Development of Folate-Group Impedimetric Biosensor Based on Polypyrrole Nanotubes Decorated with Gold Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Solutions
2.2. Characterization and Electrochemical Measurements
2.3. Electrode Preparation and Electrochemical Synthesis of PPy/AuNPs
2.4. Biosensor Construction and Characterization
3. Results
3.1. Electrode Modification and Characterizations
3.2. Functionalized Steel Mesh Electrode (PPy/AuNPs/MPA) for Biosensing Applications
Avidin-HRP/Biotin Complex: A Model System
3.3. Biosensor for Folate Detection from the Disposable Electrode Modified by PPy/AuNPs/MPA
3.3.1. Biofunctionalization Step: Recombinant Human Folate Binding Protein (FBP, Abcam) as Recognition Element
3.3.2. Detection Step: Determination of Femtomolar Concentrations of Folic Acid
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A
Parameter | MPA | Biotin | Glycine | Avidin-HRP |
---|---|---|---|---|
RS/kΩ | 0.05 | 0.07 | 0.05 | 0.14 |
QDL/10−5F sn−1 | 1.87 | 1.88 | 1.61 | 2.43 |
nDL | 0.90 | 0.90 | 0.91 | 0.85 |
RCT/kΩ | 0.56 | 1.62 | 3.95 | 4.67 |
QLF/10−3 F sn−1 | 5.80 | 6.70 | 8.06 | 8.99 |
nLF | 0.81 | 0.87 | 0.96 | 0.97 |
Glycine | EIS Measurements to FBP-Ab to 0.001 pmol L−1 | ||||||||
---|---|---|---|---|---|---|---|---|---|
RCT (Ohm) | 206.3 | 283.3 | 288.2 | 291.2 | 312.7 | 309.3 | 312.3 | 315.8 | 318.2 |
References
- Islam, M.N.; Channon, R.B. Electrochemical sensors. In Bioengineering Innovative Solutions for Cancer; Ladame, S., Chang, J.Y.H., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 47–71. ISBN 978-0-12-813886-1. [Google Scholar]
- Abdul Ghani, M.A.; Nordin, A.N.; Zulhairee, M.; Che Mohamad Nor, A.; Shihabuddin Ahmad Noorden, M.; Muhamad Atan, M.K.F.; Ab Rahim, R.; Mohd Zain, Z. Portable Electrochemical Biosensors Based on Microcontrollers for Detection of Viruses: A Review. Biosensors 2022, 12, 666. [Google Scholar] [CrossRef] [PubMed]
- Adarakatti, P.S.; Kempahanumakkagari, S.K. Modified electrodes for sensing. In Electrochemistry; The Royal Society of Chemistry: London, UK, 2019; pp. 58–95. [Google Scholar]
- Baig, N.; Rana, A.; Kawde, A.-N. Modified Electrodes for Selective Voltammetric Detection of Biomolecules. Electroanalysis 2018, 30, 2551–2574. [Google Scholar] [CrossRef]
- Sandhyarani, N. Surface modification methods for electrochemical biosensors. In Electrochemical Biosensors; Ensafi, A.A., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 45–75. ISBN 978-0-12-816491-4. [Google Scholar]
- Nemiwal, M.; Zhang, T.C.; Kumar, D. Enzyme Immobilized Nanomaterials as Electrochemical Biosensors for Detection of Biomolecules. Enzym. Microb Technol. 2022, 156, 110006. [Google Scholar] [CrossRef] [PubMed]
- Suni, I.I. Substrate Materials for Biomolecular Immobilization within Electrochemical Biosensors. Biosensors 2021, 11, 239. [Google Scholar] [CrossRef]
- Holzinger, M.; Buzzetti, P.H.M.; Cosnier, S. Polymers and Nano-Objects, a Rational Combination for Developing Health Monitoring Biosensors. Sens. Actuators B Chem. 2021, 348, 130700. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, A.; Han, Y.; Li, T. Sensors Based on Conductive Polymers and Their Composites: A Review. Polym. Int. 2020, 69, 7–17. [Google Scholar] [CrossRef]
- Kaur, G.; Kaur, A.; Kaur, H. Review on Nanomaterials/Conducting Polymer Based Nanocomposites for the Development of Biosensors and Electrochemical Sensors. Polym.-Plast. Technol. Mater. 2020, 1–18. [Google Scholar] [CrossRef]
- Kim, J.; Park, M. Recent Progress in Electrochemical Immunosensors. Biosensors 2021, 11, 360. [Google Scholar] [CrossRef] [PubMed]
- Qing, Y.; Yang, Y.; Ouyang, P.; Fang, C.; Fang, H.; Liao, Y.; Li, H.; Wang, Z.; Du, J. Gold Nanoparticle-Based Enzyme-Assisted Cyclic Amplification for the Highly-Sensitive Detection of MiRNA-21. Biosensors 2022, 12, 724. [Google Scholar] [CrossRef]
- Singh, S.; Gill, A.A.S.; Nlooto, M.; Karpoormath, R. Prostate Cancer Biomarkers Detection Using Nanoparticles Based Electrochemical Biosensors. Biosens. Bioelectron. 2019, 137, 213–221. [Google Scholar] [CrossRef]
- Montoro-Leal, P.; Frías, I.A.M.; Vereda Alonso, E.; Errachid, A.; Jaffrezic-Renault, N. A Molecularly Imprinted Polypyrrole/GO@Fe3O4 Nanocomposite Modified Impedimetric Sensor for the Routine Monitoring of Lysozyme. Biosensors 2022, 12, 727. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, C.; Wallace-Povirk, A.; Ning, C.; Frühauf, J.; Tong, N.; Gangjee, A.; Matherly, L.H.; Hou, Z. Folate Transporter Dynamics and Therapy with Classic and Tumor-Targeted Antifolates. Sci. Rep. 2021, 11, 6389. [Google Scholar] [CrossRef] [PubMed]
- Boss, S.D.; Ametamey, S.M. Development of Folate Receptor−Targeted PET Radiopharmaceuticals for Tumor Imaging—A Bench-to-Bedside Journey. Cancers 2020, 12, 1508. [Google Scholar] [CrossRef] [PubMed]
- Bobrowski-Khoury, N.; Ramaekers, V.T.; Sequeira, J.M.; Quadros, E.V. Folate Receptor Alpha Autoantibodies in Autism Spectrum Disorders: Diagnosis, Treatment and Prevention. J. Pers. Med. 2021, 11, 710. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.W. Folic acid. In Encyclopedia of Human Nutrition; Elsevier: Amsterdam, The Netherlands, 2013; pp. 262–269. [Google Scholar]
- Bailey, L.B.; Caudill, M.A. Folate. In Present Knowledge in Nutrition; Wiley: Oxford, UK, 2012; pp. 321–342. [Google Scholar]
- Scaranti, M.; Cojocaru, E.; Banerjee, S.; Banerji, U. Exploiting the Folate Receptor α in Oncology. Nat. Rev. Clin. Oncol. 2020, 17, 349–359. [Google Scholar] [CrossRef]
- Müller, C.; Schibli, R. Prospects in Folate Receptor-Targeted Radionuclide Therapy. Front. Oncol. 2013, 3, 249. [Google Scholar] [CrossRef] [Green Version]
- Batra, B.; Narwal, V.; Kalra, V.; Sharma, M.; Rana, J. Folic Acid Biosensors: A Review. Process Biochem. 2020, 92, 343–354. [Google Scholar] [CrossRef]
- Hryniewicz, B.M.; Lima, R.V.; Wolfart, F.; Vidotti, M. Influence of the PH on the Electrochemical Synthesis of Polypyrrole Nanotubes and the Supercapacitive Performance Evaluation. Electrochim. Acta 2019, 293, 447–457. [Google Scholar] [CrossRef]
- Colombo, R.N.P.; Petri, D.F.S.; Córdoba De Torresi, S.I.; Gonçales, V.R. Porous Polymeric Templates on ITO Prepared by Breath Figure Method for Gold Electrodeposition. Electrochim. Acta 2015, 158, 187–195. [Google Scholar] [CrossRef]
- Soares, A.L.; Hryniewicz, B.M.; Deller, A.E.; Volpe, J.; Marchesi, L.F.; Souto, D.E.P.; Vidotti, M. Electrodes Based on PEDOT Nanotubes Decorated with Gold Nanoparticles for Biosensing and Energy Storage. ACS Appl. Nano. Mater. 2021, 4, 9945–9956. [Google Scholar] [CrossRef]
- Singh, M.; Kaur, N.; Comini, E. The Role of Self-Assembled Monolayers in Electronic Devices. J. Mater. Chem. C Mater. 2020, 8, 3938–3955. [Google Scholar] [CrossRef]
- Souto, D.E.P.; Silva, J.V.; Martins, H.R.; Reis, A.B.; Luz, R.C.S.; Kubota, L.T.; Damos, F.S. Development of a Label-Free Immunosensor Based on Surface Plasmon Resonance Technique for the Detection of Anti-Leishmania Infantum Antibodies in Canine Serum. Biosens. Bioelectron. 2013, 46, 22–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertok, T.; Lorencova, L.; Chocholova, E.; Jane, E.; Vikartovska, A.; Kasak, P.; Tkac, J. Electrochemical Impedance Spectroscopy Based Biosensors: Mechanistic Principles, Analytical Examples and Challenges towards Commercialization for Assays of Protein Cancer Biomarkers. ChemElectroChem 2019, 6, 989–1003. [Google Scholar] [CrossRef] [Green Version]
- Soares, A.L.; Zamora, M.L.; Marchesi, L.F.; Vidotti, M. Adsorption of Catechol onto PEDOT Films Doped with Gold Nanoparticles: Electrochemical and Spectroscopic Studies. Electrochim. Acta 2019, 322, 134773. [Google Scholar] [CrossRef]
- Gonçalves, R.; Pereira, E.; Marchesi, L. The Overoxidation of Poly(3-Hexylthiophene) (P3HT) Thin Film: CV and EIS Measurements. Int. J. Electrochem. Sci. 2017, 12, 1983–1991. [Google Scholar] [CrossRef]
- Wolfart, F.; Hryniewicz, B.M.; Góes, M.S.; Corrêa, C.M.; Torresi, R.; Minadeo, M.A.O.S.; Córdoba de Torresi, S.I.; Oliveira, R.D.; Marchesi, L.F.; Vidotti, M. Conducting Polymers Revisited: Applications in Energy, Electrochromism and Molecular Recognition. J. Solid State Electrochem. 2017, 21, 2489–2515. [Google Scholar] [CrossRef]
- Samanta, D.; Sarkar, A. Immobilization of Bio-Macromolecules on Self-Assembled Monolayers: Methods and Sensor Applications. Chem. Soc. Rev. 2011, 40, 2567–2592. [Google Scholar] [CrossRef]
- Bănică, F. Affinity-based recognition. In Chemical Sensors and Biosensors; John Wiley & Sons: Hoboken, NJ, USA, 2012; pp. 101–117. [Google Scholar]
- Bănică, F. Electrical-impedance-based sensors. In Chemical Sensors and Biosensors; John Wiley & Sons: Hoboken, NJ, USA, 2012; pp. 367–403. [Google Scholar]
- Battistel, A.; Fan, M.; Stojadinović, J.; la Mantia, F. Analysis and Mitigation of the Artefacts in Electrochemical Impedance Spectroscopy Due to Three-Electrode Geometry. Electrochim. Acta 2014, 135, 133–138. [Google Scholar] [CrossRef]
- Teles, F.R.R.; Fonseca, L.P. Applications of Polymers for Biomolecule Immobilization in Electrochemical Biosensors. Mater. Sci. Eng. C 2008, 28, 1530–1543. [Google Scholar] [CrossRef]
- Babakhanian, A.; Kaki, S.; Ahmadi, M.; Ehzari, H.; Pashabadi, A. Development of α-Polyoxometalate–Polypyrrole–Au Nanoparticles Modified Sensor Applied for Detection of Folic Acid. Biosens. Bioelectron. 2014, 60, 185–190. [Google Scholar] [CrossRef]
- Wan, Q.; Yang, N. The Direct Electrochemistry of Folic Acid at a 2-Mercaptobenzothiazole Self-Assembled Gold Electrode. J. Electroanal. Chem. 2002, 527, 131–136. [Google Scholar] [CrossRef]
- Kanchana, P.; Sekar, C. Development of Electrochemical Folic Acid Sensor Based on Hydroxyapatite Nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 137, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Kun, Z.; Ling, Z.; Yi, H.; Ying, C.; Dongmei, T.; Shuliang, Z.; Yuyang, Z. Electrochemical Behavior of Folic Acid in Neutral Solution on the Modified Glassy Carbon Electrode: Platinum Nanoparticles Doped Multi-Walled Carbon Nanotubes with Nafion as Adhesive. J. Electroanal. Chem. 2012, 677–680, 105–112. [Google Scholar] [CrossRef]
- Chekin, F.; Teodorescu, F.; Coffinier, Y.; Pan, G.-H.; Barras, A.; Boukherroub, R.; Szunerits, S. MoS2/Reduced Graphene Oxide as Active Hybrid Material for the Electrochemical Detection of Folic Acid in Human Serum. Biosens. Bioelectron. 2016, 85, 807–813. [Google Scholar] [CrossRef]
- Yardim, Y.; Şentürk, Z. Electrochemical Behavior of Folic Acid at A Boron-Doped Diamond Electrode: Its Adsorptive Stripping Voltammetric Determination in Tablets. Turk J. Pharm. Sci. 2012, 11, 87–100. [Google Scholar]
- Majidi, M.R.; Dastangoo, H.; Hasannejad, M.; Malakouti, J. Voltammetric Determination of Folic Acid with a Overoxidized Polypyrrole Film Modified Sol-Gel Carbon Ceramic Electrode. Int. J. Polym. Anal. Charact. 2011, 16, 486–495. [Google Scholar] [CrossRef]
- Jastrebova, J.; Witthöft, C.; Grahn, A.; Svensson, U.; Jägerstad, M. HPLC Determination of Folates in Raw and Processed Beetroots. Food Chem. 2003, 80, 579–588. [Google Scholar] [CrossRef]
- Mani, V. Highly Sensitive Determination of Folic Acid Using Graphene Oxide Nanoribbon Film Modified Screen Printed Carbon Electrode. Int. J. Electrochem. Sci. 2017, 12, 475–484. [Google Scholar] [CrossRef]
- Karimi-Maleh, H.; Hatami, M.; Moradi, R.; Khalilzadeh, M.A.; Amiri, S.; Sadeghifar, H. Synergic Effect of Pt-Co Nanoparticles and a Dopamine Derivative in a Nanostructured Electrochemical Sensor for Simultaneous Determination of N-Acetylcysteine, Paracetamol and Folic Acid. Microchim. Acta 2016, 183, 2957–2964. [Google Scholar] [CrossRef]
RS/kΩ | QDL 10−5 F sn−1 | nDL | RCT/kΩ | QLF 10−3 F sn−1 | nLF | |
---|---|---|---|---|---|---|
PPy-NTs | 0.04 | 1.89 | 0.82 | 0.25 | 3.60 | 0.83 |
PPy-NTs/AuNPs | 0.03 | 4.27 | 0.76 | 0.05 | 6.70 | 0.77 |
Glycine | Biotin Concentration (fmol L−1) | |||||
---|---|---|---|---|---|---|
100 | 300 | 500 | 700 | 900 | ||
RS/kΩ | 0.05 | 0.03 | 0.06 | 0.12 | 0.04 | 0.06 |
QDL/10 −5F sn−1 | 2.36 | 2.96 | 2.63 | 3.06 | 2.37 | 3.38 |
nDL | 0.87 | 0.84 | 0.85 | 0.80 | 0.86 | 0.81 |
RCT/kΩ | 0.16 | 0.48 | 1.11 | 1.31 | 2.11 | 2.56 |
QLF/10−3 F sn−1 | 4.6 | 4.6 | 5.35 | 4.37 | 5.17 | 4.83 |
nLF | 0.80 | 0.81 | 0.90 | 0.84 | 0.91 | 0.86 |
Material | Detection Method | Concentration Range (nmol L−1) | LOD (nmol L−1) | Reference |
---|---|---|---|---|
Steel mesh covered by PPy/AuNPs | EIS | 0.02–113.3 | 0.030 | This work |
Gold/PPy/POM | Cyclic voltammetry | 0.01–1 | 0.0075 | [40] |
Gold electrode modified with SAM | Square wave voltammetry | 0.008–1 | 0.004 | [41] |
Hydroxyapatite NPs/GCE | Differential pulse voltammetry | 0.1–350 | 0.075 | [42] |
Platinum NPs/MWCNT/GCE | Linear voltammetry | 0.2–100 | 0.05 | [43] |
MoS2/rGO/GCE | Differential pulse voltammetry | 0.1–100 | 0.01 | [44] |
Boron doped diamond electrode | Stripping voltammetry | 0.23–45 | 0.08 | [45] |
PPy-modified sol–gel carbon ceramic | Differential pulse voltammetry | 7–55 | 1.8 | [46] |
Chromatographic column | HPLC/UV–Vis | 0.3–100 | 44.14 | [42] |
SPCE/GO | Amperometry | 100–1.6 × 106 | 20 | [43] |
SPCE/SWCNT | Square wave voltammetry | 70–500 × 103 | 800 | [46] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deller, A.E.; Soares, A.L.; Volpe, J.; Ruthes, J.G.A.; Souto, D.E.P.; Vidotti, M. Development of Folate-Group Impedimetric Biosensor Based on Polypyrrole Nanotubes Decorated with Gold Nanoparticles. Biosensors 2022, 12, 970. https://doi.org/10.3390/bios12110970
Deller AE, Soares AL, Volpe J, Ruthes JGA, Souto DEP, Vidotti M. Development of Folate-Group Impedimetric Biosensor Based on Polypyrrole Nanotubes Decorated with Gold Nanoparticles. Biosensors. 2022; 12(11):970. https://doi.org/10.3390/bios12110970
Chicago/Turabian StyleDeller, Andrei E., Ana L. Soares, Jaqueline Volpe, Jean G. A. Ruthes, Dênio E. P. Souto, and Marcio Vidotti. 2022. "Development of Folate-Group Impedimetric Biosensor Based on Polypyrrole Nanotubes Decorated with Gold Nanoparticles" Biosensors 12, no. 11: 970. https://doi.org/10.3390/bios12110970
APA StyleDeller, A. E., Soares, A. L., Volpe, J., Ruthes, J. G. A., Souto, D. E. P., & Vidotti, M. (2022). Development of Folate-Group Impedimetric Biosensor Based on Polypyrrole Nanotubes Decorated with Gold Nanoparticles. Biosensors, 12(11), 970. https://doi.org/10.3390/bios12110970