A Simple Distance Paper-Based Analytical Device for the Screening of Lead in Food Matrices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Design and Fabrication of the dPAD
2.3. Modification of the Membrane Surface by PEI
2.4. The Assay Principle
2.5. Real Sample Analysis
3. Results
3.1. Distance-Based Detection Method
3.2. Effect of pH
3.3. SEM Analysis
3.4. Measurement of Pb on the dPAD
3.5. Interferences with Other Metal Ions
3.6. Proof of Concept for Analysis of Pb on the dPAD
3.7. Real Food Sample Analysis
4. Discussion
4.1. CA–PEI Complexation Using the dPAD Approach
4.2. Detection of Pb in Food Samples
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tu, Y.; Zhao, Y. Inorganic Elements in Preserved Egg; Academic Press: Cambridge, MA, USA, 2017; pp. 427–434. [Google Scholar] [CrossRef]
- Zhao, Y.; Tu, Y.; Xu, M.; Li, J.; Du, H. Physicochemical and nutritional characteristics of preserved duck egg white. Poul. Sci. J. 2014, 93, 3130–3137. [Google Scholar] [CrossRef]
- Xu, L.; Yan, S.-M.; Cai, C.-B.; Yu, X.-P. Nondestructive Discrimination of Lead (Pb) in Preserved Eggs (Pidan) by Near-Infrared Spectroscopy and Chemometrics. J. Spectrosc. 2014, 2014, 253143. [Google Scholar] [CrossRef] [Green Version]
- Mishra, K.P. Lead exposure and its impact on immune system: A review. Toxicol. Vitro 2009, 23, 969–972. [Google Scholar] [CrossRef] [PubMed]
- Notification of the Ministry of Public Health (No. 236) B.E. 2544 (2001). Available online: http://food.fda.moph.go.th/law/data/announ_moph/V.English/No.236-44%20Alkaline-preserved%20Eggs.pdf (accessed on 29 August 2019).
- Tokalıoğlu, Ş. Determination of trace elements in commonly consumed medicinal herbs by ICP-MS and multivariate analysis. Food Chem. 2012, 134, 2504–2508. [Google Scholar] [CrossRef]
- Mazumdar, D.; Liu, J.; Lu, G.; Zhou, J.; Lu, Y. Easy-to-use dipstick tests for detection of lead in paints using non-cross-linked gold nanoparticle-DNAzyme conjugates. Chem. Commun. 2010, 46, 1416–1418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, R.; Zhou, X.; Shi, H. Triple functional DNA–protein conjugates: Signal probes for Pb2+ using evanescent wave-induced emission. Biosens. Bioelectron. 2015, 74, 78–84. [Google Scholar] [CrossRef]
- Zhu, Q.; Liu, L.; Xing, Y.; Zhou, X. Duplex functional G-quadruplex/NMM fluorescent probe for label-free detection of lead(II) and mercury(II) ions. J. Hazard. Mater. 2018, 355, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Hung, Y.-L.; Hsiung, T.-M.; Chen, Y.-Y.; Huang, Y.-F.; Huang, C.-C. Colorimetric Detection of Heavy Metal Ions Using Label-Free Gold Nanoparticles and Alkanethiols. J. Phys. Chem. C 2010, 114, 16329–16334. [Google Scholar] [CrossRef]
- Memon, A.G.; Zhou, X.; Xing, Y.; Wang, R.; Liu, L.; Khan, M.; He, M. Label-free colorimetric nanosensor with improved sensitivity for Pb2 + in water by using a truncated 8–17 DNAzyme. Front. Environ. Sci. Eng. 2019, 13, 12. [Google Scholar] [CrossRef]
- Shrivas, K.; Sahu, B.; Deb, M.K.; Thakur, S.S.; Sahu, S.; Kurrey, R.; Kant, T.; Patle, T.K.; Jangde, R. Colorimetric and paper-based detection of lead using PVA capped silver nanoparticles: Experimental and theoretical approach. Microchem. J. 2019, 150, 104156. [Google Scholar] [CrossRef]
- Cai, L.; Ouyang, Z.; Song, J.; Yang, L. Indicator-Free Argentometric Titration for Distance-Based Detection of Chloride Using Microfluidic Paper-Based Analytical Devices. ACS Omega 2020, 5, 18935–18940. [Google Scholar] [CrossRef]
- Cate, D.M.; Adkins, J.A.; Mettakoonpitak, J.; Henry, C.S. Recent Developments in Paper-Based Microfluidic Devices. Anal. Chem. 2015, 87, 19–41. [Google Scholar] [CrossRef]
- Cate, D.M.; Dungchai, W.; Cunningham, J.C.; Volckens, J.; Henry, C.S. Simple, distance-based measurement for paper analytical devices. Lab Chip 2013, 13, 2397–2404. [Google Scholar] [CrossRef] [PubMed]
- Gerold, C.T.; Bakker, E.; Henry, C.S. Selective Distance-Based K+ Quantification on Paper-Based Microfluidics. Anal. Chem. 2018, 90, 4894–4900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalish, B.; Zhang, J.; Edema, H.; Wong, J.; Roper, J.; Beaudette, C.; Echodu, R.; Tsutsui, H. Distance and Microsphere Aggregation-Based DNA Detection in a Paper-Based Microfluidic Device. SLAS Technol. 2019, 25, 247263031988768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamada, K.; Citterio, D.; Henry, C.S. “Dip-and-read” paper-based analytical devices using distance-based detection with color screening. Lab Chip 2018, 18, 1485–1493. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zhao, L.; Zhang, H.; Shen, X.; Zhu, Y.; Chen, H. Novel Wax Valves To Improve Distance-Based Analyte Detection in Paper Microfluidics. Anal. Chem. 2019, 91, 5169–5175. [Google Scholar] [CrossRef]
- Qamar, A.Z.; Parker, G.; Kinsel, G.R.; Shamsi, M.H. Evolution of wax-on-plastic microfluidics for sub-microliter flow dynamics and its application in distance-based assay. Microfluid. Nanofluid. 2019, 23, 81. [Google Scholar] [CrossRef]
- Nilghaz, A.; Ballerini, D.R.; Fang, X.-Y.; Shen, W. Semiquantitative analysis on microfluidic thread-based analytical devices by ruler. Sens. Actuators B Chem. 2014, 191, 586–594. [Google Scholar] [CrossRef]
- Xu, C.; Huang, W.; Zhu, S.; Li, Z.; Cai, L.; Zhong, M. Distance readout of Al content with naked eyes on a cotton thread. AIP Adv. 2018, 8, 105016. [Google Scholar] [CrossRef] [Green Version]
- Phoonsawat, K.; Dungchai, W. Highly sensitive, selective and naked-eye detection of bromide and bromate using distance–based paper analytical device. Talanta 2021, 221, 121590. [Google Scholar] [CrossRef]
- Quinn, C.W.; Cate, D.M.; Miller-Lionberg, D.D.; Reilly, T.; Volckens, J.; Henry, C.S. Solid-Phase Extraction Coupled to a Paper-Based Technique for Trace Copper Detection in Drinking Water. Environ. Sci. Technol. 2018, 52, 3567–3573. [Google Scholar] [CrossRef] [PubMed]
- Ninwong, B.; Sangkaew, P.; Hapa, P.; Ratnarathorn, N.; Menger, R.F.; Henry, C.S.; Dungchai, W. Sensitive distance-based paper-based quantification of mercury ions using carbon nanodots and heating-based preconcentration. RSC Adv. 2020, 10, 9884–9893. [Google Scholar] [CrossRef] [Green Version]
- Taghizadeh-Behbahani, M.; Hemmateenejad, B.; Shamsipur, M.; Tavassoli, A. A paper-based length of stain analytical device for naked eye (readout-free) detection of cystic fibrosis. Anal. Chim. Acta 2019, 1080, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Soda, Y.; Citterio, D.; Bakker, E. Equipment-Free Detection of K+ on Microfluidic Paper-Based Analytical Devices Based on Exhaustive Replacement with Ionic Dye in Ion-selective Capillary Sensors. ACS Sens. 2019, 4, 670–677. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Gao, C.; Shen, L.; Qu, C.; Zhang, X.; Yang, L.; Feng, Q.; Tang, R. Alginate Hydrogel-Embedded Capillary Sensor for Quantitative Immunoassay with Naked Eye. Sensors 2020, 20, 4831. [Google Scholar] [CrossRef]
- Khachornsakkul, K.; Dungchai, W. Rapid Distance-Based Cardiac Troponin Quantification Using Paper Analytical Devices for the Screening and the Follow-Up of Acute Myocardial Infarction, Using a Single Drop of Human Whole Blood. ACS Sens. 2021. [Google Scholar] [CrossRef]
- Cai, L.; Fang, Y.; Mo, Y.; Huang, Y.; Xu, C.; Zhang, Z.; Wang, M. Visual quantification of Hg on a microfluidic paper-based analytical device using distance-based detection technique. AIP Adv. 2017, 7, 085214. [Google Scholar] [CrossRef] [Green Version]
- Pratiwi, R.; Nguyen, M.P.; Ibrahim, S.; Yoshioka, N.; Henry, C.S.; Tjahjono, D.H. A selective distance-based paper analytical device for copper(II) determination using a porphyrin derivative. Talanta 2017, 174, 493–499. [Google Scholar] [CrossRef]
- Wu, C.; Gao, G.; Zhai, K.; Xu, L.; Zhang, D. A visual Hg2+ detection strategy based on distance as readout by G-quadruplex DNAzyme on microfluidic paper. Food Chem. 2020, 331, 127208. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, L.; Huang, J.; Deng, Z.; Yuan, Y.; Zou, J.; Nie, J.; Zhang, Y. Enhanced functional DNA biosensor for distance-based read-by-eye quantification of various analytes based on starch-hydrolysis-adjusted wettability change in paper devices. RSC Adv. 2020, 10, 28121–28127. [Google Scholar] [CrossRef]
- Du, X.; Zhai, J.; Zeng, D.; Chen, F.; Xie, X. Distance-based detection of calcium ions with hydrogels entrapping exhaustive ion-selective nanoparticles. Sens. Actuators B Chem. 2020, 319, 128300. [Google Scholar] [CrossRef]
- Shibata, H.; Hiruta, Y.; Citterio, D. Fully inkjet-printed distance-based paper microfluidic devices for colorimetric calcium determination using ion-selective optodes. Analyst 2019, 144, 1178–1186. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, M.P.; Kelly, S.P.; Wydallis, J.B.; Henry, C.S. Read-by-eye quantification of aluminum (III) in distance-based microfluidic paper-based analytical devices. Anal. Chim. Acta 2020, 1100, 156–162. [Google Scholar] [CrossRef]
- Inoue, K.; Aikawa, S.; Fukushima, Y. Colorimetric chemosensor based on a carminic acid and Pb2+ complex for selective detection of cysteine over homocysteine and glutathione in aqueous solution. J. Incl. Phenom. Macrocycl. Chem. 2018, 90, 105–110. [Google Scholar] [CrossRef]
- Sakamaki, M.; Aikawa, S.; Fukushima, Y. Colorimetric Determination of Pb(2+) in Perfect Aqueous Solution Using Carminic Acid as a Selective Chemosensor. J. Fluoresc. 2017, 27, 1929–1935. [Google Scholar] [CrossRef] [PubMed]
- Berrie, B.H.; Strumfels, Y. Change is permanent: Thoughts on the fading of cochineal-based watercolor pigments. Herit. Sci. 2017, 5, 30. [Google Scholar] [CrossRef] [Green Version]
- Hongwarittorrn, I.; Chaichanawongsaroj, N.; Laiwattanapaisal, W. Semi-quantitative visual detection of loop mediated isothermal amplification (LAMP)-generated DNA by distance-based measurement on a paper device. Talanta 2017, 175, 135–142. [Google Scholar] [CrossRef]
- Hiraoka, R.; Kuwahara, K.; Wen, Y.-C.; Yen, T.-H.; Hiruta, Y.; Cheng, C.-M.; Citterio, D. Paper-Based Device for Naked Eye Urinary Albumin/Creatinine Ratio Evaluation. ACS Sens. 2020, 5, 1110–1118. [Google Scholar] [CrossRef]
- Lu, Y.; Shi, W.; Qin, J.; Lin, B. Fabrication and Characterization of Paper-Based Microfluidics Prepared in Nitrocellulose Membrane By Wax Printing. Anal. Chem. 2010, 82, 329–335. [Google Scholar] [CrossRef]
- Baker, A.; Saltik, M.; Lehrmann, H.; Killisch, I.; Mautner, V.; Lamm, G.; Christofori, G.; Cotten, M. Polyethylenimine (PEI) is a simple, inexpensive and effective reagent for condensing and linking plasmid DNA to adenovirus for gene delivery. Gene Ther. 1997, 4, 773–782. [Google Scholar] [CrossRef] [Green Version]
- Tütem, E.; Apak, R.; Sözgen, K. The interaction of antitumor-active anthraquinones with biologically important redox couples: I. Spectrophotometric investigation of the interaction of carminic acid and mitoxantrone with the iron(II, III) and copper(I, II) redox couples. J. Inorg. Biochem. 1996, 61, 79–96. [Google Scholar] [CrossRef]
- Stapelfeldt, H.; Jun, H.; Skibsted, L.H. Fluorescence properties of carminic acid in relation to aggregation, complex formation and oxygen activation in aqueous food models. Food Chem 1993, 48, 1–11. [Google Scholar] [CrossRef]
- Tan, J.A.; Garakyaraghi, S.; Tagami, K.A.; Frano, K.A.; Crockett, H.M.; Ogata, A.F.; Patterson, J.D.; Wustholz, K.L. Contributions from Excited-State Proton and Electron Transfer to the Blinking and Photobleaching Dynamics of Alizarin and Purpurin. J. Phys. Chem. C 2017, 121, 97–106. [Google Scholar] [CrossRef]
- Comini, L.R.; Morán Vieyra, F.E.; Mignone, R.A.; Páez, P.L.; Laura Mugas, M.; Konigheim, B.S.; Cabrera, J.L.; Núñez Montoya, S.C.; Borsarelli, C.D. Parietin: An efficient photo-screening pigment in vivo with good photosensitizing and photodynamic antibacterial effects in vitro. Photochem. Photobiol. Sci. 2017, 16, 201–210. [Google Scholar] [CrossRef] [PubMed]
- Bayraktutan, T. Molecular Interaction Between Cationic Polymer Polyethyleneimine and Rose Bengal Dye: A Spectroscopic Study. J. Turkish Chem. Soc. Sect. Chem. 2019, 6, 311–318. [Google Scholar] [CrossRef]
- Böhm, I.; Kreth, S.K.; Ritter, H. Hyperbranched polyethylenimine bearing cyclodextrin moieties showing temperature and pH controlled dye release. Beilstein J. Org. Chem. 2011, 7, 1130–1134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Bai, Q.; Liang, T.; Bai, H.; Liu, X. Two-Sided Surface Oxidized Cellulose Membranes Modified with PEI: Preparation, Characterization and Application for Dyes Removal. Polymers 2017, 9, 455. [Google Scholar] [CrossRef] [Green Version]
- Choosakoonkriang, S.; Lobo, B.A.; Koe, G.S.; Koe, J.G.; Middaugh, C.R. Biophysical characterization of PEI/DNA complexes. J. Pharm. Sci. 2003, 92, 1710–1722. [Google Scholar] [CrossRef]
- Hildebrandt, I.J.; Iyer, M.; Wagner, E.; Gambhir, S.S. Optical imaging of transferrin targeted PEI/DNA complexes in living subjects. Gene Ther. 2003, 10, 758–764. [Google Scholar] [CrossRef] [Green Version]
- Hou, S.; Ziebacz, N.; Wieczorek, S.; Kalwarczyk, E.; Sashuk, V.; Kalwarczyk, T.; Kaminski, T.; Holyst, R. Formation and structure of PEI/DNA complexes: Quantitative analysis. Soft Matter 2011, 7, 6967–6972. [Google Scholar] [CrossRef]
- Sinclair, T.R.; Robles, D.; Raza, B.; van den Hengel, S.; Rutjes, S.A.; de Roda Husman, A.M.; de Grooth, J.; de Vos, W.M.; Roesink, H.D.W. Virus reduction through microfiltration membranes modified with a cationic polymer for drinking water applications. Colloids Surf. A Physicochem. Eng. Asp. 2018, 551, 33–41. [Google Scholar] [CrossRef]
- Curtis, K.A.; Miller, D.; Millard, P.; Basu, S.; Horkay, F.; Chandran, P.L. Unusual Salt and pH Induced Changes in Polyethylenimine Solutions. PLoS ONE 2016, 11, e0158147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atabey, H.; Sari, H.; Al-Obaidi, F.N. Protonation Equilibria of Carminic Acid and Stability Constants of Its Complexes with Some Divalent Metal Ions in Aqueous Solution. J. Solut. Chem. 2012, 41, 793–803. [Google Scholar] [CrossRef]
- Guan, Y.; Sun, B. Detection and extraction of heavy metal ions using paper-based analytical devices fabricated via atom stamp printing. Microsyst. Nanoeng. 2020, 6, 14. [Google Scholar] [CrossRef]
- Cate, D.M.; Noblitt, S.D.; Volckens, J.; Henry, C.S. Multiplexed paper analytical device for quantification of metals using distance-based detection. Lab Chip 2015, 15, 2808–2818. [Google Scholar] [CrossRef] [Green Version]
- Chaiyo, S.; Apiluk, A.; Siangproh, W.; Chailapakul, O. High sensitivity and specificity simultaneous determination of lead, cadmium and copper using μPAD with dual electrochemical and colorimetric detection. Sens. Actuators B Chem. 2016, 233, 540–549. [Google Scholar] [CrossRef]
- Satarpai, T.; Shiowatana, J.; Siripinyanond, A. Paper-based analytical device for sampling, on-site preconcentration and detection of ppb lead in water. Talanta 2016, 154, 504–510. [Google Scholar] [CrossRef]
- Chooto, P.; Wararatananurak, P.; Innuphat, C. Determination of trace levels of Pb(II) in tap water by anodic stripping voltammetry with boron-doped diamond electrode. Sci. Asia 2010, 36, 150–156. [Google Scholar] [CrossRef]
- Ibrahim, A.B.M.; Farh, M.K.; Mayer, P. Copper complexes of new thiosemicarbazone ligands: Synthesis, structural studies and antimicrobial activity. Inorg. Chem. Commun 2018, 94, 127–132. [Google Scholar] [CrossRef]
- Youssef, N.S.; El-Seidy, A.M.A.; Schiavoni, M.; Castano, B.; Ragaini, F.; Gallo, E.; Caselli, A. Thiosemicarbazone copper complexes as competent catalysts for olefin cyclopropanations. J. Organomet. Chem. 2012, 714, 94–103. [Google Scholar] [CrossRef] [Green Version]
- Beltrán, B.G.; Leal, L.O.; Ferrer, L.; Cerdà, V. Masking Agents Evaluation for Lead Determination by Flow Injection-Hydride Generation-Atomic Fluorescence Spectrometry Technique: Effect of KI, L-Cysteine, and 1,10-Phenanthroline. Int. J. Anal. Chem. 2016, 2016, 3095120. [Google Scholar] [CrossRef] [Green Version]
- Sunwoo, H.H.; Gujral, N. Chemical Composition of Eggs and Egg Products. In Handbook of Food Chemistry; Cheung, P.C.K., Mehta, B.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 331–363. [Google Scholar] [CrossRef]
- Ninwong, B.; Ratnarathorn, N.; Henry, C.S.; Mace, C.R.; Dungchai, W. Dual Sample Preconcentration for Simultaneous Quantification of Metal Ions Using Electrochemical and Colorimetric Assays. ACS Sens. 2020, 5, 3999–4008. [Google Scholar] [CrossRef]
- Smaniotto, A.; Antunes, A.; Filho, I.d.N.; Venquiaruto, L.D.; de Oliveira, D.; Mossi, A.; Di Luccio, M.; Treichel, H.; Dallago, R. Qualitative lead extraction from recycled lead–acid batteries slag. J. Hazard. Mater. 2009, 172, 1677–1680. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-F.; Zhu, B.-L.; Li, W.; Wang, L.; Zhang, L.; Wu, T.; Du, Y.-P. Determination of Trace Lead in Water by UV-Visible Diffuse Reflectance Spectroscopy Combined with Surfactant and Membrane Filtration-Enrichment. Guang Pu 2015, 35, 1944–1948. [Google Scholar] [PubMed]
- Notification of Ministry of Public Health (No. 356) B.E. 2556 (2013). Available online: http://food.fda.moph.go.th/law/data/announ_moph/V.English/P356_E.pdf (accessed on 29 August 2019).
- Li, H.; Han, D.; Hegener, M.A.; Pauletti, G.M.; Steckl, A.J. Flow reproducibility of whole blood and other bodily fluids in simplified no reaction lateral flow assay devices. Biomicrofluidics 2017, 11, 024116. [Google Scholar] [CrossRef] [PubMed]
- Noiphung, J.; Nguyen, M.P.; Punyadeera, C.; Wan, Y.; Laiwattanapaisal, W.; Henry, C.S. Development of Paper-Based Analytical Devices for Minimizing the Viscosity Effect in Human Saliva. Theranostics 2018, 8, 3797–3807. [Google Scholar] [CrossRef]
Sample | dPAD |
---|---|
Tested foreign ions | Interference ratio of other metal ions to Pb |
Cu | 1 |
Ca | >20 |
Ni | >20 |
Zn | 10 |
Mg | >20 |
Sample | dPAD (µg·mL−1) | AAS (µg·mL−1) |
---|---|---|
Sample 1 | ≥2 | 2.8916 |
Sample 2 | ≥2 | 2.8643 |
Sample 3 | ≥2 | 1.9568 |
Sample 4 | ≥2 | 2.8728 |
Sample 5 | ≥2 | 2.0063 |
Sample 6 | ≥2 | 2.0012 |
Sample 7 | <2 | 0.0803 |
Sample 8 | <2 | 0.0923 |
Sample 9 | ≥2 | 2.8950 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katelakha, K.; Nopponpunth, V.; Boonlue, W.; Laiwattanapaisal, W. A Simple Distance Paper-Based Analytical Device for the Screening of Lead in Food Matrices. Biosensors 2021, 11, 90. https://doi.org/10.3390/bios11030090
Katelakha K, Nopponpunth V, Boonlue W, Laiwattanapaisal W. A Simple Distance Paper-Based Analytical Device for the Screening of Lead in Food Matrices. Biosensors. 2021; 11(3):90. https://doi.org/10.3390/bios11030090
Chicago/Turabian StyleKatelakha, Kasinee, Vanida Nopponpunth, Watcharee Boonlue, and Wanida Laiwattanapaisal. 2021. "A Simple Distance Paper-Based Analytical Device for the Screening of Lead in Food Matrices" Biosensors 11, no. 3: 90. https://doi.org/10.3390/bios11030090