and the intercalated Ru(phen)32+ probe. Biosens. Bioelectron. 2013, 48, 20–125. [Google Scholar] [CrossRef]
- Ahour, F.; Ahsani, M.K. An electrochemical label-free and sensitive thrombin aptasensor based on graphene oxide modified pencil graphite electrode. Biosens. Bioelectron. 2016, 86, 764–769. [Google Scholar] [CrossRef]
- He, C.; Xu, Z.; Sun, T.; Wang, L. Sensitive Electrochemical Aptasensor for Thrombin Detection Based on Graphene Served as Platform and Graphene Oxide as Enhancer. Appl. Biochem. Biotechnol. 2014, 172, 1018–1026. [Google Scholar] [CrossRef]
- Loo, A.H.; Bonanni, A.; Pumera, M. Impedimetric thrombin aptasensor based on chemically modified graphenes. Nanoscale 2012, 4, 143–147. [Google Scholar] [CrossRef]
- Chang, H.; Tang, L.; Wang, Y.; Jiang, J.; Li, J. Graphene Fluorescence Resonance Energy Transfer Aptasensor for the Thrombin Detection. Anal. Chem. 2010, 82, 2341–2346. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, Y.; Dang, T.V.; Jeong, U.; Kim, M.I.; Kim, J. Comparison of Optical and Electrical Sensor Characteristics for Efficient Analysis of Attachment and Detachment of Aptamer. Biosensors 2022, 12, 979. https://doi.org/10.3390/bios12110979
Park Y, Dang TV, Jeong U, Kim MI, Kim J. Comparison of Optical and Electrical Sensor Characteristics for Efficient Analysis of Attachment and Detachment of Aptamer. Biosensors. 2022; 12(11):979. https://doi.org/10.3390/bios12110979
Chicago/Turabian StylePark, Yejin, Thinh Viet Dang, Uiseok Jeong, Moon Il Kim, and Jinsik Kim. 2022. "Comparison of Optical and Electrical Sensor Characteristics for Efficient Analysis of Attachment and Detachment of Aptamer" Biosensors 12, no. 11: 979. https://doi.org/10.3390/bios12110979
APA StylePark, Y., Dang, T. V., Jeong, U., Kim, M. I., & Kim, J. (2022). Comparison of Optical and Electrical Sensor Characteristics for Efficient Analysis of Attachment and Detachment of Aptamer. Biosensors, 12(11), 979. https://doi.org/10.3390/bios12110979