Development of Folate-Group Impedimetric Biosensor Based on Polypyrrole Nanotubes Decorated with Gold Nanoparticles
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Solutions
2.2. Characterization and Electrochemical Measurements
2.3. Electrode Preparation and Electrochemical Synthesis of PPy/AuNPs
2.4. Biosensor Construction and Characterization
3. Results
3.1. Electrode Modification and Characterizations
3.2. Functionalized Steel Mesh Electrode (PPy/AuNPs/MPA) for Biosensing Applications
Avidin-HRP/Biotin Complex: A Model System
3.3. Biosensor for Folate Detection from the Disposable Electrode Modified by PPy/AuNPs/MPA
3.3.1. Biofunctionalization Step: Recombinant Human Folate Binding Protein (FBP, Abcam) as Recognition Element
3.3.2. Detection Step: Determination of Femtomolar Concentrations of Folic Acid
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A
Parameter | MPA | Biotin | Glycine | Avidin-HRP |
---|---|---|---|---|
RS/kΩ | 0.05 | 0.07 | 0.05 | 0.14 |
QDL/10−5F sn−1 | 1.87 | 1.88 | 1.61 | 2.43 |
nDL | 0.90 | 0.90 | 0.91 | 0.85 |
RCT/kΩ | 0.56 | 1.62 | 3.95 | 4.67 |
QLF/10−3 F sn−1 | 5.80 | 6.70 | 8.06 | 8.99 |
nLF | 0.81 | 0.87 | 0.96 | 0.97 |
Glycine | EIS Measurements to FBP-Ab to 0.001 pmol L−1 | ||||||||
---|---|---|---|---|---|---|---|---|---|
RCT (Ohm) | 206.3 | 283.3 | 288.2 | 291.2 | 312.7 | 309.3 | 312.3 | 315.8 | 318.2 |
References
- Islam, M.N.; Channon, R.B. Electrochemical sensors. In Bioengineering Innovative Solutions for Cancer; Ladame, S., Chang, J.Y.H., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 47–71. ISBN 978-0-12-813886-1. [Google Scholar]
- Abdul Ghani, M.A.; Nordin, A.N.; Zulhairee, M.; Che Mohamad Nor, A.; Shihabuddin Ahmad Noorden, M.; Muhamad Atan, M.K.F.; Ab Rahim, R.; Mohd Zain, Z. Portable Electrochemical Biosensors Based on Microcontrollers for Detection of Viruses: A Review. Biosensors 2022, 12, 666. [Google Scholar] [CrossRef] [PubMed]
- Adarakatti, P.S.; Kempahanumakkagari, S.K. Modified electrodes for sensing. In Electrochemistry; The Royal Society of Chemistry: London, UK, 2019; pp. 58–95. [Google Scholar]
- Baig, N.; Rana, A.; Kawde, A.-N. Modified Electrodes for Selective Voltammetric Detection of Biomolecules. Electroanalysis 2018, 30, 2551–2574. [Google Scholar] [CrossRef]
- Sandhyarani, N. Surface modification methods for electrochemical biosensors. In Electrochemical Biosensors; Ensafi, A.A., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 45–75. ISBN 978-0-12-816491-4. [Google Scholar]
- Nemiwal, M.; Zhang, T.C.; Kumar, D. Enzyme Immobilized Nanomaterials as Electrochemical Biosensors for Detection of Biomolecules. Enzym. Microb Technol. 2022, 156, 110006. [Google Scholar] [CrossRef] [PubMed]
- Suni, I.I. Substrate Materials for Biomolecular Immobilization within Electrochemical Biosensors. Biosensors 2021, 11, 239. [Google Scholar] [CrossRef]
- Holzinger, M.; Buzzetti, P.H.M.; Cosnier, S. Polymers and Nano-Objects, a Rational Combination for Developing Health Monitoring Biosensors. Sens. Actuators B Chem. 2021, 348, 130700. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, A.; Han, Y.; Li, T. Sensors Based on Conductive Polymers and Their Composites: A Review. Polym. Int. 2020, 69, 7–17. [Google Scholar] [CrossRef]
- Kaur, G.; Kaur, A.; Kaur, H. Review on Nanomaterials/Conducting Polymer Based Nanocomposites for the Development of Biosensors and Electrochemical Sensors. Polym.-Plast. Technol. Mater. 2020, 1–18. [Google Scholar] [CrossRef]
- Kim, J.; Park, M. Recent Progress in Electrochemical Immunosensors. Biosensors 2021, 11, 360. [Google Scholar] [CrossRef] [PubMed]
- Qing, Y.; Yang, Y.; Ouyang, P.; Fang, C.; Fang, H.; Liao, Y.; Li, H.; Wang, Z.; Du, J. Gold Nanoparticle-Based Enzyme-Assisted Cyclic Amplification for the Highly-Sensitive Detection of MiRNA-21. Biosensors 2022, 12, 724. [Google Scholar] [CrossRef]
- Singh, S.; Gill, A.A.S.; Nlooto, M.; Karpoormath, R. Prostate Cancer Biomarkers Detection Using Nanoparticles Based Electrochemical Biosensors. Biosens. Bioelectron. 2019, 137, 213–221. [Google Scholar] [CrossRef]
- Montoro-Leal, P.; Frías, I.A.M.; Vereda Alonso, E.; Errachid, A.; Jaffrezic-Renault, N. A Molecularly Imprinted Polypyrrole/GO@Fe3O4 Nanocomposite Modified Impedimetric Sensor for the Routine Monitoring of Lysozyme. Biosensors 2022, 12, 727. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, C.; Wallace-Povirk, A.; Ning, C.; Frühauf, J.; Tong, N.; Gangjee, A.; Matherly, L.H.; Hou, Z. Folate Transporter Dynamics and Therapy with Classic and Tumor-Targeted Antifolates. Sci. Rep. 2021, 11, 6389. [Google Scholar] [CrossRef] [PubMed]
- Boss, S.D.; Ametamey, S.M. Development of Folate Receptor−Targeted PET Radiopharmaceuticals for Tumor Imaging—A Bench-to-Bedside Journey. Cancers 2020, 12, 1508. [Google Scholar] [CrossRef] [PubMed]
- Bobrowski-Khoury, N.; Ramaekers, V.T.; Sequeira, J.M.; Quadros, E.V. Folate Receptor Alpha Autoantibodies in Autism Spectrum Disorders: Diagnosis, Treatment and Prevention. J. Pers. Med. 2021, 11, 710. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.W. Folic acid. In Encyclopedia of Human Nutrition; Elsevier: Amsterdam, The Netherlands, 2013; pp. 262–269. [Google Scholar]
- Bailey, L.B.; Caudill, M.A. Folate. In Present Knowledge in Nutrition; Wiley: Oxford, UK, 2012; pp. 321–342. [Google Scholar]
- Scaranti, M.; Cojocaru, E.; Banerjee, S.; Banerji, U. Exploiting the Folate Receptor α in Oncology. Nat. Rev. Clin. Oncol. 2020, 17, 349–359. [Google Scholar] [CrossRef]
- Müller, C.; Schibli, R. Prospects in Folate Receptor-Targeted Radionuclide Therapy. Front. Oncol. 2013, 3, 249. [Google Scholar] [CrossRef]
- Batra, B.; Narwal, V.; Kalra, V.; Sharma, M.; Rana, J. Folic Acid Biosensors: A Review. Process Biochem. 2020, 92, 343–354. [Google Scholar] [CrossRef]
- Hryniewicz, B.M.; Lima, R.V.; Wolfart, F.; Vidotti, M. Influence of the PH on the Electrochemical Synthesis of Polypyrrole Nanotubes and the Supercapacitive Performance Evaluation. Electrochim. Acta 2019, 293, 447–457. [Google Scholar] [CrossRef]
- Colombo, R.N.P.; Petri, D.F.S.; Córdoba De Torresi, S.I.; Gonçales, V.R. Porous Polymeric Templates on ITO Prepared by Breath Figure Method for Gold Electrodeposition. Electrochim. Acta 2015, 158, 187–195. [Google Scholar] [CrossRef]
- Soares, A.L.; Hryniewicz, B.M.; Deller, A.E.; Volpe, J.; Marchesi, L.F.; Souto, D.E.P.; Vidotti, M. Electrodes Based on PEDOT Nanotubes Decorated with Gold Nanoparticles for Biosensing and Energy Storage. ACS Appl. Nano. Mater. 2021, 4, 9945–9956. [Google Scholar] [CrossRef]
- Singh, M.; Kaur, N.; Comini, E. The Role of Self-Assembled Monolayers in Electronic Devices. J. Mater. Chem. C Mater. 2020, 8, 3938–3955. [Google Scholar] [CrossRef]
- Souto, D.E.P.; Silva, J.V.; Martins, H.R.; Reis, A.B.; Luz, R.C.S.; Kubota, L.T.; Damos, F.S. Development of a Label-Free Immunosensor Based on Surface Plasmon Resonance Technique for the Detection of Anti-Leishmania Infantum Antibodies in Canine Serum. Biosens. Bioelectron. 2013, 46, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Bertok, T.; Lorencova, L.; Chocholova, E.; Jane, E.; Vikartovska, A.; Kasak, P.; Tkac, J. Electrochemical Impedance Spectroscopy Based Biosensors: Mechanistic Principles, Analytical Examples and Challenges towards Commercialization for Assays of Protein Cancer Biomarkers. ChemElectroChem 2019, 6, 989–1003. [Google Scholar] [CrossRef]
- Soares, A.L.; Zamora, M.L.; Marchesi, L.F.; Vidotti, M. Adsorption of Catechol onto PEDOT Films Doped with Gold Nanoparticles: Electrochemical and Spectroscopic Studies. Electrochim. Acta 2019, 322, 134773. [Google Scholar] [CrossRef]
- Gonçalves, R.; Pereira, E.; Marchesi, L. The Overoxidation of Poly(3-Hexylthiophene) (P3HT) Thin Film: CV and EIS Measurements. Int. J. Electrochem. Sci. 2017, 12, 1983–1991. [Google Scholar] [CrossRef]
- Wolfart, F.; Hryniewicz, B.M.; Góes, M.S.; Corrêa, C.M.; Torresi, R.; Minadeo, M.A.O.S.; Córdoba de Torresi, S.I.; Oliveira, R.D.; Marchesi, L.F.; Vidotti, M. Conducting Polymers Revisited: Applications in Energy, Electrochromism and Molecular Recognition. J. Solid State Electrochem. 2017, 21, 2489–2515. [Google Scholar] [CrossRef]
- Samanta, D.; Sarkar, A. Immobilization of Bio-Macromolecules on Self-Assembled Monolayers: Methods and Sensor Applications. Chem. Soc. Rev. 2011, 40, 2567–2592. [Google Scholar] [CrossRef]
- Bănică, F. Affinity-based recognition. In Chemical Sensors and Biosensors; John Wiley & Sons: Hoboken, NJ, USA, 2012; pp. 101–117. [Google Scholar]
- Bănică, F. Electrical-impedance-based sensors. In Chemical Sensors and Biosensors; John Wiley & Sons: Hoboken, NJ, USA, 2012; pp. 367–403. [Google Scholar]
- Battistel, A.; Fan, M.; Stojadinović, J.; la Mantia, F. Analysis and Mitigation of the Artefacts in Electrochemical Impedance Spectroscopy Due to Three-Electrode Geometry. Electrochim. Acta 2014, 135, 133–138. [Google Scholar] [CrossRef]
- Teles, F.R.R.; Fonseca, L.P. Applications of Polymers for Biomolecule Immobilization in Electrochemical Biosensors. Mater. Sci. Eng. C 2008, 28, 1530–1543. [Google Scholar] [CrossRef]
- Babakhanian, A.; Kaki, S.; Ahmadi, M.; Ehzari, H.; Pashabadi, A. Development of α-Polyoxometalate–Polypyrrole–Au Nanoparticles Modified Sensor Applied for Detection of Folic Acid. Biosens. Bioelectron. 2014, 60, 185–190. [Google Scholar] [CrossRef]
- Wan, Q.; Yang, N. The Direct Electrochemistry of Folic Acid at a 2-Mercaptobenzothiazole Self-Assembled Gold Electrode. J. Electroanal. Chem. 2002, 527, 131–136. [Google Scholar] [CrossRef]
- Kanchana, P.; Sekar, C. Development of Electrochemical Folic Acid Sensor Based on Hydroxyapatite Nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 137, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Kun, Z.; Ling, Z.; Yi, H.; Ying, C.; Dongmei, T.; Shuliang, Z.; Yuyang, Z. Electrochemical Behavior of Folic Acid in Neutral Solution on the Modified Glassy Carbon Electrode: Platinum Nanoparticles Doped Multi-Walled Carbon Nanotubes with Nafion as Adhesive. J. Electroanal. Chem. 2012, 677–680, 105–112. [Google Scholar] [CrossRef]
- Chekin, F.; Teodorescu, F.; Coffinier, Y.; Pan, G.-H.; Barras, A.; Boukherroub, R.; Szunerits, S. MoS2/Reduced Graphene Oxide as Active Hybrid Material for the Electrochemical Detection of Folic Acid in Human Serum. Biosens. Bioelectron. 2016, 85, 807–813. [Google Scholar] [CrossRef]
- Yardim, Y.; Şentürk, Z. Electrochemical Behavior of Folic Acid at A Boron-Doped Diamond Electrode: Its Adsorptive Stripping Voltammetric Determination in Tablets. Turk J. Pharm. Sci. 2012, 11, 87–100. [Google Scholar]
- Majidi, M.R.; Dastangoo, H.; Hasannejad, M.; Malakouti, J. Voltammetric Determination of Folic Acid with a Overoxidized Polypyrrole Film Modified Sol-Gel Carbon Ceramic Electrode. Int. J. Polym. Anal. Charact. 2011, 16, 486–495. [Google Scholar] [CrossRef]
- Jastrebova, J.; Witthöft, C.; Grahn, A.; Svensson, U.; Jägerstad, M. HPLC Determination of Folates in Raw and Processed Beetroots. Food Chem. 2003, 80, 579–588. [Google Scholar] [CrossRef]
- Mani, V. Highly Sensitive Determination of Folic Acid Using Graphene Oxide Nanoribbon Film Modified Screen Printed Carbon Electrode. Int. J. Electrochem. Sci. 2017, 12, 475–484. [Google Scholar] [CrossRef]
- Karimi-Maleh, H.; Hatami, M.; Moradi, R.; Khalilzadeh, M.A.; Amiri, S.; Sadeghifar, H. Synergic Effect of Pt-Co Nanoparticles and a Dopamine Derivative in a Nanostructured Electrochemical Sensor for Simultaneous Determination of N-Acetylcysteine, Paracetamol and Folic Acid. Microchim. Acta 2016, 183, 2957–2964. [Google Scholar] [CrossRef]
RS/kΩ | QDL 10−5 F sn−1 | nDL | RCT/kΩ | QLF 10−3 F sn−1 | nLF | |
---|---|---|---|---|---|---|
PPy-NTs | 0.04 | 1.89 | 0.82 | 0.25 | 3.60 | 0.83 |
PPy-NTs/AuNPs | 0.03 | 4.27 | 0.76 | 0.05 | 6.70 | 0.77 |
Glycine | Biotin Concentration (fmol L−1) | |||||
---|---|---|---|---|---|---|
100 | 300 | 500 | 700 | 900 | ||
RS/kΩ | 0.05 | 0.03 | 0.06 | 0.12 | 0.04 | 0.06 |
QDL/10 −5F sn−1 | 2.36 | 2.96 | 2.63 | 3.06 | 2.37 | 3.38 |
nDL | 0.87 | 0.84 | 0.85 | 0.80 | 0.86 | 0.81 |
RCT/kΩ | 0.16 | 0.48 | 1.11 | 1.31 | 2.11 | 2.56 |
QLF/10−3 F sn−1 | 4.6 | 4.6 | 5.35 | 4.37 | 5.17 | 4.83 |
nLF | 0.80 | 0.81 | 0.90 | 0.84 | 0.91 | 0.86 |
Material | Detection Method | Concentration Range (nmol L−1) | LOD (nmol L−1) | Reference |
---|---|---|---|---|
Steel mesh covered by PPy/AuNPs | EIS | 0.02–113.3 | 0.030 | This work |
Gold/PPy/POM | Cyclic voltammetry | 0.01–1 | 0.0075 | [40] |
Gold electrode modified with SAM | Square wave voltammetry | 0.008–1 | 0.004 | [41] |
Hydroxyapatite NPs/GCE | Differential pulse voltammetry | 0.1–350 | 0.075 | [42] |
Platinum NPs/MWCNT/GCE | Linear voltammetry | 0.2–100 | 0.05 | [43] |
MoS2/rGO/GCE | Differential pulse voltammetry | 0.1–100 | 0.01 | [44] |
Boron doped diamond electrode | Stripping voltammetry | 0.23–45 | 0.08 | [45] |
PPy-modified sol–gel carbon ceramic | Differential pulse voltammetry | 7–55 | 1.8 | [46] |
Chromatographic column | HPLC/UV–Vis | 0.3–100 | 44.14 | [42] |
SPCE/GO | Amperometry | 100–1.6 × 106 | 20 | [43] |
SPCE/SWCNT | Square wave voltammetry | 70–500 × 103 | 800 | [46] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deller, A.E.; Soares, A.L.; Volpe, J.; Ruthes, J.G.A.; Souto, D.E.P.; Vidotti, M. Development of Folate-Group Impedimetric Biosensor Based on Polypyrrole Nanotubes Decorated with Gold Nanoparticles. Biosensors 2022, 12, 970. https://doi.org/10.3390/bios12110970
Deller AE, Soares AL, Volpe J, Ruthes JGA, Souto DEP, Vidotti M. Development of Folate-Group Impedimetric Biosensor Based on Polypyrrole Nanotubes Decorated with Gold Nanoparticles. Biosensors. 2022; 12(11):970. https://doi.org/10.3390/bios12110970
Chicago/Turabian StyleDeller, Andrei E., Ana L. Soares, Jaqueline Volpe, Jean G. A. Ruthes, Dênio E. P. Souto, and Marcio Vidotti. 2022. "Development of Folate-Group Impedimetric Biosensor Based on Polypyrrole Nanotubes Decorated with Gold Nanoparticles" Biosensors 12, no. 11: 970. https://doi.org/10.3390/bios12110970
APA StyleDeller, A. E., Soares, A. L., Volpe, J., Ruthes, J. G. A., Souto, D. E. P., & Vidotti, M. (2022). Development of Folate-Group Impedimetric Biosensor Based on Polypyrrole Nanotubes Decorated with Gold Nanoparticles. Biosensors, 12(11), 970. https://doi.org/10.3390/bios12110970