Micro-Droplet Platform for Exploring the Mechanism of Mixed Field Agglutination in B3 Subtype
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microfluidic Chip Design and Fabrication
2.2. Experimental Set-Up
2.3. Emulsification of Agglutination Reactions
2.4. Sample and Reagent Preparation
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu, L.-C.; Twu, Y.-C.; Chou, M.-L.; Chang, C.-Y.; Wu, C.-Y.; Lin, M. Molecular genetic analysis for the B3 allele. Blood 2002, 100, 1490–1492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, D.-P.; Tseng, C.-P.; Wang, W.-T.; Sun, C.-F. Genetic and Mechanistic Evaluation for the Mixed-Field Agglutination in B3 Blood Type with IVS3+5G>A ABO Gene Mutation. PLoS ONE 2012, 7, e37272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheppard, C.A.; O’Reilly, K.C.; Schniederjan, S.D.; Hillyer, C.D.; Roback, J.D. Detection of mixed-field agglutination due to loss of red cell antigen in hematopoietic malignancy. Transfusion 2006, 46, 1463–1464. [Google Scholar] [CrossRef] [PubMed]
- Cho, D.; Lee, J.S.; Yazer, M.H.; Song, J.W.; Shin, M.G.; Shin, J.H.; Suh, S.P.; Jeon, M.J.; Kim, J.Y.; Park, J.T.; et al. Chimerism and mosaicism are important causes of ABO phenotype and genotype discrepancies. Immunohematology 2006, 22, 183–187. [Google Scholar] [CrossRef]
- Bluth, M.H.; Reid, M.E.; Manny, N. Chimerism in the Immunohematology Laboratory in the Molecular Biology Era. Transfus. Med. Rev. 2007, 21, 134–146. [Google Scholar] [CrossRef]
- Sharpe, C.; Lane, D.; Cote, J.; Hosseini-Maaf, B.; Goldman, M.; Olsson, M.L.; Hult, A.K. Mixed field reactions in ABO and Rh typing chimerism likely resulting from twin haematopoiesis. Blood Transfus. 2014, 12, 608–610. [Google Scholar]
- Salmon, C. Les phénotypes B faibles B3, Bx, Bel Classification pratique proposée. Rev. Française Transfus. Immuno-Hématologie 1976, 19, 89–104. [Google Scholar] [CrossRef]
- Armstrong, B.; Hardwick, J.; Raman, L.; Smart, E.; Wilkinson, R. Introduction to Blood Transfusion Technology. ISBT Sci. Ser. 2008, 3, 254–283. [Google Scholar] [CrossRef]
- Ying, Y.; Hong, X.; Xu, X.; Chen, S.; He, J.; Zhu, F.; Xie, X. Molecular Basis of ABO Variants Including Identification of 16 Novel ABO Subgroup Alleles in Chinese Han Population. Transfus. Med. Hemotherapy 2020, 47, 160–166. [Google Scholar] [CrossRef]
- Ghosh, S.; Aggarwal, K.; Upaassana, V.T.; Nguyen, T.; Han, J.; Ahn, C.H. A new microchannel capillary flow assay (MCFA) platform with lyophilized chemiluminescence reagents for a smartphone-based POCT detecting malaria. Microsyst. Nanoeng. 2020, 6, 5. [Google Scholar] [CrossRef] [Green Version]
- Furlan, C.; Dirks, R.A.M.; Thomas, P.C.; Jones, R.C.; Wang, J.; Lynch, M.; Marks, H.; Vermeulen, M. Miniaturised interaction proteomics on a microfluidic platform with ultra-low input requirements. Nat. Commun. 2019, 10, 1525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kane, K.I.W.; Moreno, E.L.; Hachi, S.; Walter, M.; Jarazo, J.; Oliveira, M.A.P.; Hankemeier, T.; Vulto, P.; Schwamborn, J.C.; Thoma, M.; et al. Automated microfluidic cell culture of stem cell derived dopaminergic neurons. Sci. Rep. 2019, 9, 1796. [Google Scholar] [CrossRef]
- Tan, X.; Khaing Oo, M.K.; Gong, Y.; Li, Y.; Zhu, H.; Fan, X. Glass capillary based microfluidic ELISA for rapid diagnostics. Analyst 2017, 142, 2378–2385. [Google Scholar] [CrossRef]
- Doufène, K.; Tourné-Péteilh, C.; Etienne, P.; Aubert-Pouëssel, A. Microfluidic Systems for Droplet Generation in Aqueous Continuous Phases: A Focus Review. Langmuir 2019, 35, 12597–12612. [Google Scholar] [CrossRef] [PubMed]
- Agnihotri, S.N.; Raveshi, M.R.; Bhardwaj, R.; Neild, A. Microfluidic Valves for Selective on-Chip Droplet Splitting at Multiple Sites. Langmuir 2020, 36, 1138–1146. [Google Scholar] [CrossRef]
- Zhang, H.; Guzman, A.R.; Wippold, J.A.; Li, Y.; Dai, J.; Huang, C.; Han, A. An ultra high-efficiency droplet microfluidics platform using automatically synchronized droplet pairing and merging. Lab Chip 2020, 20, 3948–3959. [Google Scholar] [CrossRef]
- Sesen, M.; Whyte, G. Image-Based Single Cell Sorting Automation in Droplet Microfluidics. Sci. Rep. 2020, 10, 8736. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, M.B.; Goel, S. Advances in continuous-flow based microfluidic PCR devices—A review. Eng. Res. Express 2020, 2, 042001. [Google Scholar] [CrossRef]
- Li, J.; Kim, C.-J.C. Current commercialization status of electrowetting-on-dielectric (EWOD) digital microfluidics. Lab Chip 2020, 20, 1705–1712. [Google Scholar] [CrossRef]
- Matuła, K.; Rivello, F.; Huck, W.T.S. Single-Cell Analysis Using Droplet Microfluidics. Adv. Biosyst. 2020, 4, 1900188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falzone, L.; Musso, N.; Gattuso, G.; Bongiorno, D.; Palermo, C.I.; Scalia, G.; Libra, M.; Stefani, S. Sensitivity assessment of droplet digital PCR for SARS-CoV-2 detection. Int. J. Mol. Med. 2020, 46, 957–964. [Google Scholar] [CrossRef]
- O’Hara, R.; Tedone, E.; Ludlow, A.; Huang, E.; Arosio, B.; Mari, D.; Shay, J.W. Quantitative mitochondrial DNA copy number determination using droplet digital PCR with single-cell resolution. Genome Res. 2019, 29, 1878–1888. [Google Scholar] [CrossRef] [Green Version]
- Kulesa, A.; Kehe, J.; Hurtado, J.E.; Tawde, P.; Blainey, P.C. Combinatorial drug discovery in nanoliter droplets. Proc. Natl. Acad. Sci. USA 2018, 115, 6685–6690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holland-Moritz, D.A.; Wismer, M.K.; Mann, B.F.; Farasat, I.; Devine, P.; Guetschow, E.D.; Mangion, I.; Welch, C.J.; Moore, J.C.; Sun, S.; et al. Mass Activated Droplet Sorting (MADS) Enables High-Throughput Screening of Enzymatic Reactions at Nanoliter Scale. Angew. Chem. Int. Ed. 2020, 59, 4470–4477. [Google Scholar] [CrossRef]
- Gérard, A.; Woolfe, A.; Mottet, G.; Reichen, M.; Castrillon, C.; Menrath, V.; Ellouze, S.; Poitou, A.; Doineau, R.; Briseno-Roa, L.; et al. High-throughput single-cell activity-based screening and sequencing of antibodies using droplet microfluidics. Nat. Biotechnol. 2020, 38, 715–721. [Google Scholar] [CrossRef]
- Karamitros, C.S.; Morvan, M.; Vigne, A.; Lim, J.; Gruner, P.; Beneyton, T.; Vrignon, J.; Baret, J.-C. Bacterial Expression Systems for Enzymatic Activity in Droplet-Based Microfluidics. Anal. Chem. 2020, 92, 4908–4916. [Google Scholar] [CrossRef] [PubMed]
- Karimi, S.; Mehrdel, P.; Farré-Lladós, J.; Casals-Terré, J. A passive portable microfluidic blood–plasma separator for simultaneous determination of direct and indirect ABO/Rh blood typing. Lab Chip 2019, 19, 3249–3260. [Google Scholar] [CrossRef]
- Park, J.; Park, J.-K. Finger-Actuated Microfluidic Display for Smart Blood Typing. Anal. Chem. 2019, 91, 11636–11642. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.-H.; Tsai, T.-T.; Zeng, Q.; Chang, C.-Y.; Guo, J.-Y.; Lin, C.-J.; Chen, C.-F. A Multifunctional Microfluidic Device for Blood Typing and Primary Screening of Blood Diseases. ACS Sens. 2020, 5, 3082–3090. [Google Scholar] [CrossRef]
- Hertaeg, M.J.; Tabor, R.F.; McLiesh, H.; Garnier, G. A rapid paper-based blood typing method from droplet wicking. Analyst 2021, 146, 1048–1056. [Google Scholar] [CrossRef]
- Rotem, A.; Abate, A.R.; Utada, A.S.; Van Steijn, V.; Weitz, D.A. Drop formation in non-planar microfluidic devices. Lab Chip 2012, 12, 4263–4268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Z.-Q.; Gao, Z.-F.; Li, H.-Y. Study on serological blood group conversion rule and clinical blood transfusion in allogeneic hematopoietic stem cell transplantation. Zhonghua Xue Ye Xue Za Zhi 2012, 33, 637–641. [Google Scholar] [PubMed]
- Roback, J.D.; Grossman, B.J.; Harris, T.; Hillyer, C.D. Technical Manual—American Association of Blood Banks, 17th ed.; AABB Press: Bethesda, MD, USA, 2011; p. 370. [Google Scholar]
Anti-B Antibody Dilution (Times) | 0 | 2 | 4 | 0 | 0 |
Blood sample dilution (times) | 0 | 0 | 0 | 2 | 4 |
Type B blood agglutination | 4+ (Video S1) | 4+ | 4+ | 4+ | 4+ |
Time to reach steady state agglutination | <3 s | <40 s | <130 s | <40 s | <70 s |
Type B3 blood agglutination | (Video S2) | Mixed field agglutination | |||
Time to reach steady state agglutination | >120 s | >200 s | >180 s | >210 s | >250 s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, D.-P.; Chen, C.; Wu, P.-Y.; Lin, Y.-H.; Lin, W.-T.; Yan, Y.-L. Micro-Droplet Platform for Exploring the Mechanism of Mixed Field Agglutination in B3 Subtype. Biosensors 2021, 11, 276. https://doi.org/10.3390/bios11080276
Chen D-P, Chen C, Wu P-Y, Lin Y-H, Lin W-T, Yan Y-L. Micro-Droplet Platform for Exploring the Mechanism of Mixed Field Agglutination in B3 Subtype. Biosensors. 2021; 11(8):276. https://doi.org/10.3390/bios11080276
Chicago/Turabian StyleChen, Ding-Ping, Chen Chen, Pei-Yu Wu, Yen-Heng Lin, Wei-Tzu Lin, and Yi-Liang Yan. 2021. "Micro-Droplet Platform for Exploring the Mechanism of Mixed Field Agglutination in B3 Subtype" Biosensors 11, no. 8: 276. https://doi.org/10.3390/bios11080276
APA StyleChen, D. -P., Chen, C., Wu, P. -Y., Lin, Y. -H., Lin, W. -T., & Yan, Y. -L. (2021). Micro-Droplet Platform for Exploring the Mechanism of Mixed Field Agglutination in B3 Subtype. Biosensors, 11(8), 276. https://doi.org/10.3390/bios11080276