A Capillary-Perfused, Nanocalorimeter Platform for Thermometric Enzyme-Linked Immunosorbent Assay with Femtomole Sensitivity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Nanocalorimeter Platform Layout
2.2. Model Construction
2.3. Model Operation and Data Processing
2.4. Catalase Experiment
3. Results and Discussion
3.1. Enzyme-Based Model Operation
3.2. Validation of Numerical Model
3.3. Model Adaptation at High Substrate Concentration
3.4. Model-Assisted TELISA
3.5. Determining TELISA Limit of Detection
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Premjeet, S.; Deepika, G.; Sudeep, B.; Sonam, J.; Sahil, K.; Devashish, R.; Sunil, K. Enzyme-Linked Immuno-Sorbent Assay (ELISA), basics and it’s application: A comprehensive review. J. Pharm. Res. 2011, 4, 4581–4583. [Google Scholar]
- Thiha, A.; Ibrahim, F. A colorimetric enzyme-linked immunosorbent assay (ELISA) detection platform for a point-of-care dengue detection system on a lab-on-compact-disc. Sensors 2015, 15, 11431–11441. [Google Scholar] [CrossRef] [Green Version]
- Roda, A.; Mirasoli, M.; Michelini, E.; Di Fusco, M.; Zangheri, M.; Cevenini, L.; Roda, B.; Simoni, P. Progress in chemical luminescence-based biosensors: A critical review. Biosens. Bioelect. 2016, 76, 164–179. [Google Scholar] [CrossRef]
- Metkar, S.K.; Girigoswami, K. Diagnostic biosensors in medicine: A review. Biocatal. Agric. Biotech. 2019, 17, 271–283. [Google Scholar] [CrossRef]
- Eivazzadeh-Keihan, R.; Pashazadeh-Panahi, P.; Mahmoudi, T.; Chenab, K.K.; Baradaran, B.; Hashemzaei, M.; Radinekiyan, F.; Mokhtarzadeh, A.; Maleki, A. Dengue virus: A review on advances in detection and trends—from conventional methods to novel biosensors. Microchim. Acta 2019, 186, 329. [Google Scholar] [CrossRef] [PubMed]
- Waller, D.F.; Hew, B.E.; Holdaway, C.; Jen, M.; Peckham, G.D. Rapid detection of Bacillus anthracis spores using immunomagnetic separation and amperometry. Biosensors 2016, 6, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.; Xu, J.; Liu, J.; Wang, X.; Chen, B. Disease-related detection with electrochemical biosensors: A review. Sensors 2017, 17, 2375. [Google Scholar] [CrossRef] [PubMed]
- Byzova, N.A.; Vinogradova, S.V.; Porotikova, E.V.; Terekhova, U.D.; Zherdev, A.V.; Dzantiev, B.B. Lateral flow immunoassay for rapid detection of grapevine leafroll-associated virus. Biosensors 2018, 8, 111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weng, X.; Gaur, G.; Neethirajan, S. Rapid detection of food allergens by microfluidics ELISA-based optical sensor. Biosensors 2016, 6, 24. [Google Scholar] [CrossRef] [Green Version]
- Mattiasson, B.; Borrebaeck, C.; Sanfridson, B.; Mosbach, K. Thermometric enzyme linked immunosorbent assay: TELISA. Biochim. Biophys. Acta (BBA)-Enzymol. 1977, 483, 221–227. [Google Scholar] [CrossRef]
- Mecklenburg, M.; Lindbladh, C.; Li, H.; Mosbach, K.; Danielsson, B. Enzymatic amplification of a flow-injected thermometric enzyme-linked immunoassay for human insulin. Anal. Biochem. 1992, 212, 388–393. [Google Scholar] [CrossRef] [PubMed]
- Ng, A.H.C.; Uddayasankar, U.; Wheeler, A.R. Immunoassays in microfluidic systems. Anal. Bioanal. Chem. 2010, 397, 991–1007. [Google Scholar] [CrossRef] [PubMed]
- Danielsson, B. The enzyme thermistor. App. Biochem. Biotechnol. 1982, 7, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Tangutooru, S.M.; Kopparthy, V.L.; Nestorova, G.G.; Guilbeau, E.J. Dynamic thermoelectric glucose sensing with layer-by-layer glucose oxidase immobilization. Sens. Actuators B Chem. 2012, 166, 637–641. [Google Scholar] [CrossRef]
- Lubbers, B.; Baudenbacher, F. Isothermal Titration Calorimetry in Nanoliter Droplets with Subsecond Time Constants. Anal. Chem. 2011, 83, 7955–7961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nestorova, G.G.; Kopparthy, V.L.; Crews, N.D.; Guilbeau, E.J. Thermoelectric lab-on-a-chip ELISA. Anal. Methods 2015, 7, 2055–2063. [Google Scholar] [CrossRef]
- Xu, N.; Bai, J.; Peng, Y.; Qie, Z.; Liu, Z.; Tang, H.; Liu, C.; Gao, Z.; Ning, B. Pretreatment-free detection of diazepam in beverages based on a thermometric biosensor. Sens. Actuators B Chem. 2017, 241, 504–512. [Google Scholar] [CrossRef]
- Ghadermarzi, M.; & Moosavi-Movahedi, A.A. Determination of the kinetic parameters for the “suicide substrate” inactivation of bovine liver catalase by hydrogen peroxide. J. Enzym Inhib. 1996, 10, 167–175. [Google Scholar] [CrossRef]
- Kazura, E.; Lubbers, B.R.; Dawson, E.; Phillips, J.A.; Baudenbacher, F. Nano-Calorimetry based point of care biosensor for metabolic disease management. Biomed. Microdev. 2017, 19, 50. [Google Scholar] [CrossRef]
- Lubbers, B.R.; Kazura, E.; Dawson, E.; Mernaugh, R.; Baudenbacher, F. Microfabricated calorimeters for thermometric enzyme linked immunosorbent assay in one-nanoliter droplets. Biomed. Microdev. 2019, 21, 85. [Google Scholar] [CrossRef]
- Lubbers, B.R. Nano-Calorimetry for Point of Care Diagnostics. Ph.D. Thesis, Vanderbilt University, Nashville, TN, USA, March 2015. [Google Scholar]
- Switala, J.; Loewen, P.C. Diversity of properties among catalases. Arch. Biochem. Biophys. 2002, 401, 145–154. [Google Scholar] [CrossRef]
- Aebi, H. Catalase in vitro. In Methods in Enzymology; Packer, L., Ed.; Elsvier, Inc.: Philadelphia, PA, USA, 1984; Volume 105, pp. 121–126. [Google Scholar]
- Hertwig, B.; Streb, P.; Feierabend, J. Light dependence of catalase synthesis and degradation in leaves and the influence of interfering stress conditions. Plant. Physiol. 1992, 100, 1547–1553. [Google Scholar] [CrossRef] [PubMed]
- Prakash, P.A.; Yogeswaran, U.; Chen, S. A review on direct electrochemistry of catalase for electrochemical sensors. Sensors 2009, 9, 1821–1844. [Google Scholar] [CrossRef] [PubMed]
- Grigoras, A. Catalase immobilization—A review. Biochem. Eng. J. 2017, 117, 1–20. [Google Scholar] [CrossRef]
Source | TELISA Quantification | LOD (Femtomole) |
---|---|---|
Flow-injected immunosorbent column (Mecklenburg et al. [11]) | Baseline shift | 86,000 |
Flow-injection nanocalorimeter (Xu et al. [17]) | Baseline shift | 43,800 |
Capillary nanocalorimeter (Kazura et al. [19]) | Phenomenological | 25 |
Model-assisted capillary nanocalorimeter | Model-assisted signal interpretation | 0.260 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kazura, E.; Mernaugh, R.; Baudenbacher, F. A Capillary-Perfused, Nanocalorimeter Platform for Thermometric Enzyme-Linked Immunosorbent Assay with Femtomole Sensitivity. Biosensors 2020, 10, 71. https://doi.org/10.3390/bios10060071
Kazura E, Mernaugh R, Baudenbacher F. A Capillary-Perfused, Nanocalorimeter Platform for Thermometric Enzyme-Linked Immunosorbent Assay with Femtomole Sensitivity. Biosensors. 2020; 10(6):71. https://doi.org/10.3390/bios10060071
Chicago/Turabian StyleKazura, Evan, Ray Mernaugh, and Franz Baudenbacher. 2020. "A Capillary-Perfused, Nanocalorimeter Platform for Thermometric Enzyme-Linked Immunosorbent Assay with Femtomole Sensitivity" Biosensors 10, no. 6: 71. https://doi.org/10.3390/bios10060071
APA StyleKazura, E., Mernaugh, R., & Baudenbacher, F. (2020). A Capillary-Perfused, Nanocalorimeter Platform for Thermometric Enzyme-Linked Immunosorbent Assay with Femtomole Sensitivity. Biosensors, 10(6), 71. https://doi.org/10.3390/bios10060071