Enzymatic Electroanalytical Biosensor Based on Maramiellus colocasiae Fungus for Detection of Phytomarkers in Infusions and Green Tea Kombucha
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Reagents
2.2. Origin and Maintenance M. colocasiae
2.3. Enzymatic Production and Growth
2.3.1. Solid Culture Medium
2.3.2. Liquid Culture Medium
2.3.3. Liquid Culture Medium with Salt Addition
2.4. Enzymatic Activity Determination
2.4.1. Total Polyphenoloxidase Determination (TPO)
2.4.2. Laccase Activity Determination
2.4.3. Total Peroxidase Activity Determination
2.5. Development of M. colocasiae-Based Enzymatic Biosensor
2.6. Electroanalytical Determination
2.7. Biosensor Voltametric Analysis
2.8. Biosensor Determination in Green Tea Samples
2.9. Chromatographic Conditions
2.10. Total Phenols Spectrophotometric Determination
3. Results and Discussion
3.1. Biosensor Production
3.2. Biosensor Performance
3.3. Green Tea Sample Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Di Nardo, F.; Anfossi, L. Commercial biosensors for detection of food additives, contaminants, and pathogens. In Commercial Biosensors and Their Applications: Clinical, Food, and Beyond; Elsevier Inc.: Amsterdam, The Netherlands, 2020. [Google Scholar] [CrossRef]
- Vasilescu, A.; Polonschii, C.; Titoiu, A.M.; Mishra, R.; Peteu, S.; Marty, J.-L. Bioassays and biosensors for food analysis. In Commercial Biosensors and Their Applications: Clinical, Food, and Beyond; Elsevier Inc.: Amsterdam, The Netherlands, 2020. [Google Scholar] [CrossRef]
- IUPAC. Biosensor, Glossário Para Químicos Termos Usados Em Biotecnol. (Recomendações Da IUPAC 1992). 1992, 148, 2014. Available online: https://goldbook.iupac.org/terms/view/B00663 (accessed on 15 January 2021). [CrossRef]
- Das, P.R.; Kim, Y.; Hong, S.J.; Eun, J.B. Profiling of volatile and non-phenolic metabolites—Amino acids, organic acids, and sugars of green tea extracts obtained by different extraction techniques. Food Chem. 2019, 296, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Batista, É.A.; Garcia, L.F.; de Albuequerque, A.J.C.; Ballaminut, N.; Scalize, P.S.; Gil, E.S. Application of a voltammetric enzymatic biosensor based on crude extract of marasmiellus colocasiae for the detection of phenolic compounds in drinking water. Rev. Ambiente Agua 2020, 15, 1–10. [Google Scholar] [CrossRef]
- Dincer, C.; Bruch, R.; Costa-Rama, E.; Fernández-Abedul, M.T.; Merkoçi, A.; Manz, A.; Urban, G.A.; Güder, F. Disposable Sensors in Diagnostics, Food, and Environmental Monitoring. Adv. Mater. 2019, 31. [Google Scholar] [CrossRef]
- Bahadir, E.B.; Sezgintürk, M.K. Applications of commercial biosensors in clinical, food, environmental, and biothreat/biowarfare analyses. Anal. Biochem. 2015, 478, 107–120. [Google Scholar] [CrossRef]
- Della Pelle, F.; Compagnone, D. Nanomaterial-based sensing and biosensing of phenolic compounds and related antioxidant capacity in food. Sensors 2018, 18, 462. [Google Scholar] [CrossRef] [Green Version]
- Dhadge, V.L.; Changmai, M.; Purkait, M.K. Purification of catechins from Camellia sinensis using membrane cell. Food Bioprod. Process. 2019, 117, 203–212. [Google Scholar] [CrossRef]
- Mizuta, A.G.; de Menezes, J.L.; Dutra, T.V.; Ferreira, T.V.; Castro, J.C.; da Silva, C.A.J.; Pilau, E.J.; Machinski Junior, M.; de Abreu Filho, B.A. Evaluation of antimicrobial activity of green tea kombucha at two fermentation time points against Alicyclobacillus spp. LWT 2020, 130, 109641. [Google Scholar] [CrossRef]
- Ahmed, R.F.; Hikal, M.S.; Abou-Taleb, K.A. Biological, chemical and antioxidant activities of different types Kombucha. Ann. Agric. Sci. 2020, 65, 35–41. [Google Scholar] [CrossRef]
- Heck, C.I.; De Mejia, E.G. Yerba mate tea (Ilex paraguariensis): A comprehensive review on chemistry, health implications, and technological considerations. J. Food Sci. 2007, 72. [Google Scholar] [CrossRef]
- Bastos, D.H.M.; Saldanha, L.A.; Catharino, R.R.; Sawaya, A.C.; Cunha, I.B.S.; Carvalho, P.O.; Eberlin, M.N. Phenolic Antioxidants Identified by ESI-MS from Yerba Maté (Ilex, paraguariensis) and green tea (Camelia sinensis) extracts. Molecules 2007, 12, 423–432. [Google Scholar] [CrossRef]
- Castrovilli, M.C.; Bolognesi, P.; Chiarinelli, J.; Avaldi, L.; Calandra, P.; Antonacci, A.; Scognamiglio, V. The convergence of forefront technologies in the design of laccase-based biosensors—An update. TrAC Trends Anal. Chem. 2019, 119, 115615. [Google Scholar] [CrossRef]
- Kavetskyy, T.; Smutok, O.; Demkiv, O.; Kasetaite, S.; Ostrauskaite, J. Dependence of operational parameters of laccase-based biosensors on structure of photocross-linked polymers as holding matrixes. Eur. Polym. J. 2019, 115, 391–398. [Google Scholar] [CrossRef]
- Zerva, A.; Simić, S.; Topakas, E.; Nikodinovic-Runic, J. Applications of microbial laccases: Patent review of the past decade (2009–2019). Catalysts 2019, 9, 1023. [Google Scholar] [CrossRef] [Green Version]
- Colmati, F.; Sgobbi, L.F.; Teixeira, G.F.; Vilela, R.S.; Martins, T.D.; Figueiredo, G.O. Electrochemical Biosensors Containing Pure Enzymes or Crude Extracts as Enzyme Sources for Pesticides and Phenolic Compounds with Pharmacological Property Detection and Quantification. Biosens. Environ. Monit. 2019. [Google Scholar] [CrossRef] [Green Version]
- Simón-herrero, C.; Naghdi, M.; Taheran, M.; Brar, S.K.; Romero, A.; Valverde, J.L.; Avalos, A.; Sánchez-silva, L. Immobilized laccase on polyimide aerogels for removal of carbamazepine. J. Hazard. Mater. 2019, 376, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Cantele, C.; Vilasboa, J.; Echer, E.; Fontana, R.C.; José, A.; Dillon, P. Synthetic dye decolorization by Marasmiellus palmivorus: Simultaneous cultivation and high laccase-crude broth treatment. Biocatal. Agric. Biotechnol. 2017, 12, 314–322. [Google Scholar] [CrossRef]
- Vidigal, S.M.; Lopes, I.P.d.C.; Puiatti, M.; Sediyama, M.A.N.; Ribeiro, M.R.d.F. Yield performance of taro (Colocasia esculenta L.) cultivated with topdressing nitrogen rates at the Zona da Mata region of Minas Gerais. Rev. Ceres 2016, 63, 887–892. [Google Scholar] [CrossRef] [Green Version]
- Zeraik, A.E.; Sant, F.; de Souza, A.; de Química, D.; Federal, U.; Carlos, D.S.; Sp, S.C.; Leite, O.D. Desenvolvimento de um spot test para o monitoramento da atividade da peroxidase em um procedimento de purificação. Quim. Nova 2008, 31, 731–734. [Google Scholar] [CrossRef] [Green Version]
- Machado, K.M.G.; Matheus, D.R. Biodegradation of Remazol brilliant blue R by ligninolytic enzymatic complex produced by Pleurotus ostreatus. Braz. J. Microbiol. 2006, 37, 468–473. [Google Scholar] [CrossRef] [Green Version]
- Eggert, C.; Temp, U.; Eriksson, K.E.L. The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus: Purification and characterization of the laccase. Appl. Environ. Microbiol. 1996, 62, 1151–1158. [Google Scholar] [CrossRef] [Green Version]
- Brasil ANVISA. RDC No166, De 24 De Julho De 2017; Agência Nacional Vigilância Sanitária: Brasilia, Brasil, 2017; pp. 1–12.
- Martins, A.R. Representação do efeito de inibição enzimática reversível para o modelo cinético de Michaelis-Menten no estado transiente. Braz. J. Food Technol. 2015, 18, 112–120. [Google Scholar] [CrossRef] [Green Version]
- Mudenuti, N.V.d.R.; de Camargo, A.C.; Shahidi, F.; Madeira, T.B.; Hirooka, E.Y.; Grossmann, M.V.E. Soluble and insoluble-bound fractions of phenolics and alkaloids and their antioxidant activities in raw and traditional chocolate: A comparative study. J. Funct. Foods 2018, 50, 164–171. [Google Scholar] [CrossRef]
- Liu, X.; Li, T.; Wu, S.; Ma, H.; Yin, Y. Structural characterization and comparison of enzymatic and deep eutectic solvents isolated lignin from various green processes: Toward lignin valorization. Bioresour. Technol. 2020, 310, 123460. [Google Scholar] [CrossRef] [PubMed]
- Cuevas-Valenzuela, J.; González-Rojas, Á.; Wisniak, J.; Apelblat, A.; Pérez-Correa, J.R. Solubility of (+)-catechin in water and water-ethanol mixtures within the temperature range 277.6-331.2K: Fundamental data to design polyphenol extraction processes. Fluid Phase Equilib. 2015, 382, 279–285. [Google Scholar] [CrossRef]
- Silva, A.L.; Da Silva, Q.G.; Kubota, L.T.; Tanaka, A.T. Determinação de catequinas por eletrodo de carbono impresso modificado com nanotubo de carbono funcionalizado. Aclética Quím. 2015, 40, 52–61. [Google Scholar] [CrossRef] [Green Version]
- Sato, H.; Fujimori, M.; Suzuki, H.; Kadota, K.; Shirakawa, Y.; Onoue, S.; Tozuka, Y. Absorption improvement of tranilast by forming highly soluble nano-size composite structures associated with α-glucosyl rutin via spray drying. Eur. J. Pharm. Biopharm. 2015, 92, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Han, Q.Y.; Liu, F.; Li, M.; Wang, K.L.; Ni, Y.Y. Comparison of biochemical properties of membrane-bound and soluble polyphenol oxidase from Granny Smith apple (Malus × domestica Borkh.). Food Chem. 2019, 289, 657–663. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.A.; Swamy, B.E.K.; Ganesh, P.S.; Rani, T.S.; Reddy, G.V. Voltammetric determination of catechol and hydroquinone at poly(niacinamide) modified glassy carbon electrode. J. Electroanal. Chem. 2017, 799, 505–511. [Google Scholar] [CrossRef]
- Song, Y.; Zhao, M.; Wang, X.; Qu, H.; Liu, Y.; Chen, S. Simultaneous electrochemical determination of catechol and hydroquinone in seawater using Co3O4/MWCNTs/GCE. Mater. Chem. Phys. 2019, 234, 217–223. [Google Scholar] [CrossRef]
- Zerva, A.; Koutroufini, E.; Kostopoulou, I.; Detsi, A.; Topakas, E. A novel thermophilic laccase-like multicopper oxidase from Thermothelomyces thermophila and its application in the oxidative cyclization of 2′,3,4-trihydroxychalcone. New Biotechnol. 2019, 49, 10–18. [Google Scholar] [CrossRef] [PubMed]
- El-badawy, F.M.; Mohamed, M.A.; El-Desoky, H.S. Fabrication of an electrochemical sensor based on manganese oxide nanoparticles supported on reduced graphene oxide for determination of subnanomolar level of anti-hepatitis C daclatasvir in the formulation and biological models. Microchem. J. 2020, 104914. [Google Scholar] [CrossRef]
- Othman, A.M.; Wollenberger, U. Amperometric biosensor based on coupling aminated laccase to functionalized carbon nanotubes for phenolics detection. Int. J. Biol. Macromol. 2020, 153, 855–864. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.N.; Trzcinski, A.P.; Asghar, H.M.A.; Sattar, H.; Brown, N.W.; Roberts, E.P.L. Disinfection performance of adsorption using graphite adsorbent coupled with electrochemical regeneration for various microorganisms present in water. J. Ind. Eng. Chem. 2016, 44, 216–225. [Google Scholar] [CrossRef]
- Kolomytseva, M.; Myasoedova, N.; Samoilova, A.; Podieiablonskaia, E.; Chernykh, A.; Classen, T.; Pietruszka, J.; Golovleva, L. Rapid identification of fungal laccases/oxidases with different pH-optimum. Process Biochem. 2017, 62, 174–183. [Google Scholar] [CrossRef]
- Mollania, N.; Heidari, M.; Khajeh, K. Catalytic activation of Bacillus laccase after temperature treatment: Structural & biochemical characterization. Int. J. Biol. Macromol. 2018, 109, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Soussou, A.; Gammoudi, I.; Moroté, F.; Mathelié-Guinlet, M.; Kalboussi, A.; Baccar, Z.M.; Cohen-Bouhacina, T.; Grauby-Heywang, C. Amperometric Polyphenol Biosensor Based on Tyrosinase Immobilization on CoAl Layered Double Hydroxide Thins Films. Procedia Eng. 2016, 168, 1131–1134. [Google Scholar] [CrossRef]
- Sethuraman, V.; Muthuraja, P.; Manisankar, P. Fabrication of an efficient polyaniline-polyphenol oxidase based biosensor for catechol. Anal. Methods 2013, 5, 6523–6530. [Google Scholar] [CrossRef]
- Andrei, V.; Sharpe, E.; Vasilescu, A.; Andreescu, S. A single use electrochemical sensor based on biomimetic nanoceria for the detection of wine antioxidants. Talanta 2016, 156–157, 112–118. [Google Scholar] [CrossRef] [Green Version]
- Masoum, S.; Behpour, M.; Azimi, F.; Motaghedifard, M.H. Potentiality of chemometric approaches for the determination of (+)-catechin in green tea leaves at the surface of multiwalled carbon nanotube paste electrode. Sens. Actuators B Chem. 2014, 193, 582–591. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A.J. Colorimetry to total phenolics with phosphomolybdic acid reagents. Am. J. Enol. Vinic. 1965, 16, 144–158. Available online: http://garfield.library.upenn.edu/classics1985/A1985AUG6900001.pdf (accessed on 15 January 2021).
Enzymatic Extract Content | ||||
---|---|---|---|---|
Culture Medium | 25 µL | 50 µL | 100 µL | 200 µL |
MEA * | CP-25MEA | CP-50MEA | CP-100MEA | CP-200MEA |
ME ** | CP-25ME | CP-50ME | CP-100ME | CP-200ME |
MES *** | CP-25MES | CP-50MES | CP-100MES | CP-200MES |
Concentration (%) | Concentration (µM) | Average (µM) ± Standard Deviation | Relative Standard Deviation (%) |
---|---|---|---|
80 | 24.4 | 23.12 ± 1.94 | 8.38% |
100 | 30.5 | 30.31 ± 2.32 | 7.64% |
120 | 36.6 | 35.64 ± 2.73 | 7.66% |
Enzyme Source | Phenolic Targets | Method | Linear Range (µmol L−1) | Limit of Detection (µmol L−1) | Reference |
---|---|---|---|---|---|
M.colocasiae | Catechin | DPV | 1–60 | 0.12 | This work |
Gallic acid | 3–60 | 0.14 | |||
M.colocasiae | Catechol | DPV | 50–300 | 0.17 | [5] |
Agaricus bisporus | Polyphenols from green tea | CV and amperometric | 0–2.4 | 0.3 | [40] |
Agaricus bisporus | polyphenols | Amperometric | 0.5–101 | 0.15 | [41] |
Biomimetic | Catechin | CV and amperometric | 2–20 | 1.5 | [42] |
Gallic acid | 50–200 | 15.3 | |||
Gallic acid | Catechin | DPV | 0.1–2.69 | 0.017 | [43] |
Samples | Epc (V) (n = 3) | Ipc (µA) ± Standard Deviation (n = 3) | Catechin Equivalent (µM) ± Standard Deviation (n = 3) | Gallic acid Equivalent (µM) ± Standard Deviation (n = 3) | Folin-Ciocalteu Gallic Acid Equivalent (µM) ± Standard Deviation (n = 3) |
---|---|---|---|---|---|
A | 0.26 | −1.6 ± 0.23 | - | 37.09 ± 3.8 | 36.74 ± 4.19 |
B | 0.25 | −0.62 ± 0.12 | - | 13.55 ± 2.87 | 36.24 ± 6.40 |
C | 0.26 | −1.24 ± 0.10 | - | 28.66 ± 2.47 | 23.24 ± 4.61 |
D | 0.34 | −2.54 ± 0.23 | 4.44 ± 1.5 | - | 14.89 ± 2.35 |
E | 0.34 | −7.82 ± 0.40 | 39.2 ± 2.62 | - | 22.47 ± 1.02 |
F | 0.33 | −2.90 ± 0.54 | 6.91 ± 3.59 | - | 23.27 ± 2.70 |
G | 0.33 | −2.54 ± 0.23 | 1.59 ± 0.24 | - | 41.43 ± 3.4 |
H | 0.33 | −7.81 ± 0.39 | 2.03 ± 0.32 | - | 30.69 ± 4.17 |
I | 0.32 | −2.89 ± 0.54 | 3.65 ± 0.47 | - | 21.54 ± 1.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batista, É.A.; Silva, G.N.M.; Sgobbi, L.F.; Machado, F.B.; Macedo, I.Y.; Moreno, E.K.; Neto, J.R.; Scalize, P.S.; Gil, E.S. Enzymatic Electroanalytical Biosensor Based on Maramiellus colocasiae Fungus for Detection of Phytomarkers in Infusions and Green Tea Kombucha. Biosensors 2021, 11, 91. https://doi.org/10.3390/bios11030091
Batista ÉA, Silva GNM, Sgobbi LF, Machado FB, Macedo IY, Moreno EK, Neto JR, Scalize PS, Gil ES. Enzymatic Electroanalytical Biosensor Based on Maramiellus colocasiae Fungus for Detection of Phytomarkers in Infusions and Green Tea Kombucha. Biosensors. 2021; 11(3):91. https://doi.org/10.3390/bios11030091
Chicago/Turabian StyleBatista, Érica A., Giovanna N. M. Silva, Livia F. Sgobbi, Fabio B. Machado, Isaac Y. Macedo, Emily K. Moreno, Jerônimo R. Neto, Paulo S. Scalize, and Eric S. Gil. 2021. "Enzymatic Electroanalytical Biosensor Based on Maramiellus colocasiae Fungus for Detection of Phytomarkers in Infusions and Green Tea Kombucha" Biosensors 11, no. 3: 91. https://doi.org/10.3390/bios11030091
APA StyleBatista, É. A., Silva, G. N. M., Sgobbi, L. F., Machado, F. B., Macedo, I. Y., Moreno, E. K., Neto, J. R., Scalize, P. S., & Gil, E. S. (2021). Enzymatic Electroanalytical Biosensor Based on Maramiellus colocasiae Fungus for Detection of Phytomarkers in Infusions and Green Tea Kombucha. Biosensors, 11(3), 91. https://doi.org/10.3390/bios11030091