Molecular Imprinting on Nanozymes for Sensing Applications
Abstract
:1. Introduction
2. Design of nanozymes
2.1. Classification and Enzyme-Like Activities
2.2. Tuning Nanozymes Properties
3. Molecular Imprinting Technology
3.1. MIPs Design
3.2. MIPs as Biomimetic Catalysts
4. Nanozymes@MIPs
5. Conclusions and Future Perspectives
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tao, X.; Wang, X.; Liu, B.; Liu, J. Conjugation of antibodies and aptamers on nanozymes for developing biosensors. Biosens. Bioelectron. 2020, 168, 112537. [Google Scholar] [CrossRef]
- Resmini, M. Molecularly imprinted polymers as biomimetic catalysts. Anal. Bioanal. Chem. 2012, 402, 3021–3026. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Ren, J.; Qu, X. Catalytically Active Nanomaterials: A Promising Candidate for Artificial Enzymes. Acc. Chem. Res. 2014, 47, 1097–1105. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Wang, E. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 2013, 42, 6060–6093. [Google Scholar] [CrossRef]
- Gao, L.; Zhuang, J.I.E.; Nie, L.; Zhang, J.; Zhang, Y.U.; Gu, N.; Wang, T.; Feng, J.; Yang, D.; Perrett, S.; et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Fan, Y.; Zhang, W.; Gu, N.; Zhang, Y. Catalytic Mechanisms of Nanozymes and Their Applications in Biomedicine. Bioconjugate Chem. 2019, 30, 1273–1296. [Google Scholar] [CrossRef]
- Huang, Y.; Ren, J.; Qu, X. Nanozymes: Classification, Catalytic Mechanisms, Activity Regulation, and Applications. Chem. Rev. 2019, 119, 4357–4412. [Google Scholar] [CrossRef]
- Mahmudunnabi, R.G.; Farhana, F.Z.; Kashaninejad, N.; Firoz, S.H.; Shim, Y.-B.; Shiddiky, M.J.A. Nanozyme-based electrochemical biosensors for disease biomarker detection. Analyst 2020, 145, 4398–4420. [Google Scholar] [CrossRef]
- Wu, J.; Wang, X.; Wang, Q.; Lou, Z.; Li, S.; Zhu, Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (II). Chem. Soc. Rev. 2019, 48, 1004–1076. [Google Scholar]
- Manea, F.; Houillon, F.B.; Pasquato, L.; Scrimin, P. Nanozymes: Gold-Nanoparticle-Based Transphosphorylation Catalysts. Angew. Chem. Int 2004, 43, 6165–6169. [Google Scholar] [CrossRef]
- Liang, M.; Yan, X. Nanozymes: From New Concepts, Mechanisms, and Standards to Applications. Acc. Chem. Res. 2019, 52, 2190–2200. [Google Scholar] [CrossRef]
- Jiang, D.; Ni, D.; Rosenkrans, Z.T.; Huang, P.; Yan, X.; Weibo, C. Nanozyme: New horizons for responsive biomedical applications. Chem. Soc. Rev. 2019, 48, 3683–3704. [Google Scholar] [CrossRef]
- Lin, Y.; Ren, J.; Qu, X. Nano-Gold as Artificial Enzymes: Hidden Talents. Adv. Mater. 2014, 26, 4200–4217. [Google Scholar] [CrossRef]
- Zhang, H.; Lu, L.; Cao, Y.; Du, S.; Cheng, Z.; Zhang, S. Fabrication of catalytically active Au/Pt/Pd trimetallic nanoparticles by rapid injection of NaBH4. Mater. Res. Bull. 2014, 49, 393–398. [Google Scholar] [CrossRef]
- Zhang, P.; Sun, D.; Cho, A.; Weon, S.; Lee, S.; Lee, J.; Han, J.W.; Kim, D.-P.; Choi, W. Modified carbon nitride nanozyme as bifunctional glucose oxidase-peroxidase for metal-free bioinspired cascade photocatalysis. Nat. Commun. 2019, 10, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, P.; Wu, C.; Xu, Y.; Cheng, D.; Lu, Q.; Gao, J.; Yang, W.; Zhu, X.; Liu, M.; Li, H.; et al. Group IV nanodots: Newly emerging properties and application in biomarkers sensing. Trends Anal. Chem. 2020, 131, 116007. [Google Scholar] [CrossRef]
- Liang, H.; Lin, F.; Zhang, Z.; Liu, B.; Jiang, S.; Yuan, Q.; Liu, J. Multi-copper Laccase Mimicking Nanozymes with Nucleotides as Ligands Multi-copper Laccase Mimicking Nanozymes with Nucleotides as Ligands. ACS Appl. Mater. Interfaces 2016, 9, 1352–1360. [Google Scholar] [CrossRef]
- Chen, J.; Wu, W.; Huang, L.; Ma, Q.; Dong, S. Self-Indicative Gold Nanozyme for H2O2 and Glucose Sensing. Chem. Eur. J. 2019, 25, 11940–11944. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhou, Y.; Liu, J.; Xia, H. The intrinsic enzyme mimetic activity of platinum oxide for biosensing of glucose, Spec-trochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 248, 119280. [Google Scholar] [CrossRef]
- Shin, H.Y.; Park, T.J.; Kim, M. Il Recent Research Trends and Future Prospects in Nanozymes. J. Nanomater. 2015, 2015, 1–11. [Google Scholar]
- Liu, X.; Yang, J.; Cheng, J.; Xu, Y.; Chen, W.; Li, Y. Facile preparation of four-in-one nanozyme catalytic platform and the application in selective detection of catechol and hydroquinone. Sens. Actuators B Chem. 2021, 337, 1–9. [Google Scholar] [CrossRef]
- Wei, H.; Wang, E. Fe3O4 Magnetic Nanoparticles as Peroxidase Mimetics and Their Applications in H2O2 and Glucose Detection use of the novel properties of Fe3O4 MNPs as peroxidase. Anal. Chem. 2008, 80, 2250–2254. [Google Scholar] [CrossRef]
- Cui, F.; Deng, Q.; Sun, L. Prussian blue modified metal–organic framework MIL-101(Fe) with intrinsic peroxidase-like catalytic activity as a colorimetric biosensing platform. RSC Adv. 2015, 5, 98215–98221. [Google Scholar] [CrossRef]
- Jiang, B.; Duan, D.; Gao, L.; Zhou, M.; Fan, K.; Tang, Y.; Xi, J. Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat. Protoc. 2019, 13, 1506–1520. [Google Scholar] [CrossRef] [PubMed]
- Lien, C.; Huang, C.; Chang, H. Peroxidase-mimic bismuth–gold nanoparticles for determining the activity of thrombin and drug screening. Chem. Commun 2012, 48, 7952–7954. [Google Scholar] [CrossRef]
- Wang, Q.; Wei, H.; Zhang, Z.; Wang, E.; Dong, S. An emerging alternative to natural enzyme for biosensing and immunoassay. Trends Anal. Chem. 2018, 105, 218–224. [Google Scholar] [CrossRef]
- Zhou, Y.; Wei, Y.; Ren, J.; Qu, X. A chiral covalent organic frameworks (COFs) nanozymes with ultrahigh enzymatic activity. Mater. Horiz. 2020, 7, 3291–3297. [Google Scholar] [CrossRef]
- Korsvik, C.; Patil, S.; Self, W.T. Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem. Commun. 2007, 1056–1058. [Google Scholar] [CrossRef]
- Pirmohamed, T.; Dowding, J.M.; Singh, S.; Wasserman, B.; Heckert, E.; Karakoti, A.S.; King, J.E.S.; Seal, S.; Self, W.T. Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem. Commun. 2010, 46, 2736–2738. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Jin, L.; Wu, X.; Dong, Y.; Li, Z. Label-free colorimetric sensor for mercury(II) and DNA on the basis of mercury(II) switched-on the oxidase-mimicking activity of silver nanoclusters. Anal. Chim. Acta 2015, 871, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Su, Q.; Song, D.; Fan, J.; Xu, Z. Label-free detection of exosomes based on ssDNA-modulated oxidase- mimicking activity of CuCo2O4 nanorods. Anal. Chim. Acta 2021, 1145, 9–16. [Google Scholar] [CrossRef]
- He, W.; Zhou, Y.; Wamer, W.G.; Hu, X.; Wu, X.; Zheng, Z.; Boudreau, M.D.; Yin, J. Biomaterials Intrinsic catalytic activity of Au nanoparticles with respect to hydrogen peroxide decomposition and superoxide scavenging. Biomaterials 2013, 34, 765–773. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Jin, Y.; Cui, H.; Yan, X.; Fan, K. Nanozyme-based catalytic theranostics. RSC Adv. 2020, 10, 10–20. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.; Sharifi, M.; Bloukh, S.H.; Edis, Z.; Siddique, R.; Falahati, M. In vivo guiding inorganic nanozymes for biosensing and therapeutic potential in cancer, inflammation and microbial infections. Talanta 2021, 224, 121805. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, H.; Li, M.; Yin, J.; Nie, Z. pH dependent catalytic activities of platinum nanoparticles with respect to the decomposition of hydrogen peroxide and scavenging of superoxide and singlet oxygen. Nanoscale 2014, 6, 11904–11910. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, J. Nanozyme’s catching up: Activity, specificity, reaction conditions and reaction types. Mater. Horizons 2020. [Google Scholar] [CrossRef]
- Wang, X.; Hu, Y.; Wei, H. Nanozymes in bionanotechnology: From sensing to therapeutics and beyond. Inorg. Chem. Front. 2016, 3, 41–60. [Google Scholar] [CrossRef]
- Li, S.; Zhang, L.; Jiang, Y.; Zhu, S.; Lv, X.; Duan, Z.; Wang, H. In-site encapsulating gold “nanowires” into hemin-coupled protein scaffolds through biomimetic assembly towards the nanocomposites with strong catalysis, electrocatalysis, and fluorescence properties. Nanoscale 2017, 9, 16005–16011. [Google Scholar] [CrossRef]
- Menon, S.S.; SooryaValliparambil, C.; Koyappayil, A.; Berchmans, S. Copper-Based Metal-Organic Frameworks as Peroxidase Mimics Leading to Sensitive H2O2 and Glucose Detection. Chem. Sel. 2018, 3, 8319–8324. [Google Scholar]
- Ramström, O.; Mosbach, K. Synthesis and catalysis by molecularly imprinted materials. Curr. Opin. Chem. Biol. 1999, 759–764. [Google Scholar] [CrossRef]
- Wulff, G. Enzyme-like catalysis by molecularly imprinted polymers. Chem. Rev. 2002, 102, 1–27. [Google Scholar] [CrossRef]
- Mosbach, K.; Ramström, O. The emerging tecnhique of Molecular Imprinting and Its Future Impact on Biotechnology. Nat. Biotechnol. 1996, 14, 163–170. [Google Scholar] [CrossRef]
- Vaneckova, T.; Bezdekova, J.; Han, G.; Adam, V.; Vaculovicova, M. Application of molecularly imprinted polymers as artificial receptors for imaging. Acta Biomater. 2020, 101, 444–458. [Google Scholar] [CrossRef]
- Frasco, M.F.; Truta, L.A.A.N.A.; Sales, M.G.F.; Moreira, F.T.C. Imprinting Technology in Electrochemical Biomimetic Sensors. Sensors 2017, 17, 523. [Google Scholar] [CrossRef] [Green Version]
- Haupt, K.; Rangel, P.X.M.; Tse, B.; Bui, S. Molecularly Imprinted Polymers: Antibody Mimics for Bioimaging and Therapy. Chem. Rev. 2020, 120, 9554–9582. [Google Scholar] [CrossRef]
- Xu, J.; Miao, H.; Wang, J.; Pan, G. Molecularly Imprinted Synthetic Antibodies: From Chemical Design to Biomedical Applications. Small 2020, 1906644, 1–21. [Google Scholar] [CrossRef]
- Silva, M.S.; Tavares, A.P.M.; De Faria, H.D.; Sales, G.F.; Figueiredo, E.C. Critical Reviews in Analytical Chemistry Molecularly Imprinted Solid Phase Extraction Aiding the Analysis of Disease Biomarkers Molecularly Imprinted Solid Phase Extraction Aiding the Analysis of Disease Biomarkers. Crit. Rev. Anal. Chem. 2020, 1–16. [Google Scholar] [CrossRef]
- Ye, L.; Mosbach, K. Molecularly imprinted microspheres as antibody binding mimics. React. Funct. Polym. 2001, 48, 149–157. [Google Scholar] [CrossRef]
- Dong, C.; Shi, H.; Han, Y.; Yang, Y.; Wang, R.; Men, J. Molecularly imprinted polymers by the surface imprinting technique. Eur. Polym. J. 2021, 145, 110231. [Google Scholar] [CrossRef]
- Whitcombe, M.J.; Chianella, I.; Larcombe, L.; Piletsky, S.A.; Noble, J.; Horgan, A. The rational development of molecularly imprinted polymer-based sensors for protein detection. Chem. Soc. Rev. 2011, 40, 1547–1571. [Google Scholar] [CrossRef] [Green Version]
- Cowen, T.; Karim, K.; Piletsky, S. Computational approaches in the design of synthetic receptors e A review. Anal. Chim. Acta 2016, 936, 62–74. [Google Scholar] [CrossRef]
- Belbruno, J.J. Molecularly Imprinted Polymers. Chem. Rev. 2018, 119, 94–119. [Google Scholar] [CrossRef]
- Culver, H.R.; Peppas, N.A. Protein-Imprinted Polymers: The Shape of Things to Come? Chem. Mater. 2017, 29, 5753–5761. [Google Scholar] [CrossRef] [PubMed]
- Salian, V.D.; Byrne, M.E. Living Radical Polymerization and Molecular Imprinting: Improving Polymer Morphology in Imprinted Polymers. Macromol. Mater. Eng. 2013, 298, 379–390. [Google Scholar] [CrossRef]
- Moreita, F.T.C.; Moreira-Tavares, A.P.; Sales, M.G.F. Sol-gel-based biosensing applied to medicinal science. Curr. Top. Med. Chem. 2015, 15, 245–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Wang, X.; Wenhui Lu, A.; Wu, X.; Li, J. As featured in: Molecular imprinting: Perspectives and applications. Chem. Soc. Rev. 2016, 45, 2137–2211. [Google Scholar] [CrossRef]
- Cardoso, A.R.; Marques, A.C.; Santos, L.; Carvalho, A.F.; Costa, F.M.; Martins, R.; Sales, M.G.F.; Fortunato, E. Molecularly-imprinted chloramphenicol sensor with laser-induced graphene electrodes. Biosens. Bioelectron. 2019, 124–125, 167–175. [Google Scholar] [CrossRef]
- Tavares, A.P.M.; De Sá, M.H.; Sales, M.G.F. Innovative screen-printed electrodes on cork composite substrates applied to sulfadiazine electrochemical sensing. J. Electroanal. Chem. 2021, 880, 114922. [Google Scholar] [CrossRef]
- Martins, G.V.; Marques, A.C.; Fortunato, E.; Sales, M.G.F. Wax-printed paper-based device for direct electrochemical detection of 3-nitrotyrosine. Electrochim. Acta 2018, 284, 60–68. [Google Scholar] [CrossRef]
- Crapnell, R.D.; Dempsey-hibbert, N.C.; Peeters, M.; Tridente, A.; Banks, C.E. Talanta Open Molecularly imprinted polymer based electrochemical biosensors: Overcoming the challenges of detecting vital biomarkers and speeding up diagnosis. Talanta Open 2020, 2, 100018. [Google Scholar] [CrossRef]
- Piletsky, S.; Canfarotta, F.; Poma, A.; Bossi, A.M.; Piletsky, S. Molecularly Imprinted Polymers for Cell Recognition. Trends Biotechnol. 2020, 38, 368–387. [Google Scholar] [CrossRef]
- Bhogal, S.; Kaur, K.; Malik, A.K.; Sonne, C.; Lee, S.S.; Kim, K.H. Core-shell structured molecularly imprinted materials for sens-ing applications. Trends Anal. Chem. 2020, 133, 116043. [Google Scholar] [CrossRef]
- El-Schich, Z.; Zhang, Y.; Feith, M.; Beyer, S.; Sternbæk, L.; Ohlsson, L.; Stollenwerk, M.; Wingren, A.G. Review Molecularly imprinted polymers in biological applications. Biotechniques 2020, 69, 407–420. [Google Scholar] [CrossRef]
- Leonhardt, A.; Mosbach, K. Enzyme-mimicking polymers exhibiting specific substrate binding and catalytic functions. React. Polym. 1987, 6, 285–290. [Google Scholar] [CrossRef]
- Robinson, D.K.; Mosbach, K. Molecular Imprinting of a Transition State Analogue Leads to a Polymer Exhibiting Esterolytic Activity. J. Chem. Soc. Chem. Commun. 1989, 969–970. [Google Scholar] [CrossRef]
- Sellergren, B.; Karmalkar, R.N.; Shea, K.J. Enantioselective Ester Hydrolysis Catalyzed by Imprinted. J. Org. Chem. 2000, 4009–4027. [Google Scholar] [CrossRef]
- Wulff, G.; Junqiu, L. Design of Biomimetic Catalysts by Molecular Imprinting in Synthetic Polymers: The Role of. Acc. Chem. Res. 2012, 45, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Mathew, D.; Thomas, B.; Devaky, K.S. Geometrical effect of 3D-memory cavity on the imprinting efficiency of transition-state analogue-built artificial hydrolases. Polym. Bull. 2018, 75, 3883–3896. [Google Scholar] [CrossRef]
- Mathew, D.; Thomas, B.; Devaky, K.S.; Mathew, D.; Thomas, B.; Transition, K.S.D. Transition state analogue imprinted polymers as artificial amidases for amino acid p -nitroanilides: Morphological effects of polymer network on catalytic efficiency. Artif. Cells Nanomed. Biotechnol. 2018, 46, 1830–1837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, J.; Liu, S.; Jia, H.; Yang, J.; Qin, M.; Zhou, T.; Chen, Z.; Jia, X.; Guo, T. Rapid hydrolysis of nerve agent simulants by molecularly imprinted porous crosslinked polymer incorporating mononuclear zinc (II)—Picolinamine-amidoxime module. J. Catal. 2019, 380, 83–90. [Google Scholar] [CrossRef]
- Stepanova, M.; Solomakha, O.; Ten, D.; Tennikova, T.; Korzhikova-Vlakh, E. Flow-Through Macroporous Polymer Monoliths Containing Artificial Catalytic Centers Mimicking Chymotrypsin Active Site. Catalysts 2020, 10, 1395. [Google Scholar] [CrossRef]
- Antuña-Jiménez, D.; Blanco-López, M.C.; Miranda-Ordieres, A.J.; Lobo-Castañón, M.J. Artificial enzyme with magnetic properties and peroxidase activity on indoleamine metabolite tumor marker. Polymer 2014, 55, 1113–1119. [Google Scholar] [CrossRef]
- Li, J.; Zhu, M.; Wang, M.; Qi, W.; Su, R.; He, Z. Molecularly imprinted peptide-based enzyme mimics with enhanced activity and specificity. Soft Matter 2020, 16, 7033–7039. [Google Scholar] [CrossRef] [PubMed]
- Mathew, D.; Thomas, B.; Devaky, K.S.; Mathew, D.; Thomas, B.; Devaky, K.S. Design, synthesis and characterization of enzyme- analogue-built polymer catalysts as artificial hydrolases. Artif. Cells Nanomed. Biotechnol. 2019, 47, 1149–1172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, M.; Wang, M.; Qi, W.; Su, R.; He, Z. Constructing peptide-based artificial hydrolases with customized selectivity. J. Mater. Chem. B 2019, 7, 3804–3810. [Google Scholar] [CrossRef]
- Joyce, G.F. Directed evolution of nucleic acid enzymes. Annu. Rev. Biochem. 2004, 73, 791–836. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Liu, B.; Liu, J. Molecular Imprinting for Substrate Selectivity and Enhanced Activity of Enzyme Mimics. Small 2017, 13, 1–7. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, J. Intracellular delivery of a molecularly imprinted peroxidase mimicking DNAzyme for selective oxidation. Mater. Horizons 2018, 5, 738–744. [Google Scholar] [CrossRef]
- Hu, L.; Zhao, Y. Cross-Linked Micelles with Enzyme-Like Active Sites for Biomimetic Hydrolysis of Activated Esters. Helv. Chim. Acta 2017, 100, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Hu, L.; Arifuzzaman, M.; Zhao, Y. Controlling Product Inhibition through Substrate-Specific Active Sites in Nanoparticle-Based Phosphodiesterase and Esterase. ACS Catal. 2019, 9, 5019–5024. [Google Scholar] [CrossRef]
- Chen, Z.; Sellergren, B.; Shen, X. Synergistic Catalysis by “Polymeric Microzymes and Inorganic Nanozymes”: The 1 + 1 > 2 Effect for Intramolecular Cyclization of Peptides. Front. Chem. 2017, 5, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhang, X.; Liu, B.; Liu, J. Molecular Imprinting on Inorganic Nanozymes for Hundred-fold Enzyme Specificity. J. Am. Chem. Soc. 2017, 139, 5412–5419. [Google Scholar] [CrossRef]
- Wang, X.; Qin, L.; Zhou, M.; Lou, Z.; Wei, H. Nanozyme Sensor Arrays for Detecting Versatile Analytes from Small Molecules to Proteins and Cells. Anal. Chem. 2018, 90, 11696–11702. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, Y.; Zhang, X.; Liu, J. Molecularly imprinted nanozymes with faster catalytic activity and better specificity. Nanoscale 2019, 11, 4854–4863. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Liu, J.; Xing, H.; Zhou, H.; Wu, M. Fabrication and Application of Magnetically Catalytic Imprinting Nanozymes. Chem. Sel. 2020, 5, 8284–8288. [Google Scholar] [CrossRef]
- Fan, L.; Lou, D.; Wu, H.; Zhang, X.; Zhu, Y.; Gu, N.; Zhang, Y. A Novel AuNP-Based Glucose Oxidase Mimic with Enhanced Activity and Selectivity Constructed by Molecular Imprinting and O2-Containing Nanoemulsion Embedding. Adv. Mater. Interfaces 2018, 5, 1–9. [Google Scholar]
- Lin, F.; Doudou, L.; Haoan, W.; Yan, C.; Ning, G.; Yu, Z. Catalytic Gold-Platinum Alloy Nanoparticles and a Novel Glucose Oxidase Mimic with Enhanced Activity and Selectivity Constructed by Molecular Imprinting. Anal. Methods 2019, 11, 4586–4592. [Google Scholar] [CrossRef]
- Fan, C.; Liu, J.; Zhao, H.; Li, L.; Liu, M.; Gao, J.; Ma, L. Molecular imprinting on PtPd nanoflowers for selective recognition and determination of hydrogen peroxide and glucose. RSC Adv. 2019, 9, 33678–33683. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.; Zheng, H.; Zhang, C.; Qu, L.; Yu, L. A novel molecularly imprinted sensor based on PtCu bimetallic nanoparticle deposited on PSS functionalized graphene with peroxidase-like activity for selective determination of puerarin. Talanta 2020, 210, 120621. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, Q.; Liu, S.; Xiao, H.; Zhang, M.; Zhang, X. Surface molecular imprinting on g-C3N4 photooxidative nanozyme for improved colorimetric biosensing. Chin. Chem. Lett. 2019, 30, 2186–2190. [Google Scholar] [CrossRef]
- Li, S.; Ma, X.; Pang, C.; Wang, M.; Yin, G.; Xu, Z.; Li, J.; Luo, J. Biosensors and Bioelectronics Novel chloramphenicol sensor based on aggregation-induced electrochemiluminescence and nanozyme amplification. Biosens. Bioelectron. 2021, 176, 112944. [Google Scholar] [CrossRef]
- Bagheri, N.; Khataee, A.; Habibi, B.; Hassanzadeh, J. Mimetic Ag nanoparticle/Zn-based MOF nanocomposite (AgNPs @ ZnMOF) capped with molecularly imprinted polymer for the selective detection of patulin. Talanta 2018, 179, 710–718. [Google Scholar] [CrossRef]
- Yan, M.; Chen, G.; She, Y.; Ma, J.; Hong, S.; Shao, Y.; El-aty, A.M.A.; Wang, M.; Wang, S.; Wang, J. Sensitive and Simple Competitive Biomimetic Nanozyme-Linked Immunosorbent Assay for Colorimetric and Surface-Enhanced Raman Scattering Sensing of Triazophos. J. Agric. Food Chem 2019, 67, 9658–9666. [Google Scholar] [CrossRef]
- He, J.; Liu, G.; Jiang, M.; Xu, L.; Kong, F.; Xu, Z. Development of novel biomimetic enzyme- linked immunosorbent assay method based on Au@SiO2 nanozyme labelling for the detection of sulfadiazine. Food Agric. Immunol. 2020, 31, 341–351. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Zhang, L.; Xu, L.; Kong, F.; Xu, Z. Development of Nanozyme-Labeled Biomimetic Immunoassay for Determination of Sulfadiazine Residue in Foods. Adv. Polym. Technol. 2020, 2020, 1–8. [Google Scholar] [CrossRef]
- Wang, X.; Song, X.; Si, L.; Xu, L.; Xu, Z. A novel biomimetic immunoassay method based on Pt nanozyme and molecularly imprinted polymer for the detection of histamine in foods nanozyme and molecularly imprinted polymer for the detection of histamine in foods. Food Agric. Immunol. 2020, 31, 1036–1050. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, Y.; Zhang, X.; Liu, J. A Cell-Mimicking Structure Converting Analog Volume Changes to Digital Colorimetric Output with Molecular Selectivity. Nano Lett. 2017, 17, 7926–7931. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardoso, A.R.; Frasco, M.F.; Serrano, V.; Fortunato, E.; Sales, M.G.F. Molecular Imprinting on Nanozymes for Sensing Applications. Biosensors 2021, 11, 152. https://doi.org/10.3390/bios11050152
Cardoso AR, Frasco MF, Serrano V, Fortunato E, Sales MGF. Molecular Imprinting on Nanozymes for Sensing Applications. Biosensors. 2021; 11(5):152. https://doi.org/10.3390/bios11050152
Chicago/Turabian StyleCardoso, Ana R., Manuela F. Frasco, Verónica Serrano, Elvira Fortunato, and Maria Goreti Ferreira Sales. 2021. "Molecular Imprinting on Nanozymes for Sensing Applications" Biosensors 11, no. 5: 152. https://doi.org/10.3390/bios11050152
APA StyleCardoso, A. R., Frasco, M. F., Serrano, V., Fortunato, E., & Sales, M. G. F. (2021). Molecular Imprinting on Nanozymes for Sensing Applications. Biosensors, 11(5), 152. https://doi.org/10.3390/bios11050152