Electrochemical Detection of Electrolytes Using a Solid-State Ion-Selective Electrode of Single-Piece Type Membrane
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Electrode Fabrication
2.3. Apparatus
3. Results and Discussion
3.1. Optimization of Detection Electrodes
3.2. Characterization of Fabricated Electrodes
3.3. The Electrochemical Behavior of Cl−, Na+, and K+ Electrodes
3.4. Detection of Cl−, Na+, and K+
- (1)
- Cl− detection
- (2)
- Na+ detection
- (3)
- K+ detection
- (4)
- Interference detection
3.5. Performance Comparisons
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Berend, K.; van Hulsteijn, L.H.; Gans, R.O. Chloride: The queen of electrolytes? Eur. J. Intern. Med. 2012, 23, 203–211. [Google Scholar] [CrossRef]
- Cinti, S.; Fiore, L.; Massoud, R.; Cortese, C.; Moscone, D.; Palleschi, G.; Arduini, F. Low-cost and reagent-free paper-based device to detect chloride ions in serum and sweat. Talanta 2018, 179, 186–192. [Google Scholar] [CrossRef]
- Pohl, H.R.; Wheeler, J.S.; Murray, H.E. Sodium and potassium in health and disease. In Interrelations between Essential Metal Ions and Human Diseases; Sigel, A., Sigel, H., Sigel, R., Eds.; Springer: Dordrecht, The Netherlands, 2013; Volume 13, pp. 29–47. [Google Scholar]
- Yan, Y.; Shapiro, J.I. The physiological and clinical importance of sodium potassium ATPase in cardiovascular diseases. Curr. Opin. Pharmacol. 2016, 27, 43–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taghizadeh-Behbahani, M.; Hemmateenejad, B.; Shamsipur, M.; Tavassoli, A. A paper-based length of stain analytical device for naked eye (readout-free) detection of cystic fibrosis. Anal. Chim. Acta 2019, 1080, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Altunok, I.; Aksel, G.; Eroğlu, S.E. Correlation between sodium, potassium, hemoglobin, hematocrit, and glucose values as measured by a laboratory autoanalyzer and a blood gas analyzer. Am. J. Emerg. Med. 2019, 37, 1048–1053. [Google Scholar] [CrossRef]
- Budak, Y.U.; Huysal, K.; Polat, M. Use of a blood gas analyzer and a laboratory autoanalyzer in routine practice to measure electrolytes in intensive care unit patients. BMC Anesthesiol. 2012, 12, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibbons, M.; Klim, S.; Mantzaris, A.; Dillon, O.; Kelly, A. How closely do blood gas electrolytes and haemoglobin agree with serum values in adult emergency department patients: An observational study. Emerg. Med. Australas. 2018, 31, 241–246. [Google Scholar] [CrossRef]
- Uysal, E.; Acar, Y.A.; Kutur, A.; Cevik, E.; Salman, N.; Tezel, O. How reliable are electrolyte and metabolite results measured by a blood gas analyzer in the ED? Am. J. Emerg. Med. 2016, 34, 419–424. [Google Scholar] [CrossRef]
- Yi, H.; Shi, W.; Zhang, Y.; Zhu, X.; Yu, Y.; Wang, X.; Dai, Z.; Lin, Y. Comparison of electrolyte and glucose levels measured by a blood gas analyzer and an automated biochemistry analyzer among hospitalized patients. J. Clin. Lab. Anal. 2020, 34, e23291. [Google Scholar] [CrossRef]
- Gonzalez, A.L.; Waddell, L.S. Blood Gas Analyzers. Top. Companion Anim. Med. 2016, 31, 27–34. [Google Scholar] [CrossRef]
- Chen, J.; Gorman, M.; Oreilly, B.; Chen, Y. Analytical evaluation of the epoc® point-of-care blood analysis system in car-diopulmonary bypass patients. Clin. Biochem. 2016, 49, 708–712. [Google Scholar] [CrossRef]
- I-STAT POCT System. International Institute for Running Medicine. Available online: https://racemedicine.org/wp-content/uploads/2019/08/iSTAT_Presentation.pdf (accessed on 31 January 2021).
- Electrolyte Measuring System SPOTCHEMTM EL SE-1520|Operating Manual, ARKRAY, Inc. Available online: https://www.woodleyequipment.com/docs/el_operating_manual.pdf (accessed on 31 January 2021).
- Gao, W.; Emaminejad, S.; Nyein, H.Y.Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H.M.; Ota, H.; Shiraki, H.; Kiriya, D.; et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nat. Cell Biol. 2016, 529, 509–514. [Google Scholar] [CrossRef] [Green Version]
- Jin, J.-H.; Kim, J.; Lee, S.; Choi, S.; Park, C.; Min, N. A fully integrated paper-microfluidic electrochemical device for simul-taneous analysis of physiologic blood ions. Sensors 2018, 18, 104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parrilla, M.; Ortiz-Gómez, I.; Cánovas, R.; Salinas-Castillo, A.; Cuartero, M.; Crespo, G.A. Wearable Potentiometric Ion Patch for On-Body Electrolyte Monitoring in Sweat: Toward a Validation Strategy to Ensure Physiological Relevance. Anal. Chem. 2019, 91, 8644–8651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sempionatto, J.R.; Nakagawa, T.; Pavinatto, A.; Mensah, S.T.; Imani, S.; Mercier, P.; Wang, J. Eyeglasses based wireless electrolyte and metabolite sensor platform. Lab Chip 2017, 17, 1834–1842. [Google Scholar] [CrossRef]
- Braiek, M.; Djebbi, M.A.; Chateaux, J.-F.; Jaffrezic-Renault, N. A conductometric sensor for potassium detection in whole blood. Sens. Actuators B Chem. 2016, 235, 27–32. [Google Scholar] [CrossRef]
- Day, C.; Søpstad, S.; Ma, H.; Jiang, C.; Nathan, A.; Elliott, S.; Frankl, F.K.; Hutter, T. Impedance-based sensor for potassium ions. Anal. Chim. Acta 2018, 1034, 39–45. [Google Scholar] [CrossRef] [Green Version]
- Ahn, M.-S.; Ahmad, R.; Yoo, J.-Y.; Hahn, Y.-B. Synthesis of manganese oxide nanorods and its application for potassium ion sensing in water. J. Colloid Interface Sci. 2018, 516, 364–370. [Google Scholar] [CrossRef]
- Chen, Z.; Guo, J.; Zhang, S.; Chen, L. A one-step electrochemical sensor for rapid detection of potassium ion based on structure-switching aptamer. Sens. Actuators B Chem. 2013, 188, 1155–1157. [Google Scholar] [CrossRef]
- Cunha-Silva, H.; Arcos-Martinez, M.J. Development of a selective chloride sensing platform using a screen-printed plat-inum electrode. Talanta 2019, 195, 771–777. [Google Scholar] [CrossRef] [PubMed]
- Cuartero, M.; Crespo, G.A.; Bakker, E. Ionophore-Based Voltammetric Ion Activity Sensing with Thin Layer Membranes. Anal. Chem. 2016, 88, 1654–1660. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, C.; Zhang, Z.; Ye, J.; Fang, P. A novel carbon paste electrode for sensitive, selective and rapid electro-chemical determination of chloride ion based on three-dimensional graphene. Sens. Actuators B Chem. 2019, 299, 126951. [Google Scholar] [CrossRef]
- Machini, W.B.; Martin, C.S.; Martinez, M.T.; Teixeira, S.R.; Gomes, H.M.; Teixeira, M.F. Development of an electro-chemical sensor based on nanostructured hausmannite-type manganese oxide for detection of sodium ions. Sens. Actuators B Chem. 2013, 181, 674–680. [Google Scholar] [CrossRef]
- Han, T.; Mattinen, U.; Bobacka, J. Improving the Sensitivity of Solid-Contact Ion-Selective Electrodes by Using Coulometric Signal Transduction. ACS Sens. 2019, 4, 900–906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kondratyeva, Y.O.; Tolstopjatova, E.G.; Kirsanov, D.O.; Mikhelson, K.N. Chronoamperometric and coulometric analysis with ionophore-based ion-selective electrodes: A modified theory and the potassium ion assay in serum samples. Sens. Actuators B Chem. 2020, 310, 127894. [Google Scholar] [CrossRef]
- Hu, J.; Stein, A.; Bühlmann, P. Rational design of all-solid-state ion-selective electrodes and reference electrodes. TrAC Trends Anal. Chem. 2016, 76, 102–114. [Google Scholar] [CrossRef]
- El-Rahman, M.K.A.; Zaazaa, H.E.; Abbas, S.S.; El-Zeany, B.; El-Sherif, Z.A.; El-Haddad, D.A. A comparative study of liquid and solid inner contact roxatidine acetate ion-selective electrode membranes. Chin. Chem. Lett. 2015, 26, 714–720. [Google Scholar] [CrossRef]
- Van De Velde, L.; D’Angremont, E.; Olthuis, W. Solid contact potassium selective electrodes for biomedical applications—A review. Talanta 2016, 160, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.; He, N.; Kumar, N.; Wang, N.; Bobacka, J.; Ivaska, A. Electrosynthesized polypyrrole/zeolite composites as solid contact in potassium ion-selective electrode. Electrochim. Acta 2017, 228, 66–75. [Google Scholar] [CrossRef]
- Xu, K.; Cuartero, M.; Crespo, G.A. Lowering the limit of detection of ion-selective membranes backside contacted with a film of poly(3-octylthiophene). Sens. Actuators B Chem. 2019, 297, 126781. [Google Scholar] [CrossRef]
- Emaminejad, S.; Gao, W.; Wu, E.; Davies, Z.A.; Nyein, H.Y.Y.; Challa, S.; Ryan, S.P.; Fahad, H.M.; Chen, K.; Shahpar, Z.; et al. Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose moni-toring using a fully integrated wearable platform. Proc. Natl. Acad. Sci. USA 2017, 114, 4625–4630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Liu, Y.; Meng, Z.; Qin, Y.; Jiang, D.; Xi, K.; Wang, P. Thiol-functionalized reduced graphene oxide as self-assembled ion-to-electron transducer for durable solid-contact ion-selective electrodes. Talanta 2020, 208, 120374. [Google Scholar] [CrossRef] [PubMed]
- Paczosa-Bator, B.; Cabaj, L.; Pięk, M.; Piech, R.; Kubiak, W.W. Carbon-Supported Platinum Nanoparticle Solid-State Ion Selective Electrodes for the Determination of Potassium. Anal. Lett. 2015, 48, 2773–2785. [Google Scholar] [CrossRef]
- Criscuolo, F.; Taurino, I.; Stradolini, F.; Carrara, S.; De Micheli, G. Highly-stable Li+ ion-selective electrodes based on noble metal nanostructured layers as solid-contacts. Anal. Chim. Acta 2018, 1027, 22–32. [Google Scholar] [CrossRef]
- Xu, J.; Li, F.; Tian, C.; Song, Z.; An, Q.; Wang, J.; Han, D.; Niu, L. Tubular Au-TTF solid contact layer synthesized in a mi-crofluidic device improving electrochemical behaviors of paper-based potassium potentiometric sensors. Electrochim. Acta 2019, 322, 134683. [Google Scholar] [CrossRef]
- Paczosa-Bator, B.; Pięk, M.; Piech, R. Application of Nanostructured TCNQ to Potentiometric Ion-Selective K+and Na+Electrodes. Anal. Chem. 2015, 87, 1718–1725. [Google Scholar] [CrossRef]
- Mohammadtaheri, M.; Ramanathan, R.; Bansal, V. Emerging applications of metal-TCNQ based organic semiconductor charge transfer complexes for catalysis. Catal. Today 2016, 278, 319–329. [Google Scholar] [CrossRef]
- Yuan, B.; Xu, C.; Zhang, R.; Lv, D.; Li, S.; Zhang, D.; Liu, L.; Fernandez, C. Glassy carbon electrode modified with 7,7,8,8-tetracyanoquinodimethane and graphene oxide triggered a synergistic effect: Low-potential amperometric detection of reduced glutathione. Biosens. Bioelectron. 2017, 96, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suherman, A.L.; Lin, M.; Rasche, B.; Compton, R.G. Introducing insertive stripping voltammetry: Electrochemical deter-mination of sodium ions using an iron (III) phosphate-modified electrode. ACS Sens. 2020, 5, 519–526. [Google Scholar] [CrossRef]
- Kumbhat, S.; Singh, U. A potassium-selective electrochemical sensor based on crown-ether functionalized self assembled monolayer. J. Electroanal. Chem. 2018, 809, 31–35. [Google Scholar] [CrossRef]
- Chai, H.; Ma, X.; Meng, F.; Mei, Q.; Tang, Y.; Miao, P. Electrochemical aptasensor based on a potassium ion-triggered DNA conformation transition and self-assembly on an electrode. New J. Chem. 2019, 43, 7928–7931. [Google Scholar] [CrossRef]
Reagents | Target Ion | |
---|---|---|
K+ | Na+ | |
Potassium ionophore I | 14 mg | 0 |
4-tert-Butylcalix[4]arenetetraacetic acid tetraethyl ester | 0 | 9.9 mg |
Potassium tetrakis (4-chlorophenyl)borate | 3 mg | 2.5 mg |
Polyvinyl chloride (high-molecular-weight) | 328 mg | 329 mg |
2-Nitrophenyl octyl ether | 0.63 mL | 0.63 mL |
Ions | Electrodes | Sensitivity (μA·mM−1) | Linear Range (mM) | RSD (%) | Reference |
---|---|---|---|---|---|
Cl− | Ag/SPE | 1.98 | 10–200 | ˂10 | [2] |
AgGNP/SPE | 0.0000193 | 0.0005–0.09 | 2.22 | [22] | |
SPPtE | −24.147 | 0.76–150 | 5.8 | [23] | |
3D-GN/CPE | 0.044 | 0.5–1000 | - | [25] | |
This study | 19.1 | 25–200 | 0.79 | ||
Na+ | Mn3O4/CPE | 19.5 | 0.02–0.2 | - | [26] |
FePO4/GCE | 0.015 | 25–250 | - | [42] | |
This study | 0.126 | 50–200 | 1.65 | ||
K+ | MnO2 nanorods/GCE | 0.0004 | 0.002–0.09 | - | [21] |
4-aminobenzo-18-Crown-6 ether/11-Mercaptoundecanoic acid/Au | - | 0.5–7 | - | [43] | |
DNA/Au | 113 | 10−7–100 | ˂5 | [44] | |
This study | 0.56–7.98 | 2–10 | 0.47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.-D.; Wang, W.-J.; Wang, G.-J. Electrochemical Detection of Electrolytes Using a Solid-State Ion-Selective Electrode of Single-Piece Type Membrane. Biosensors 2021, 11, 109. https://doi.org/10.3390/bios11040109
Chen L-D, Wang W-J, Wang G-J. Electrochemical Detection of Electrolytes Using a Solid-State Ion-Selective Electrode of Single-Piece Type Membrane. Biosensors. 2021; 11(4):109. https://doi.org/10.3390/bios11040109
Chicago/Turabian StyleChen, Li-Da, Wei-Jhen Wang, and Gou-Jen Wang. 2021. "Electrochemical Detection of Electrolytes Using a Solid-State Ion-Selective Electrode of Single-Piece Type Membrane" Biosensors 11, no. 4: 109. https://doi.org/10.3390/bios11040109
APA StyleChen, L. -D., Wang, W. -J., & Wang, G. -J. (2021). Electrochemical Detection of Electrolytes Using a Solid-State Ion-Selective Electrode of Single-Piece Type Membrane. Biosensors, 11(4), 109. https://doi.org/10.3390/bios11040109