A Study of One-Class Classification Algorithms for Wearable Fall Sensors
Abstract
:1. Introduction
2. Methods
2.1. Election of the Datasets
2.2. Compared One-Class Classifying Algorithms
2.3. Feature Selection
- The SisFall [31] repository is selected as the baseline reference as it is considered one of the most complete in terms of types and quantity of movements and number and typology of subjects.
- The candidate features of the samples are obtained by using HCTSA.
- The performance resulting from the classification of the data is calculated by using each characteristic as input of a Support Vector Machine classifier with linear kernel and a k-fold analysis (with k = 10).
- The tool analyzed the correlation between the features that have led to the best results. Then, the application was programmed to divide these features into 12 different clusters, grouping those that are correlated into the same cluster. From each cluster, hctsa selected the most representative feature (the one closest to the center of the cluster).
2.4. Performance Metrics and Model Evaluation
3. Results and Discussion
3.1. Study for the ‘Fair’ Case
- The best results are achieved by the OC-KNN classifier, which outperforms the rest of the detection methods for five out of the nine analyzed datasets (in terms of the geometric mean of sensitivity and specificity), while it presents the second or third best results for the other three datasets.
- The one-class SVM detector produces the best results for three datasets, while it offers the second-best behavior for five repositories. In any case, if we take into account the confidence interval that can be derived from the measurements, we can conclude that the differences in the behavior of OC-KNN and OC-SVM are not statistically significant.
- In most cases, the best performance is attained with the simplest input feature set (with the seven features labeled as BCDFGIK and described in Table 5): This suggests that if the features are conveniently selected, a parsimonious OCC architecture can be sufficient to produce efficient detection decisions.
- GMM, autoencoder and, specially, PPNN classifiers offer a more variable and erratic behavior as the quality of the classification strongly depends on the employed datasets. In several databases, the best achieved geometric mean of sensitivity and specificity is under 0.90.
- For all the datasets, the OC-KNN classifier yields at least a specificity and a sensitivity of 0.9. In most cases, these metrics are both higher than 0.95. These results are in line with most of the supervised (double-class) methods of machine learning that can be found in the related literature (see, for example, the surveys presented in [58,59,60,61,62,63]). This implies that if the decision threshold is properly chosen, an OCC can behave as a two-class classifier without requiring training the detector with falls. In a realistic use scenario, the final user of the detector e.g., an older adult) could be monitored during his/her daily routines to generate a dataset of ADLs. This dataset could be used to train and personalize an FDS based on an OCC.
3.2. Study of the Benefits of Ensemble Learning
3.3. Impact of the Typology of ADLs Employed in the Training Phase
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization Falls: Key Facts. Available online: https://www.who.int/news-room/fact-sheets/detail/falls (accessed on 16 July 2021).
- World Health Organization. WHO Global Report on Falls Prevention in Older Age; WHO Press: Geneva, Switzerland, 2007. [Google Scholar]
- World Health Organization Ageing and Health—Key Facts. Available online: http://www.who.int/mediacentre/factsheets/fs404/en/ (accessed on 21 July 2021).
- Lord, S.R.; Sherrington, C.; Menz, H.B.; Close, J.C.T. Falls in Older People: Risk Factors and Strategies for Prevention; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Casilari, E.; Luque, R.; Morón, M. Analysis of android device-based solutions for fall detection. Sensors 2015, 15, 17827–17894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aziz, O.; Musngi, M.; Park, E.J.; Mori, G.; Robinovitch, S.N. A comparison of accuracy of fall detection algorithms (threshold-based vs. machine learning) using waist-mounted tri-axial accelerometer signals from a comprehensive set of falls and non-fall trials. Med. Biol. Eng. Comput. 2017, 55, 45–55. [Google Scholar] [CrossRef]
- Klenk, J.; Becker, C.; Lieken, F.; Nicolai, S.; Maetzler, W.; Alt, W.; Zijlstra, W.; Hausdorff, J.M.; Van Lummel, R.C.; Chiari, L. Comparison of acceleration signals of simulated and real-world backward falls. Med. Eng. Phys. 2011, 33, 368–373. [Google Scholar] [CrossRef]
- Bagalà, F.; Becker, C.; Cappello, A.; Chiari, L.; Aminian, K.; Hausdorff, J.M.; Zijlstra, W.; Klenk, J. Evaluation of accelerometer-based fall detection algorithms on real-world falls. PLoS ONE 2012, 7, e37062. [Google Scholar] [CrossRef] [Green Version]
- Aziz, O.; Klenk, J.; Schwickert, L.; Chiari, L.; Becker, C.; Park, E.J.; Mori, G.; Robinovitch, S.N. Validation of accuracy of SVM-based fall detection system using real-world fall and non-fall datasets. PLoS ONE 2017, 12, e0180318. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.S.; Madden, M.G. One-class classification: Taxonomy of study and review of techniques. Knowl. Eng. Rev. 2014, 29, 345–374. [Google Scholar] [CrossRef] [Green Version]
- Medrano, C.; Plaza, I.; Igual, R.; Sánchez, Á.; Castro, M. The effect of personalization on smartphone-based fall detectors. Sensors 2016, 16, 117. [Google Scholar] [CrossRef] [PubMed]
- Viet, V.; Choi, D.-J. Fall detection with smart phone sensor. In Proceedings of the 3rd International Conference on Internet (ICONI 2011), Sepang, Malaysia, 15–19 December 2011; pp. 15–19. [Google Scholar]
- Lisowska, A.; Wheeler, G.; Inza, V.C.; Poole, I. An evaluation of supervised, novelty-based and hybrid approaches to fall detection using silmee accelerometer data. In Proceedings of the 2015 IEEE International Conference on Computer Vision Workshop (ICCVW), Santiago, Chile, 7–13 December 2015; pp. 402–408. [Google Scholar]
- Nho, Y.H.; Lim, J.G.; Kwon, D.S. Cluster-analysis-based user-adaptive fall detection using fusion of heart rate sensor and accelerometer in a wearable device. IEEE Access 2020, 8, 40389–40401. [Google Scholar] [CrossRef]
- Medrano, C.; Igual, R.; García-Magariño, I.; Plaza, I.; Azuara, G. Combining novelty detectors to improve accelerometer-based fall detection. Med. Biol. Eng. Comput. 2017, 55, 1849–1858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casilari, E.; Lora-Rivera, R.; García-Lagos, F. A study on the application of convolutional neural networks to fall detection evaluated with multiple public datasets. Sensors 2020, 20, 1466. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.S.; Hoey David, J.R. Review of fall detection techniques: A data availability perspective. Med. Eng. Phys. 2017, 39, 12–22. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Wang, J.; Liu, P.; Hou, J. Fall detection by embedding an accelerometer in cellphone and using KFD algorithm. Int. J. Comput. Sci. Netw. Secur. 2006, 6, 277–284. [Google Scholar]
- Zhang, T.; Wang, J.; Xu, L.; Liu, P. Fall detection by wearable sensor and one-class SVM algorithm. In Intelligent Computing in Signal Processing and Pattern Recognition; Springer: Berlin/Heidelberg, Germany, 2006; pp. 858–863. [Google Scholar]
- Yin, J.; Yang, Q.; Member, S.; Pan, J.J. Sensor-based abnormal human-activity detection. IEEE Trans. Knowl. Data Eng. 2008, 20, 1082–1090. [Google Scholar] [CrossRef]
- Medrano, C.; Igual, R.; Plaza, I.; Castro, M. Detecting falls as novelties in acceleration patterns acquired with smartphones. PLoS ONE 2014, 9, e94811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, S.S.; Karg, M.E.; Kulić, D.; Hoey, J. X-factor HMMs for Detecting Falls in the Absence of Fall-specific training data. In International Workshop on Ambient Assisted Living; Springer: Cham, Switzerland, 2014; Volume 8868, pp. 1–9. [Google Scholar]
- Khan, S.S.; Karg, M.E.; Kulić, D.; Hoey, J. Detecting falls with X-factor hidden markov models. Appl. Soft Comput. J. 2017, 55, 168–177. [Google Scholar] [CrossRef] [Green Version]
- Frank, K.; Vera Nadales, M.J.; Robertson, P.; Pfeifer, T. Bayesian recognition of motion related activities with inertial sensors. In Proceedings of the 12th ACM International Conference on Ubiquitous Computing-Adjunct, Copenhagen, Denmark, 26–29 September 2010; pp. 445–446. [Google Scholar]
- Vavoulas, G.; Pediaditis, M.; Spanakis, E.G.; Tsiknakis, M. The MobiFall dataset: An initial evaluation of fall detection algorithms using smartphones. In Proceedings of the IEEE 13th International Conference on Bioinformatics and Bioengineering (BIBE 2013), Chania, Greece, 10–13 November 2013; pp. 1–4. [Google Scholar]
- Yang, K.; Ahn, C.R.; Vuran, M.C.; Aria, S.S. Semi-supervised near-miss fall detection for ironworkers with a wearable inertial measurement unit. Autom. Constr. 2016, 68, 194–202. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.S.; Taati, B. Detecting unseen falls from wearable devices using channel-wise ensemble of autoencoders. Expert Syst. Appl. 2017, 87, 280–290. [Google Scholar] [CrossRef] [Green Version]
- Ojetola, O.; Gaura, E.; Brusey, J. Data Set for Fall Events and Daily Activities from Inertial Sensors. In Proceedings of the 6th ACM Multimedia Systems Conference (MMSys’15), Portland, OR, USA, 18–20 March 2015; pp. 243–248. [Google Scholar]
- Micucci, D.; Mobilio, M.; Napoletano, P.; Tisato, F. Falls as anomalies? An experimental evaluation using smartphone accelerometer data. J. Ambient Intell. Humaniz. Comput. 2017, 8, 87–99. [Google Scholar] [CrossRef] [Green Version]
- Anguita, D.; Ghio, A.; Oneto, L.; Parra, X.; Reyes-Ortiz, J.L. A public domain dataset for human activity recognition using smartphones. In Proceedings of the European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2013), Bruges, Belgium, 24–26 April 2013; pp. 437–442. [Google Scholar]
- Lisowska, A.; O’Neil, A.; Poole, I. Cross-cohort evaluation of machine learning approaches to fall detection from accelerometer data. In Proceedings of the 11th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2018)—Volume 5: HEALTHINF, Funchal, Madeira, Portugal, 19–21 January 2018; Volume 5, pp. 77–82. [Google Scholar]
- Chen, L.; Li, R.; Zhang, H.; Tian, L.; Chen, N. Intelligent fall detection method based on accelerometer data from a wrist-worn smart watch. Measurement 2019, 140, 215–226. [Google Scholar] [CrossRef]
- Casilari, E.; Santoyo-Ramón, J.A.; Cano-García, J.M. On the heterogeneity of existing repositories of movements intended for the evaluation of fall detection systems. J. Healthc. Eng. 2020, 2020, 6622285. [Google Scholar] [CrossRef]
- Bourke, A.K.; Klenk, J.; Schwickert, L.; Aminian, K.; Ihlen, E.A.F.; Mellone, S.; Helbostad, J.L.; Chiari, L.; Becker, C. Fall detection algorithms for real-world falls harvested from lumbar sensors in the elderly population: A machine learning approach. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS 2016), Orlando, FL, USA, 16–20 August 2016; pp. 3712–3715. [Google Scholar]
- Gjoreski, H.; Luštrek, M.; Gams, M. Accelerometer placement for posture recognition and fall detection. In Proceedings of the 7th International Conference on Intelligent Environments (IE 2011), Nottingham, UK, 25–28 July 2011; pp. 47–54. [Google Scholar]
- Dai, J.; Bai, X.; Yang, Z.; Shen, Z.; Xuan, D. PerFallD: A pervasive fall detection system using mobile phones. In Proceedings of the 8th IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), Mannheim, Germany, 29 March–2 April 2010; pp. 292–297. [Google Scholar]
- Kangas, M.; Konttila, A.; Lindgren, P.; Winblad, I.; Jämsä, T. Comparison of low-complexity fall detection algorithms for body attached accelerometers. Gait Posture 2008, 28, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Fang, S.-H.; Liang, Y.-C.; Chiu, K.-M. Developing a mobile phone-based fall detection system on android platform. In Proceedings of the Computing, Communications and Applications Conference (ComComAp), Hong Kong, China, 21 February 2012; pp. 143–146. [Google Scholar]
- Ntanasis, P.; Pippa, E.; Özdemir, A.T.; Barshan, B.; Megalooikonomou, V. Investigation of sensor placement for accurate fall detection. In Proceedings of the International Conference on Wireless Mobile Communication and Healthcare (MobiHealth 2016), Milan, Italy, 14–16 November 2016; pp. 225–232. [Google Scholar]
- Casilari, E.; Santoyo-Ramón, J.A.; Cano-García, J.M. Analysis of public datasets for wearable fall detection systems. Sensors 2017, 17, 1513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cotechini, V.; Belli, A.; Palma, L.; Morettini, M.; Burattini, L.; Pierleoni, P. A dataset for the development and optimization of fall detection algorithms based on wearable sensors. Data Br. 2019, 23, 103839. [Google Scholar] [CrossRef]
- Özdemir, A.T.; Barshan, B. Detecting falls with wearable sensors using machine learning techniques. Sensors 2014, 14, 10691–10708. [Google Scholar] [CrossRef] [PubMed]
- Saleh, M.; Abbas, M.; Le Jeannes, R.B. FallAllD: An open dataset of human falls and activities of daily living for classical and deep learning applications. IEEE Sens. J. 2021, 21, 1849–1858. [Google Scholar] [CrossRef]
- Human Factors and Ergonomics Lab—Korea Advanced Intitute of Science and Technology KFall: A Comprehensive Motion Dataset to Detect Pre-impact Fall for the Elderly based on Wearable Inertial Sensors. Available online: https://sites.google.com/view/kfalldataset (accessed on 30 April 2021).
- Sucerquia, A.; López, J.D.; Vargas-bonilla, J.F. SisFall: A fall and movement dataset. Sensors 2017, 17, 198. [Google Scholar] [CrossRef]
- Casilari, E.; Santoyo-Ramón, J.A.; Cano-García, J.M. Analysis of a smartphone-based architecture with multiple mobility sensors for fall detection. PLoS ONE 2016, 11, e01680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-Villaseñor, L.; Ponce, H.; Brieva, J.; Moya-Albor, E.; Núñez-Martínez, J.; Peñafort-Asturiano, C. UP-fall detection dataset: A multimodal approach. Sensors 2019, 19, 1988. [Google Scholar] [CrossRef] [Green Version]
- Mathworks Statistics and Machine Learning Toolbox—MATLAB. Available online: https://es.mathworks.com/products/statistics.html (accessed on 18 August 2021).
- Banos, O.; Galvez, J.-M.; Damas, M.; Pomares, H.; Rojas, I. Window size impact in human activity recognition. Sensors 2014, 14, 6474–6499. [Google Scholar] [CrossRef] [Green Version]
- Becker, C.; Schwickert, L.; Mellone, S.; Bagalà, F.; Chiari, L.; Helbostad, J.L.; Zijlstra, W.; Aminian, K.; Bourke, A.; Todd, C.; et al. Proposal for a multiphase fall model based on real-world fall recordings with body-fixed sens. Z. Gerontol. Geriatr. 2012, 45, 707–715. [Google Scholar] [CrossRef]
- Noury, N.; Rumeau, P.; Bourke, A.K.; ÓLaighin, G.; Lundy, J.E. A proposal for the classification and evaluation of fall detectors. IRBM 2008, 29, 340–349. [Google Scholar] [CrossRef]
- Vallabh, P.; Malekian, R. Fall detection monitoring systems: A comprehensive review. J. Ambient Intell. Humaniz. Comput. 2018, 9, 1809–1833. [Google Scholar] [CrossRef]
- Xi, X.; Tang, M.; Miran, S.M.; Luo, Z. Evaluation of feature extraction and recognition for activity monitoring and fall detection based on wearable sEMG sensors. Sensors 2017, 17, 1229. [Google Scholar] [CrossRef]
- Fulcher, B.D.; Jones, N.S. hctsa: A computational framework for automated time-series phenotyping using massive feature extraction. Cell Syst. 2017, 5, 527–531. [Google Scholar] [CrossRef] [PubMed]
- Liu, X. Classification accuracy and cut point selection. Stat. Med. 2012, 31, 2676–2686. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, J.D.; Pérez, A.; Lozano, J.A. Sensitivity analysis of k-fold cross validation in prediction error estimation. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 32, 569–575. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.T. Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation. Pattern Recognit. 2015, 48, 2839–2846. [Google Scholar] [CrossRef]
- Delahoz, Y.S.; Labrador, M.A. Survey on fall detection and fall prevention using wearable and external sensors. Sensors 2014, 14, 19806–19842. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Ellul, J.; Azzopardi, G. Elderly fall detection systems: A literature survey. Front. Robot. AI 2020, 7, 71. [Google Scholar] [CrossRef]
- Andò, B.; Baglio, S.; Castorina, S.; Crispino, R.; Marletta, V. Advanced solutions aimed at the monitoring of falls and human activities for the elderly population. Technologies 2019, 7, 59. [Google Scholar] [CrossRef] [Green Version]
- Ren, L.; Peng, Y. Research of fall detection and fall prevention technologies: A systematic review. IEEE Access 2019, 7, 77702–77722. [Google Scholar] [CrossRef]
- Islam, M.; Tayan, O.; Islam, R.; Islam, S.; Nooruddin, S.; Kabir, M.N.; Islam, R. Deep learning based systems developed for fall detection: A review. IEEE Access 2020, 8, 166117–166137. [Google Scholar] [CrossRef]
- Broadley, R.; Klenk, J.; Thies, S.; Kenney, L.; Granat, M.; Broadley, R.W.; Klenk, J.; Thies, S.B.; Kenney, L.P.J.; Granat, M.H. Methods for the real-world evaluation of fall detection technology: A scoping review. Sensors 2018, 18, 2060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polikar, R. Ensemble learning. In Ensemble Machine Learning; Springer: Boston, MA, USA, 2012; pp. 1–34. [Google Scholar]
Ref. and Authors | Year | Type of Compared OCCs | Number of Features | Employed Sensors | Best Achieved Performance | Employed Datasets (Number of ADL/Falls) |
---|---|---|---|---|---|---|
Zhang et al. [18,19] | 2006 | OC-SVM + KFD +k-NN, OC-SVM | 6 | Acc | Se = 0.9703 Sp = 0.9521 | -Unpublished dataset (676/418) |
Yin et al. [20] 2 | 2008 | OC-SVM + KNLR, OC-SVM + MLLR, OC-SVM | n.i. | Light, Temp., Mic., Acc., Mag. | AUC = 0.985 Se = 0.90 Sp = 0.93 | -Unpublished dataset (431/112 near falls) |
Viet and Choi [12] | 2011 | 1-SVM | 4 | Acc, Ori, | Se = 0.7699 | -Unpublished dataset (n.i./226) |
Medrano et al. [21] | 2014 | OC-KNN, OC-SVM, OC-KNN-sum, Kmeans + OC-KNN | 51 | Acc | AUC = 0.957 Se = 0.929 Sp = 0.890 | -tFall [21] (9883/1026) |
Khan et al. [22,23] | 2014 2017 | XHMM, HMM, OC-KNN, OC-SVM | 31 | Acc, Gyr. | Se = 0.893 Sp = 0.970 | -DLR [24] (961/56) -MobiFall [25] (342/288) |
Lisowska et al. [13] | 2015 | RNN, OC-SVM, OC-KNN | 21 | Acc | Se = 0.858 Sp = 0.853 AUC = 0.915 | -Unpublished dataset (641/168) |
Medrano et al. [11] | 2016 | OC-KNN, OC-SVM, LOF | 153 | Acc | AUC = 0.9809 Se = 0.9541 Sp = 0.9484 | -tFall [21] (9883/1026) |
Yang et al. [26] 1 | 2016 | OC-SVM | 38 | Acc, Gyr. | Se = 0.783 Accuracy = 0.852 | -Unpublished dataset (n.i./252 near falls) |
Medrano et al. [15] | 2017 | KDE | 4 | Acc | Se = 0.986 Sp = 0.972 | -tFall [21] (9883/1026) |
Khan and Taati [27] | 2017 | Ensemble of AEs, OC-KNN, OC-SVM | 6 | Acc, Gyr | = 0.959 | -DLR [24] (961/56) -Cogent Labs [28] (1520/448) |
Micucci et al. [29] | 2017 | OC-KNN, OC-SVM | 12, 51, 384 | Acc. | AUC = 0.997 Se = 0.996 Sp = 0.993 | -tFall [21] (9883/1026) -HAR database [30] (360/0) |
Lisowska et al. [31] | 2018 | RNN, OC-SVM, OC-KNN | 21 | Acc | AUC = 0.950 | -Unpublished dataset (641/168) -tFall [21] (9883/1026) |
Chen et al. [32] | 2019 | Ensemble of AEs + OCCCH, OCCCH, OC-SVM | 3 windows of 500 samples | Acc. | Se = 0.9913, Sp = 0.9625 | -Unpublished dataset (288/234) |
Nho et al. [14] | 2020 | GMM | 22 | Acc, HR | Se = 0.9309, Sp = 0.8958 | -Unpublished dataset (273/126) |
Dataset | Number of Subjects (Females/Males) | Number of Types of ADLs/Falls | Number of Samples (ADLs/Falls) | Duration of the Samples (s) | Captured Signals in Each Sensing Point 1 | Number and Positions of the Sensing Points | Sampling Rate (Hz) |
---|---|---|---|---|---|---|---|
DLR [24] | 19 (8/11) | 15/1 | 1017 (961/56) | [0.27–864.33] | 3 (A, G, M) | 1: Waist (belt) | 100 |
DOFDA [41] | 8 (2/6) | 5/13 | 432 (120/312) | 1.96–17.262 | 4 (A, G, O, M) | Waist | 33 |
Erciyes Univ. [42] | 17 (7/10) | 16/20 | 3302 (1476/1826) | [8.36–37.76] | 1 (A) | 6: Chest, Head, Ankle, Thigh, Wrist, Waist | 25 |
FallAllD [43] | 15 (7/8) | 44/35 | 6605 (4883/1722)3 | 20 | 4 (A, G, M, B) | 3: Waist, Wrist, Chest (lanyard around the neck) | 238 (A, G) 80 (M) 10 (B) |
IMUFD [6] | 10 (n.i.) | 8/7 | 600 (390/210) | [15–20.01] | 3 (A, G, M) | 7: Chest, Head, Left ankle, Left thigh, Right ankle, Right thigh, Waist | 128 |
KFall [44] | 32 (0/32) | 21/15 | 5075 (2729/2346) | [2.03–40.86] | A, G, O | 1: Waist (Low back) | 100 |
SisFall [45] | 38 (19/19) | 19/15 | 4505 (2707/1798) | [9.99–179.99] s | 3 (A, A, G) | Waist | 200 |
UMAFall [46] | 19 (8/11) | 12/3 | 746 (538/208) | 15 s (all samples) | 3 (A, G, M) | 5: Ankle, Chest, Thigh, Waist, Wrist | 100 (Thigh) 20 (Rest) |
UP-Fall [47] | 17 (8/9) | 6/5 | 559 (304/255) | [9.409–59.979] | 2 (A, G) | 5: Ankle, Neck, Thigh (pocket), Waist, Wrist | Around 18 Hz |
One-Class Classifier | Hyperparameter | Value/Alternatives |
---|---|---|
Autoencoder | Number of hidden neurons | 6, 10, 12, 15 |
Encoder/decoder transfer function | Logistic Sigmoid | |
Number of epochs | 1000 | |
Loss function | Mean squared error plus L2&sparsity regularization | |
Sparsity regularization coefficient | 1 | |
L2 weight regularization coefficient | 0.001 | |
Gaussian Mixture Model (GMM) | Type of covariance matrix | Diagonal |
Number of components | 3, 5 and 7 | |
Parzen Probabilistic Neural Networks (PPNN) | Window function | |
One-Class K-Nearest Neighbors (OC-KNN) | Distance function | Euclidean, Minkowski, Chebychev, Cosine |
Number of neighbors | 5, 10, 50 | |
One-Class Support Vector Machine (OC-SVM) | Kernel functions | Linear, cubic, quadratic, medium gaussian |
OCC | Description of the threshold |
---|---|
Autoencoder | MSE (Mean Square Error) between input and output |
GMM | Negative log-likelihood of the Gaussian mixture model given the data input |
PPNN | Score indicating the likelihood that a label comes from the training class |
OC-KNN | Distance between the observation and the k closest neighbor |
OC-SVM | Score indicating the likelihood that a label comes from the training class |
ID | Symbol | Description |
---|---|---|
A | The mean Signal Magnitude Vector (SMV) | |
B | Magnitude of the maximum variation of the acceleration components | |
C | The standard deviation of SMV | |
D | The mean rotation angle | |
E | The mean absolute difference between two consecutive samples of the acceleration module | |
F | Mean of the acceleration components that are parallel to the floor plane | |
G | The peak or maximum of the SMV to describe the violence of the impact against the floor | |
H | The “valley” or minimum of the SMV to characterize the phase of free-fall | |
I | The skewness of SMV, which describes the symmetry of the distribution of the acceleration | |
J | The Signal Magnitude Area | |
K | Sum of the energy estimated in the three axes during the observation interval | |
L | Mean of the autocorrelation function of the acceleration magnitude captured during the observation interval |
Dataset | Features | OCC | Kernel/Distance | Neighbors/ Hidden Neurons/ Components | AUC | Se | Sp | (µ ± σ) |
---|---|---|---|---|---|---|---|---|
DLR | BCDFGIK | Autoencoder | Logistic sigmoid | 10 | 0.8976 | 0.9333 | 0.8748 | 0.9007 ± 0.0739 |
HCTSA | GMM | Diagonal | 7 | 0.9483 | 1.0000 | 0.8784 | 0.9371 ± 0.0204 | |
HCTSA | OC-KNN | Cosine | 50 | 0.9460 | 0.9333 | 0.9298 | 0.9286 ± 0.0760 | |
ABCDEFGHIJKL | PPNN | - | - | 0.5564 | 0.6667 | 0.5826 | 0.6165 ± 0.1283 | |
HCTSA | OC-SVM | Medium Gaussian | - | 0.9068 | 0.9333 | 0.8481 | 0.8864 ± 0.0696 | |
DOFDA | BCDFGIK | Autoencoder | Logistic sigmoid | 12 | 0.9704 | 0.9638 | 0.9833 | 0.9733 ± 0.0201 |
BCDFGIK | GMM | Diagonal | 5 | 0.9762 | 0.9835 | 0.9833 | 0.9833 ± 0.0198 | |
BCDFGIK | OC-KNN | Euclidean | 5 | 0.9727 | 0.9604 | 0.9833 | 0.9716 ± 0.0247 | |
BCDFGIK | PPNN | - | - | 0.9934 | 0.9506 | 1.0000 | 0.9749 ± 0.0122 | |
HCTSA | OC-SVM | Linear | - | 0.9775 | 0.9803 | 1.0000 | 0.9901 ± 0.0930 | |
Erciyes | ABCDEFGHIJKL | Autoencoder | Logistic sigmoid | 15 | 0.9795 | 0.9544 | 0.9436 | 0.9488 ± 0.0091 |
BCDFGIK | GMM | Diagonal | 3 | 0.9857 | 0.9648 | 0.9436 | 0.9541 ± 0.0106 | |
BCDFGIK | OC-KNN | Cosine | 5 | 0.9951 | 0.9846 | 0.9782 | 0.9814 ± 0.0028 | |
ABCDEFGHIJKL | PPNN | - | - | 0.9898 | 0.9616 | 0.9640 | 0.9627 ± 0.0061 | |
ABCDEFGHIJKL | OC-SVM | Cubic | - | 0.9867 | 0.9654 | 0.9837 | 0.9745 ± 0.0042 | |
FallAllD | BCDFGIK | Autoencoder | Logistic sigmoid | 6 | 0.9070 | 0.8753 | 0.8159 | 0.8449 ± 0.0161 |
BCDFGIK | GMM | Diagonal | 7 | 0.9359 | 0.8581 | 0.8649 | 0.8613 ± 0.0149 | |
BCDFGIK | OC-KNN | Cosine | 10 | 0.9649 | 0.9290 | 0.9062 | 0.9175 ± 0.0162 | |
ABCDEFGHIJKL | PPNN | - | - | 0.8281 | 0.7699 | 0.7897 | 0.7793 ± 0.0196 | |
BCDFGIK | OC-SVM | Linear | - | 0.9552 | 0.8903 | 0.9164 | 0.9029 ± 0.0227 | |
IMUFD | ABCDEFGHIJKL | Autoencoder | Logistic sigmoid | 15 | 0.9111 | 0.8238 | 0.8610 | 0.8419 ± 0.0269 |
BCDFGIK | GMM | Diagonal | 3 | 0.9491 | 0.8991 | 0.9159 | 0.9069 ± 0.0294 | |
BCDFGIK | OC-KNN | Cosine | 5 | 0.9710 | 0.9712 | 0.9212 | 0.9458 ± 0.0184 | |
BCDFGIK | PPNN | - | - | 0.9269 | 0.8227 | 0.9028 | 0.8608 ± 0.0294 | |
BCDFGIK | OC-SVM | Linear | - | 0.9745 | 0.9668 | 0.9135 | 0.9393 ± 0.0109 | |
KFall | ABCDEFGHIJKL | Autoencoder | Logistic sigmoid | 12 | 0.9931 | 0.9727 | 0.9699 | 0.9713 ± 0.0059 |
BCDFGIK | GMM | Diagonal | 7 | 0.9875 | 0.9697 | 0.9506 | 0.9601 ± 0.0063 | |
BCDFGIK | OC-KNN | Minkowski | 5 | 0.9976 | 0.9893 | 0.9895 | 0.9894 ± 0.0026 | |
HCTSA | PPNN | - | - | 0.9906 | 0.9607 | 0.9450 | 0.9528 ± 0.0077 | |
ABCDEFGHIJKL | OC-SVM | Linear | - | 0.9940 | 0.9705 | 0.9672 | 0.9688 ± 0.0098 | |
SisFall | BCDFGIK | Autoencoder | Logistic sigmoid | 6 | 0.9611 | 0.9304 | 0.8948 | 0.9124 ± 0.0054 |
BCDFGIK | GMM | Diagonal | 7 | 0.9483 | 0.9221 | 0.8418 | 0.8808 ± 0.0135 | |
BCDFGIK | OC-KNN | Cosine | 5 | 0.9895 | 0.9521 | 0.9634 | 0.9578 ± 0.0061 | |
HCTSA | PPNN | - | - | 0.9898 | 0.9638 | 0.9575 | 0.9606 ± 0.0045 | |
HCTSA | OC-SVM | Linear | - | 0.9932 | 0.9583 | 0.9567 | 0.9575 ± 0.0073 | |
UMAFall | BCDFGIK | Autoencoder | Logistic sigmoid | 15 | 0.9802 | 0.9946 | 0.9416 | 0.9677 ± 0.0123 |
BCDFGIK | GMM | Diagonal | 5 | 0.9769 | 0.9629 | 0.9086 | 0.9353 ± 0.0164 | |
BCDFGIK | OC-KNN | Cosine | 10 | 0.9881 | 0.9895 | 0.9670 | 0.9781 ± 0.0109 | |
HCTSA | PPNN | - | - | 0.9710 | 0.9095 | 0.9593 | 0.9337 ± 0.0119 | |
BCDFGIK | OC-SVM | Cubic | - | 0.9924 | 0.9895 | 0.9670 | 0.9781 ± 0.0144 | |
UP-Fall | BCDFGIK | Autoencoder | Logistic sigmoid | 6 | 0.9674 | 1.0000 | 0.9249 | 0.9616 ± 0.0152 |
BCDFGIK | GMM | Diagonal | 3 | 0.9680 | 0.9755 | 0.9052 | 0.9394 ± 0.0300 | |
BCDFGIK | OC-KNN | Cosine | 10 | 0.9888 | 0.9918 | 0.9685 | 0.9800 ± 0.0070 | |
ABCDEFGHIJKL | PPNN | - | - | 0.9709 | 0.9837 | 0.9605 | 0.9720 ± 0.0248 | |
BCDFGIK | OC-SVM | Cubic | - | 0.9912 | 0.9918 | 0.9842 | 0.9880 ± 0.0110 |
Dataset | |||||||||
---|---|---|---|---|---|---|---|---|---|
Classifier | DLR | DOFDA | Erciyes | FallAllD | IMUFD | KFall | SisFall | UMAFall | UP-Fall |
Autoencoder | 0.8976 | 0.9704 | 0.9795 | 0.9070 | 0.9111 | 0.9931 | 0.9611 | 0.9802 | 0.9674 |
GMM | 0.9483 | 0.9762 | 0.9857 | 0.9359 | 0.9491 | 0.9875 | 0.9483 | 0.9769 | 0.9680 |
OC-KNN | 0.9460 | 0.9727 | 0.9951 | 0.9649 | 0.9710 | 0.9976 | 0.9895 | 0.9881 | 0.9888 |
PPNN | 0.5564 | 0.9934 | 0.9898 | 0.8281 | 0.9269 | 0.9906 | 0.9898 | 0.9710 | 0.9709 |
OC-SVM | 0.9068 | 0.9775 | 0.9867 | 0.9552 | 0.9745 | 0.9940 | 0.9932 | 0.9924 | 0.9912 |
Dataset | |||||||||
---|---|---|---|---|---|---|---|---|---|
Classifier | DLR | DOFDA | Erciyes | FallAllD | IMUFD | KFall | SisFall | UMAFall | UP-Fall |
Autoencoder | 0.9007 | 0.9733 | 0.9488 | 0.8449 | 0.8449 | 0.9713 | 0.9124 | 0.9677 | 0.9616 |
GMM | 0.9371 | 0.9833 | 0.9541 | 0.8613 | 0.9069 | 0.9601 | 0.8808 | 0.9353 | 0.9394 |
OC-KNN | 0.9286 | 0.9716 | 0.9814 | 0.9175 | 0.9458 | 0.9894 | 0.9578 | 0.9781 | 0.9800 |
PPNN | 0.6165 | 0.9749 | 0.9627 | 0.7793 | 0.8608 | 0.9528 | 0.9606 | 0.9337 | 0.9720 |
OC-SVM | 0.8864 | 0.9901 | 0.9745 | 0.9029 | 0.9393 | 0.9688 | 0.9575 | 0.9781 | 0.9880 |
Dataset | Algorithm | Se | Sp | |
---|---|---|---|---|
DLR | GMM (Diagonal. 7 components) | 1.0000 | 0.8784 | 0.9371 |
Majority Voting Ensemble | 0.9333 | 0.9146 | 0.9215 | |
DOFDA | OC-SVM (Linear kernel) | 0.9803 | 1.0000 | 0.9901 |
Majority Voting Ensemble | 0.9803 | 1.0000 | 0.9901 | |
Erciyes | OC-KNN (Cosine distance. 5 neighbors) | 0.9846 | 0.9782 | 0.9814 |
Majority Voting Ensemble | 0.9852 | 0.9776 | 0.9814 | |
FallAllD | OC-KNN (Cosine distance. 10 neighbors) | 0.9290 | 0.9062 | 0.9175 |
Majority Voting Ensemble | 0.9269 | 0.9223 | 0.9245 | |
IMUFD | OC-KNN (Cosine distance. 5 neighbors) | 0.9712 | 0.9212 | 0.9458 |
Majority Voting Ensemble | 0.9763 | 0.9342 | 0.9550 | |
KFall | OC-KNN (Minkowski distance. 5 neighbors) | 0.9893 | 0.9895 | 0.9894 |
Majority Voting Ensemble | 0.9987 | 0.9985 | 0.9986 | |
SisFall | OC-KNN (Cosine distance. 5 neighbors) | 0.9638 | 0.9575 | 0.9606 |
Majority Voting Ensemble | 0.9638 | 0.9627 | 0.9632 | |
UMAFall | OC-KNN (Cosine distance. 10 neighbors) | 0.9895 | 0.9670 | 0.9781 |
Majority Voting Ensemble | 0.9895 | 0.9771 | 0.9832 | |
UP-Fall | OC-SVM (Cubic kernel) | 0.9918 | 0.9842 | 0.9880 |
Majority Voting Ensemble | 0.9959 | 0.9841 | 0.9899 |
ADL Category | Description | Examples |
---|---|---|
Basic movements | Simple movements of low intensity | Getting up of a bed or chair, sitting down, lying, turning over while lying down, standing, clapping hands, etc. |
Standard movements | Routines of daily life that require intermediate physical effort or a certain degree of mobility | Walking at a normal pace, climbing up/down stairs, squatting, picking up an object from the floor, etc. |
Sporting movements | Activities that require a higher physical effort and brusque and/or repetitive movements | Running, jogging, hopping, walking fast, etc. |
Dataset | OCC | Se | Sp | Loss | |
---|---|---|---|---|---|
DLR | Autoencoder | 0.8125 | 0.4299 | 0.5910 | −0.3097 |
GMM | 0.8125 | 0.3293 | 0.5172 | −0.4199 | |
OC-KNN | 0.8125 | 0.7591 | 0.7854 | −0.1432 | |
PPNN | 0.7500 | 0.0122 | 0.0959 | −0.5206 | |
OC-SVM | 0.4375 | 0.0427 | 0.1367 | −0.7497 | |
Erciyes | Autoencoder | 0.9885 | 0.8457 | 0.9143 | −0.0345 |
GMM | 0.9104 | 0.9213 | 0.9159 | −0.0382 | |
OC-KNN | 0.9632 | 0.9074 | 0.9349 | −0.0465 | |
PPNN | 0.9764 | 0.8164 | 0.8928 | −0.0699 | |
OC-SVM | 0.9863 | 0.8765 | 0.9298 | −0.0447 | |
FallAllD | Autoencoder | 0.9555 | 0.7978 | 0.8639 | +0.0190 |
GMM | 0.9140 | 0.8352 | 0.8737 | +0.0124 | |
OC-KNN | 0.9269 | 0.8747 | 0.9004 | −0.0171 | |
PPNN | 0.6688 | 0.7758 | 0.7203 | −0.0568 | |
OC-SVM | 0.9290 | 0.6813 | 0.7956 | −0.1073 | |
IMUFD | Autoencoder | 0.9761 | 0.7387 | 0.8492 | +0.0073 |
GMM | 0.9522 | 0.5495 | 0.7234 | −0.1835 | |
OC-KNN | 0.9569 | 0.8378 | 0.8954 | −0.0504 | |
PPNN | 0.8852 | 0.8108 | 0.8472 | −0.0136 | |
OC-SVM | 1.0000 | 0.7027 | 0.8383 | −0.1010 | |
KFall | Autoencoder | 0.9944 | 0.8690 | 0.9296 | −0.0417 |
GMM | 0.9851 | 0.8558 | 0.9181 | −0.0420 | |
OC-KNN | 0.9624 | 0.9760 | 0.9692 | −0.0202 | |
PPNN | 0.9018 | 0.9928 | 0.9462 | +0.0005 | |
OC-SVM | 0.9953 | 0.9183 | 0.9560 | −0.0128 | |
SisFall | Autoencoder | 0.9076 | 0.5626 | 0.7146 | −0.1978 |
GMM | 0.9950 | 0.3705 | 0.6072 | −0.2736 | |
OC-KNN | 0.9839 | 0.5073 | 0.7065 | −0.2513 | |
PPNN | 0.8520 | 0.0825 | 0.2650 | −0.6956 | |
OC-SVM | 0.9911 | 0.1574 | 0.3949 | −0.5626 | |
UMAFall | Autoencoder | 0.8670 | 0.8493 | 0.8581 | −0.1096 |
GMM | 0.9309 | 0.7226 | 0.8201 | −0.1152 | |
OC-KNN | 0.9894 | 0.7397 | 0.8555 | −0.1226 | |
PPNN | 0.9894 | 0.2226 | 0.4693 | −0.4644 | |
OC-SVM | 0.9947 | 0.6130 | 0.7809 | −0.1972 | |
UP-Fall | Autoencoder | 0.9510 | 0.9881 | 0.9694 | +0.0078 |
GMM | 0.9633 | 0.9881 | 0.9756 | +0.0362 | |
OC-KNN | 0.9796 | 1.0000 | 0.9897 | +0.0097 | |
PPNN | 0.9714 | 0.9762 | 0.9738 | +0.0130 | |
OC-SVM | 0.9918 | 1.0000 | 0.9959 | +0.0079 |
Dataset | OCC | Se | Sp | Loss | |
---|---|---|---|---|---|
DLR | Autoencoder | 0.8125 | 0.9008 | 0.8555 | −0.0452 |
GMM | 0.9375 | 0.8855 | 0.9111 | −0.0260 | |
OC-KNN | 0.8125 | 0.8168 | 0.8146 | −0.1140 | |
PPNN | 0.6875 | 0.0458 | 0.1775 | −0.4390 | |
OC-SVM | 0.7500 | 0.9313 | 0.8357 | −0.0507 | |
Erciyes | Autoencoder | 0.9665 | 0.9817 | 0.9741 | +0.0253 |
GMM | 0.9764 | 0.9854 | 0.9809 | +0.0268 | |
OC-KNN | 0.9780 | 0.9689 | 0.9735 | −0.0079 | |
PPNN | 0.9720 | 0.9689 | 0.9704 | +0.0077 | |
OC-SVM | 0.9868 | 0.9634 | 0.9751 | +0.0006 | |
FallAllD | Autoencoder | 0.8258 | 0.8808 | 0.8528 | +0.0079 |
GMM | 0.8602 | 0.8808 | 0.8704 | +0.0091 | |
OC-KNN | 0.8903 | 0.9621 | 0.9255 | +0.0080 | |
PPNN | 0.6774 | 0.7832 | 0.7284 | −0.0487 | |
OC-SVM | 0.8129 | 0.6667 | 0.7362 | −0.1667 | |
IMUFD | Autoencoder | 0.8134 | 0.7833 | 0.7982 | −0.0437 |
GMM | 0.9330 | 0.9667 | 0.9497 | +0.0428 | |
OC-KNN | 0.9378 | 1.0000 | 0.9684 | +0.0226 | |
PPNN | 0.7416 | 1.0000 | 0.8612 | +0.0004 | |
OC-SVM | 0.8565 | 1.0000 | 0.9255 | −0.0138 | |
KFall | Autoencoder | 0.9983 | 0.9408 | 0.9691 | −0.0022 |
GMM | 0.9893 | 0.9723 | 0.9808 | +0.0207 | |
OC-KNN | 0.9859 | 0.9781 | 0.9820 | −0.0074 | |
PPNN | 0.9061 | 0.9494 | 0.9275 | −0.0182 | |
OC-SVM | 0.9910 | 0.8177 | 0.9002 | −0.0686 | |
SisFall | Autoencoder | 0.8620 | 0.6754 | 0.7630 | −0.1494 |
GMM | 0.9182 | 0.5331 | 0.6996 | −0.1812 | |
OC-KNN | 0.9482 | 0.7756 | 0.8576 | −0.1002 | |
PPNN | 0.9727 | 0.7715 | 0.8663 | −0.0943 | |
OC-SVM | 0.9488 | 0.8317 | 0.8883 | −0.0692 | |
UMAFall | Autoencoder | 0.9947 | 0.8936 | 0.9428 | −0.0249 |
GMM | 0.9894 | 0.9362 | 0.9624 | +0.0271 | |
OC-KNN | 0.9787 | 0.9574 | 0.9680 | −0.0101 | |
PPNN | 0.8723 | 1.0000 | 0.9340 | +0.0003 | |
OC-SVM | 0.9574 | 1.0000 | 0.9785 | +0.0004 | |
UP-Fall | Autoencoder | 0.9714 | 0.9675 | 0.9695 | +0.0079 |
GMM | 1.0000 | 0.9431 | 0.9711 | +0.0317 | |
OC-KNN | 1.0000 | 0.9512 | 0.9753 | −0.0047 | |
PPNN | 1.0000 | 0.6423 | 0.8014 | −0.1594 | |
OC-SVM | 1.0000 | 0.6829 | 0.8264 | −0.1616 |
Dataset | OCC | Se | Sp | Loss | |
---|---|---|---|---|---|
DLR | Autoencoder | 0.9375 | 0.0294 | 0.1661 | −0.7346 |
GMM | 0.9375 | 0.0294 | 0.1661 | −0.7710 | |
OC-KNN | 1.0000 | 0.0735 | 0.2712 | −0.6574 | |
PPNN | 0.7500 | 0.8529 | 0.7998 | 0.1833 | |
OC-SVM | 0.3125 | 0.9706 | 0.5507 | −0.3357 | |
Erciyes | Autoencoder | 0.5231 | 0.6848 | 0.5985 | −0.3503 |
GMM | 0.9423 | 0.2609 | 0.4958 | −0.4583 | |
OC-KNN | 0.9758 | 0.9348 | 0.9551 | −0.0263 | |
PPNN | 0.9500 | 0.9891 | 0.9694 | 0.0067 | |
OC-SVM | 0.9571 | 0.9457 | 0.9514 | −0.0231 | |
FallAllD | Autoencoder | 0.6796 | 0.4176 | 0.5327 | −0.3122 |
GMM | 0.7978 | 0.3235 | 0.5081 | −0.3532 | |
OC-KNN | 0.9247 | 0.6294 | 0.7629 | −0.1546 | |
PPNN | 0.8280 | 0.5235 | 0.6584 | −0.1187 | |
OC-SVM | 0.8731 | 0.6765 | 0.7685 | −0.1344 | |
KFall | Autoencoder | 0.9377 | 0.4694 | 0.6635 | −0.3078 |
GMM | 0.5137 | 0.6332 | 0.5703 | −0.3898 | |
OC-KNN | 0.9684 | 0.7686 | 0.8627 | −0.1267 | |
PPNN | 0.9667 | 0.7162 | 0.8320 | −0.1137 | |
OC-SVM | 0.9744 | 0.7358 | 0.8467 | −0.1221 | |
SisFall | Autoencoder | 0.7607 | 0.7254 | 0.7428 | −0.1696 |
GMM | 0.8564 | 0.3264 | 0.5287 | −0.3521 | |
OC-KNN | 0.9171 | 0.5181 | 0.6893 | −0.2685 | |
PPNN | 0.9176 | 0.9793 | 0.9480 | −0.0126 | |
OC-SVM | 0.9338 | 0.9378 | 0.9358 | −0.0217 | |
UMAFall | Autoencoder | 0.9521 | 0.0000 | 0.0000 | −0.9677 |
GMM | 0.9096 | 0.0000 | 0.0000 | −0.9353 | |
OC-KNN | 0.8989 | 0.5273 | 0.6885 | −0.2896 | |
PPNN | 0.8989 | 0.6182 | 0.7455 | −0.1882 | |
OC-SVM | 0.7287 | 0.8545 | 0.7891 | −0.1890 | |
UP-Fall | Autoencoder | 0.8667 | 0.0000 | 0.0000 | −0.9616 |
GMM | 0.7792 | 0.0000 | 0.0000 | −0.9394 | |
OC-KNN | 0.9292 | 0.9565 | 0.9427 | −0.0373 | |
PPNN | 0.9625 | 0.8913 | 0.9262 | −0.0346 | |
OC-SVM | 0.8898 | 0.9565 | 0.9226 | −0.0654 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santoyo-Ramón, J.A.; Casilari, E.; Cano-García, J.M. A Study of One-Class Classification Algorithms for Wearable Fall Sensors. Biosensors 2021, 11, 284. https://doi.org/10.3390/bios11080284
Santoyo-Ramón JA, Casilari E, Cano-García JM. A Study of One-Class Classification Algorithms for Wearable Fall Sensors. Biosensors. 2021; 11(8):284. https://doi.org/10.3390/bios11080284
Chicago/Turabian StyleSantoyo-Ramón, José Antonio, Eduardo Casilari, and José Manuel Cano-García. 2021. "A Study of One-Class Classification Algorithms for Wearable Fall Sensors" Biosensors 11, no. 8: 284. https://doi.org/10.3390/bios11080284
APA StyleSantoyo-Ramón, J. A., Casilari, E., & Cano-García, J. M. (2021). A Study of One-Class Classification Algorithms for Wearable Fall Sensors. Biosensors, 11(8), 284. https://doi.org/10.3390/bios11080284