Laccase-Based Biosensor Encapsulated in a Galactomannan-Chitosan Composite for the Evaluation of Phenolic Compounds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Extraction of Galactomannan from Carob Seeds (Ceratonia Siliqua)
2.3. Analytical Characterization of LAC/CHIT + GAL
2.4. Preparation of the Laccase Modified Gold Electrode
- -
- S1: 10 mg of chitosan dissolved in 0.1 mL of acetic acid + 4.9 mL of water after 24 h.
- -
- S2: 10 mg of galactomannan dissolved in 5 mL of hot water (45 °C) after 5 h.
2.5. Application of the Biosensor for Detection of Phenolic Content in Olive Oil Samples
3. Results and Discussion
3.1. Characterization of the Prepared Galactomannan
3.2. Characterization of the Gold Electrode Modified with the Laccase/Chitosan+Galactomannan Film
3.3. Analytical Performance of the Biosensor
3.4. Application of the Biosensor for the Compared Estimation of Phenolic Content in Olive Oils Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Dakia, P.; Blecker, C.; Robert, C.; Wathelet, B.; Paquot, M. Composition and physicochemical properties of locust bean gum extracted from whole seeds by acid or water dehulling pre-treatment. Food Hydrocoll. 2008, 22, 807–818. [Google Scholar] [CrossRef]
- Leboukh, M.; Aouadi, S. Extraction and purification of galactmannans from Gleditsia triacanthos L. seeds. Alger. J. Arid Environ. 2017, 258, 1–6. [Google Scholar]
- Jana, S.; Sen, K.K. Chitosan—Locust bean gum interpenetrating polymeric network nanocomposites for delivery of aceclofenac. Int. J. Biol. Macromol. 2017, 102, 878–884. [Google Scholar] [CrossRef] [PubMed]
- Kaity, S.; Isaac, J.; Ghosh, A. Interpenetrating polymer network of locust bean gum-poly (vinyl alcohol) for controlled release drug delivery. Carbohydr. Polym. 2013, 94, 456–467. [Google Scholar] [CrossRef] [PubMed]
- Campia, P.; Ponzini, E.; Rossi, B.; Farris, S.; Silvetti, T.; Merlini, L.; Brasca, M.; Grandori, R.; Galante, I.M. Aerogels of enzymatically oxidized galactomannans from leguminous plants: Versatile delivery systems of antimicrobial peptides and enzymes. Carbohydr. Polym. 2017, 158, 102–111. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Yeap Foo, L. Polyphenolics of salvia—A review. Phytochemistry 2002, 59, 117–140. [Google Scholar] [CrossRef]
- Pinelo, M.; Del Fabbro, P.D.; Manzocco, L.; Nunez, M.J.; Nicoli, M.C. Optimization of continuous phenol extraction from Vitis vinifera by products. Food Chem. 2005, 92, 109–117. [Google Scholar] [CrossRef]
- Karim, F.; Fakhruddin, A. Recent advances in the development of biosensor for phenol: A review. Rev. Environ. Sci. Biotechnol. 2012, 11, 261–274. [Google Scholar] [CrossRef]
- Diaconu, M.; Litescu, S.C.; Radu, G.L. Laccase–MWCNT–chitosan biosensor—A new tool for total polyphenolic content evaluation from in vitro cultivated plants. Sens. Actuators B Chem. 2010, 145, 800–806. [Google Scholar] [CrossRef]
- Salvo-Comino, C.; Garcia-Hernandez, C.; Garcia-Cabezon, C.; Rodriguez-Mendez, M.L. Promoting laccase sensing activity for catechol detection using LBL assemblies of chitosan/ionic liquid/phthalocyanine as immobilization surfaces. Bioelectrochemistry 2020, 132, 107407. [Google Scholar] [CrossRef] [PubMed]
- Chawla, S.; Rawal, R.; Pundir, C.S. Fabrication of polyphenol biosensor based on laccase immobilized on copper nanoparticles/chitosan/multiwalled carbon nanotubes/polyaniline-modified gold electrode. J. Biotechnol. 2011, 156, 39–45. [Google Scholar] [CrossRef]
- Qu, J.; Lou, T.; Kang, S.; Du, X. Laccase biosensor based on graphene-chitosan composite film for determination of hydroquinone. Anal. Lett. 2014, 47, 1564–1578. [Google Scholar] [CrossRef]
- Fernandes, P.M.; Campiña, J.M.; Silva, A.F. A layered nanocomposite of laccase, chitosan, and Fe3O4 nanoparticles-reduced graphene oxide for the nanomolar electrochemical detection of bisphenol A. Microchim. Acta 2020, 187, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Salvo-Comino, C.; González-Gil, A.; Rodriguez-Valentin, J.; Garcia-Hernandez, C.; Martin-Pedrosa, F.; Garcia-Cabezon, C.; Rodriguez-Mendez, M.L. Biosensors Platform Based on Chitosan/AuNPs/Phthalocyanine Composite Films for the Electrochemical Detection of Catechol. The Role of the Surface Structure. Sensors 2020, 20, 2152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadeghi, S.; Fooladi, E.; Malekaneh, M. A new amperometric biosensor based on Fe3O4/polyaniline/laccase/chitosan biocomposite-modified carbon paste electrode for determination of catechol in tea leaves. Appl. Biochem. Biotechnol. 2015, 175, 1603–1616. [Google Scholar] [CrossRef]
- Chakroun Galai, H.; Rassas, I.; Namour, P.; Bonhomme, A.; Raimondi, G.; Besbes Hentati, S.; Jaffrezic-Renault, N. A Laccase/Chitosan-Lambda-Carrageenan Based Voltammetric Biosensor for Phenolic Compound Detection. Electroanalysis 2020, 32, 732–740. [Google Scholar] [CrossRef]
- Chakroun Galai, H.; Rahmouni, N.; Namour, P.; Bonhomme, A.; Bessueille, F.; Salma Besbes Hentati, S.; Jaffrezic-Renault, N. Highly Sensitive Voltammetric Catechol Biosensor Based on Electroaddressing of Laccase Encapsulated in Modified Chitosan. Sens. Lett. 2020, 18, 165–172. [Google Scholar]
- Boujakhrout, A.; Jimenez-Falcao, S.; Martinez-Ruiz, P.; Sanchez, A.; Diez, P.; Pingarron, J.M.; Villalonga, R. Novel reduced graphene oxide–glycol chitosan nanohybrid for the assembly of an amperometric enzyme biosensor for phenols. Analyst 2016, 141, 4162–4169. [Google Scholar] [CrossRef]
- Rassas, I.; Braiek, M.; Bonhomme, A.; Bessueille, F.; Rafin, G.; Majdoub, H.; Jaffrezic-Renault, N. Voltammetric glucose biosensor based on glucose oxidase encapsulation in a chitosan-kappa-carrageenan polyelectrolyte complex. Mater. Sci. Eng. C 2019, 95, 152–159. [Google Scholar] [CrossRef]
- Martínez, L.; Gaspar Ros, G.; Nieto, G. Hydroxytyrosol: Health Benefits and Use as Functional Ingredient in Meat. Medicines 2018, 5, 13. [Google Scholar] [CrossRef] [Green Version]
- ISO14502-1: Determination of Substances Characteristic of Green and Black Tea—Part 1: Content of Total Polyphenols in Tea—Colorimetric Method Using Folin-Ciocalteu Reagent; AFNOR: Paris, France, 2005.
- Hublik, G.; Schinner, F. Characterization and immobilization of the laccase from Pleurotus ostreatus and its use for the continuous elimination of phenolic pollutants. Enzyme Microb. Technol. 2000, 27, 330–336. [Google Scholar] [CrossRef]
- Mei, Y.; Miller, L.; Gao, W.; Gross, R.A. Imaging the distribution and secondary structure of immobilized enzymes using infrared microspectroscopy. Biomacromolecules 2003, 4, 70–74. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Zhang, Y.; Zhan, J.; Lin, Y.; Yang, X. Axial bonds at the T1 Cu site of Thermus thermophilus SG0.5JP17-16 laccase influence enzymatic properties. FEBS Open Bio 2019, 9, 986–995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández, E.; Vidal, L.; Canals, A. Rapid determination of hydrophilic phenols in olive oil by vortex-assisted reversed-phase dispersive liquid-liquid microextraction and screen-printed carbon electrodes. Talanta 2018, 181, 44–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baldrian, P. Fungal laccases occurrenceand properties. FEMS Microbiol. Rev. 2006, 30, 215–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Laccase Immobilization Matrix | Linear Range (μM) | LOD (μM) | Shelf life Time (Days) | References |
---|---|---|---|---|
Laccase/MWCT/chitosan | 0.091–12.1 | 0.233 | - | [9] |
LBL assemblies of chitosan/ionic liquid/phthalocyanine | 2.4–26 | 8.96 × 10−4 | - | [10] |
Copper nanoparticles/chitosan/multiwalled carbon nanotubes/polyaniline-Au | 1–500 | 0.156 | 10 | [11] |
Graphene/Chitosan Composite Film | 2–100 | 0.26 | 10 | [12] |
Chitosan/Fe3O4 nanoparticles/reduced graphene oxide | 6 × 10−3–0.228 | 18 × 10−3 | 60 | [13] |
Chitosan/AuNPs/Phthalocyanine | 2.4–20 | 8.55 × 10−4 | - | [14] |
on Fe3O4/polyaniline/laccase/chitosan | 0.5–80 | 0.4 | 60 | [15] |
chitosan modified with trymiristine | 10−14–10−9 | 10−14 | 60 | [16] |
Chitosan- Lambda-Carrageenan | 10–14–10–8 | 3 × 10–15 | 60 | [17] |
Graphene oxide -glycerol-chitosan | 0.2–15 | 76 × 10−3 | 15 | [18] |
Chitosan/Galactomannan | 10–10–100 | 10–10 | 15 | This work |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boubezari, I.; Bessueille, F.; Bonhomme, A.; Raimondi, G.; Zazoua, A.; Errachid, A.; Jaffrezic-Renault, N. Laccase-Based Biosensor Encapsulated in a Galactomannan-Chitosan Composite for the Evaluation of Phenolic Compounds. Biosensors 2020, 10, 70. https://doi.org/10.3390/bios10060070
Boubezari I, Bessueille F, Bonhomme A, Raimondi G, Zazoua A, Errachid A, Jaffrezic-Renault N. Laccase-Based Biosensor Encapsulated in a Galactomannan-Chitosan Composite for the Evaluation of Phenolic Compounds. Biosensors. 2020; 10(6):70. https://doi.org/10.3390/bios10060070
Chicago/Turabian StyleBoubezari, Imane, François Bessueille, Anne Bonhomme, Gaëtan Raimondi, Ali Zazoua, Abdelhamid Errachid, and Nicole Jaffrezic-Renault. 2020. "Laccase-Based Biosensor Encapsulated in a Galactomannan-Chitosan Composite for the Evaluation of Phenolic Compounds" Biosensors 10, no. 6: 70. https://doi.org/10.3390/bios10060070
APA StyleBoubezari, I., Bessueille, F., Bonhomme, A., Raimondi, G., Zazoua, A., Errachid, A., & Jaffrezic-Renault, N. (2020). Laccase-Based Biosensor Encapsulated in a Galactomannan-Chitosan Composite for the Evaluation of Phenolic Compounds. Biosensors, 10(6), 70. https://doi.org/10.3390/bios10060070