Investigation of the Morphology and Electrical Properties of Graphene Used in the Development of Biosensors for Detection of Influenza Viruses
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Production of Graphene on a SiC Surface Using the Sublimation Method
2.2. The Functionalization of the Graphene Surface
2.3. Antibody Immobilization and Influenza Virus Detection
2.4. Methods
3. Results and Discussion
3.1. Investigation of the Properties of Graphene Chips before and after Functionalization
3.2. Study of Immobilization of Antibodies of Influenza A and B Viruses, Antibody–Influenza Immune Reaction, and Detection of Influenza Viruses by Biosensors Based on Graphene Chips
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Torrente-Rodriguez, R.M.; Lukas, H.; Tu, J.; Min, J.; Yang, Y.; Xu, C.; Rossiter, H.B.; Gao, W. A Graphene-Based Multiplexed Telemedicine Platform for Rapid and Low-Cost COVID-19. Nat. Biotechnol. 2020, 38, 217. [Google Scholar]
- Lebedev, A.A.; Davydov, S.Y.; Eliseyev, I.A. Graphene on SiC Substrate as Biosensor: Theoretical Background, Preparation, and Characterization. Materials 2021, 14, 590. [Google Scholar] [CrossRef] [PubMed]
- Afsahi, S.; Lerner, M.B.; Goldstein, J.M.; Lee, J.; Tang, X.; Bagarozzi, D.A.; Pan, D.; Locascio, L.; Walker, A.; Barron, F.; et al. Novel graphene-based biosensor for early detection of Zika virus infection. Biosens. Bioelectron. 2018, 100, 85–88. [Google Scholar] [CrossRef] [PubMed]
- Peña-Bahamonde, J.; Nguyen, H.N.; Fanourakis, S.K.; Rodrigues, D.F. Recent advances in graphene-based biosensor technology with applications in life sciences. J. Nanobiotechnol. 2018, 16, 75. [Google Scholar] [CrossRef] [Green Version]
- Fraga, T.J.M.; Carvalho, M.N.; Ghislandi, M.G.; da Motta Sobrinho, M.A. Functionalized graphene-based materials as innovated adsorbents of organic pollutants: A consise overview. Braz. J. Chem. Eng. 2019, 36, 1–31. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Xu, T.; Zhang, X. Graphene-Based Biosensors for Detection of Biomarkers. Micromachines 2020, 11, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Shi, H.; Das, P.; Qin, J.; Li, Y.; Wang, X.; Su, F.; Wen, P.; Li, S.; Lu, P.; et al. The Chemistry and Promising Applications of Graphene and Porous Graphene. Mater. Adv. Funct. Mater. 2020, 41, 1909035. [Google Scholar] [CrossRef]
- Li, X.; Tao, L.; Chen, Z.; Fang, H.; Li, X.; Wang, X.; Xu, J.-B.; Zhu, H. Graphene and related two-dimensional materials: Structure-property relationships for electronics and optoelectronics. Appl. Phys. Rev. 2017, 4, 021306. [Google Scholar] [CrossRef]
- Da Silva, A.D.; Paschoalino, W.J.; Damasceno, J.P.V.; Kubota, L.T. Structure, properties, and electrochemical sensing applications of graphene-based materials. ChemElectroChem 2020, 16, 4508–4525. [Google Scholar] [CrossRef]
- Eliseyev, I.A.; Usikov, A.S.; Lebedev, S.P.; Roenkov, A.D.; Puzyk, M.V.; Zubov, A.V.; Makarov, Y.N.; Lebedev, A.A.; Shabunina, E.I.; Dementev, P.A.; et al. Raman scattering and low-frequency noise in epitaxial graphene chips. J. Phys. Conf. Ser. 2020, 1697, 012130. [Google Scholar] [CrossRef]
- Amin, K.R.; Bida, A. Effect of ambient on the resistance fluctuations of graphene. Appl. Phys. Lett. 2015, 106, 183105. [Google Scholar] [CrossRef] [Green Version]
- Mavrikou, S.; Tsekouras, V.; Hatziagapiou, K.; Paradeisi, F.; Bakakos, P.; Michos, A.; Koutsoukou, A.; Konstantellou, E.; Lambrou, G.; Koniari, E.; et al. Clinical Application of the Novel Cell-Based Biosensor for the Ultra-Rapid Detection of the SARS-CoV-2 S1 Spike Protein Antigen: A Practical Approach. Biosensors 2021, 11, 224. [Google Scholar] [CrossRef] [PubMed]
- Lebedev, A.A.; Davydov, V.Y.; Usachov, D.Y. Study of Properties and Development of Sensors Based on Graphene Films Grown on SiC (0001) by Thermal Destruction Method. J. Phys. Conf. Ser. 2018, 951, 012007. [Google Scholar] [CrossRef]
- Shukla, S.; Kang, S.-Y.; Saxena, S. Synthesis and patterning of graphene: Strategies and prospects. Appl. Phys. Rev. 2019, 6, 021311. [Google Scholar] [CrossRef]
- Yazdi, G.R.; Iakimov, T.; Yakimova, R. Epitaxial Graphene on SiC: A Review of Growth and Characterization. Crystals 2016, 6, 53. [Google Scholar] [CrossRef] [Green Version]
- Hass, J.; De Heer, W.A.; Conrad, E.H. The growth and morphology of epitaxial multilayer graphene. J. Phys. Condens. Matter 2008, 20, 323202. [Google Scholar] [CrossRef]
- Shtepliuk, I.; Giannazzo, F.; Yakimova, R. Epitaxial Graphene on 4H-SiC (0001) as a Versatile Platform for Materials Growth: Mini-Review. Appl. Sci. 2021, 11, 5784. [Google Scholar] [CrossRef]
- Bolotsky, A.; Butler, D.; Dong, C.; Gerace, K.; Glavin, N.R.; Muratore, C.; Robinson, J.A.; Ebrahimi, A. Two-Dimensional Materials in Biosensing and Healthcare: From In Vitro Diagnostics to Optogenetics and Beyond. ACS Nano 2019, 13, 9781–9810. [Google Scholar] [CrossRef] [Green Version]
- Usikov, A.; Borodkin, K.; Novikov, S.; Roenkov, A.; Goryachkin, A.; Puzyk, M.; Barash, I.; Lebedev, S.; Zubov, A.; Makarov, Y.; et al. Graphene/SiC dies for electrochemical blood-type sensing. Proc. Est. Acad. Sci. 2019, 68, 207–213. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Basko, D.M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013, 8, 235–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, T.; Huntzinger, J.R.; Bayle, M.; Roblin, C.; Decams, J.M.; Zahab, A.A.; Contreras, S.; Paillet, M.; Landois, P. Buffer layers inhomogeneity and coupling with epitaxial graphene unravelled by Raman scattering and graphene peeling. Carbon N. Y. 2020, 163, 224–233. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, A.C.; Meyer, J.C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K.S.; Roth, S.; et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kochat, V.; Sahoo, A.; Pal, A.N.; Eashwer, S.; Ramalingam, G.; Sampathkumar, A.; Tero, R.; Thu, T.V.; Kaushal, S.; Okada, H.; et al. Origin of 1/f noise in graphene produced for large-scale applications in electronics. IET Circuits Devices Syst. 2015, 9, 52–58. [Google Scholar] [CrossRef] [Green Version]
- Balandin, A.A. Low-frequency 1/f noise in graphene devices. Nat. Nanotechnol. 2013, 8, 549–555. [Google Scholar] [CrossRef]
- Zhigal’skii, G.P. Fluctuation and Noise in Electron Devices; Physmatlit: Moscow, Russia, 2012; p. 512. (In Russian) [Google Scholar]
- Srivastava, N.; He, G.; Luxmi; Mende, P.C.; Feenstra, R.M.; Sun, Y. Graphene formed on SiC under various environments: Comparison of Si-face and C-face. J. Phys. D Appl. Phys. 2012, 45, 154001. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Song, Y.; Bo, X.; Min, J.; Pak, O.S.; Zhu, L.; Wang, M.; Tu, J.; Kogan, A.; Zhang, H. A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nat. Biotechnol. 2020, 38, 217–224. [Google Scholar] [CrossRef] [Green Version]
- Eissa, S.; Contreras, J.G.; Mahvash, F.; Guermoune, A.; Tlili, C.; Szkopek, T.; Zourob, M.; Siaj, M. Functionalized CVD Monolayer Graphene for Label-Free Impedimetric Biosensing. Nano Res. 2015, 8, 1698–1709. [Google Scholar] [CrossRef]
- Science Photo Library. Available online: sciencephoto.com/media/249227/view/coloured-sem-of-influenza-virus-on-cell-surface (accessed on 22 December 2021).
Graphene Chip ID | R and SU before Functionalization | R and SU after Functionalization | |||
---|---|---|---|---|---|
R, Ω | SU, V2/Hz | R, Ω | SU, V2/Hz | ||
Group 1 | EG319-3 | 6582 | 2.00 × 10−13 | 1201 | 7.94 × 10−13 |
EG319-4 | 5718 | 6.31 × 10−14 | 1178 | 1.01 × 10−12 | |
EG335-3 | 5670 | 6.31 × 10−12 | 1676 | 2.51 × 10−11 | |
EG335-5 | 3465 | 5.01 × 10−13 | 1650 | 1.26 × 10−12 | |
EG360-1 | 1691 | 3.62 × 10−13 | 1233 | 1.58 × 10−12 | |
EG391-1 | 2672 | 2.44 × 10−12 | 2286 | 8.09 × 10−12 | |
EG394-1 | 2134 | 6.31 × 10−11 | 1858 | 7.94 × 10−11 | |
EG395-1 | 3251 | 1.58 × 10−13 | 2566 | 5.01 × 10−12 | |
Group 2 | EG392-1 | 1271 | 2.04 × 10−11 | 2646 | 5.01 × 10−11 |
EG277-1 | 1445 | 6.31 × 10−10 | 1713 | 6.31 × 10−10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shmidt, N.M.; Usikov, A.S.; Shabunina, E.I.; Nashchekin, A.V.; Gushchina, E.V.; Eliseev, I.A.; Petrov, V.N.; Puzyk, M.V.; Avdeev, O.V.; Klotchenko, S.A.; et al. Investigation of the Morphology and Electrical Properties of Graphene Used in the Development of Biosensors for Detection of Influenza Viruses. Biosensors 2022, 12, 8. https://doi.org/10.3390/bios12010008
Shmidt NM, Usikov AS, Shabunina EI, Nashchekin AV, Gushchina EV, Eliseev IA, Petrov VN, Puzyk MV, Avdeev OV, Klotchenko SA, et al. Investigation of the Morphology and Electrical Properties of Graphene Used in the Development of Biosensors for Detection of Influenza Viruses. Biosensors. 2022; 12(1):8. https://doi.org/10.3390/bios12010008
Chicago/Turabian StyleShmidt, Natalia M., Alexander S. Usikov, Evgeniia I. Shabunina, Alexey V. Nashchekin, Ekaterina V. Gushchina, Ilya A. Eliseev, Vasily N. Petrov, Mikhail V. Puzyk, Oleg V. Avdeev, Sergey A. Klotchenko, and et al. 2022. "Investigation of the Morphology and Electrical Properties of Graphene Used in the Development of Biosensors for Detection of Influenza Viruses" Biosensors 12, no. 1: 8. https://doi.org/10.3390/bios12010008
APA StyleShmidt, N. M., Usikov, A. S., Shabunina, E. I., Nashchekin, A. V., Gushchina, E. V., Eliseev, I. A., Petrov, V. N., Puzyk, M. V., Avdeev, O. V., Klotchenko, S. A., Lebedev, S. P., Tanklevskaya, E. M., Makarov, Y. N., Lebedev, A. A., & Vasin, A. V. (2022). Investigation of the Morphology and Electrical Properties of Graphene Used in the Development of Biosensors for Detection of Influenza Viruses. Biosensors, 12(1), 8. https://doi.org/10.3390/bios12010008