High-Tech and Nature-Made Nanocomposites and Their Applications in the Field of Sensors and Biosensors for Gas Detection
Abstract
:1. Introduction
2. Gas Sensors Based on Nanomaterials
- Conductivity-based sensors
- Optical-based sensors
- Other transduction methods
Nanomaterial Production Techniques
3. Gas Sensors Based on Polymers
- Impedance-based transduction
- Conductivity-based transduction
- Optical-based transduction
- Electrochemical-based transduction
Polymer Synthesis Techniques
4. Gas Sensors Based on Carbon Nanomaterials
- Conductivity-based transduction
- Optical-based transduction
5. Biological Elements for Gas Sensing
- Biosensors based on enzymes
- Biosensors based on non-enzymatic proteins and structures
- Biosensors based on live cells
Bio-Element Immobilization
6. Analytical Sensing Properties Comparison of Reported Gas Sensors
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nazemi, H.; Joseph, A.; Park, J.; Emadi, A. Advanced Micro- and Nano-Gas Sensor Technology: A Review. Sensors 2019, 19, 1285. [Google Scholar] [CrossRef] [Green Version]
- Tian, W.; Liu, X.; Yu, W. Research Progress of Gas Sensor Based on Graphene and Its Derivatives: A Review. Appl. Sci. 2018, 8, 1118. [Google Scholar] [CrossRef] [Green Version]
- Korotcenkov, G. Current Trends in Nanomaterials for Metal Oxide-Based Conductometric Gas Sensors: Advantages and Limitations. Part 1: 1D and 2D Nanostructures. Nanomaterials 2020, 10, 1392. [Google Scholar] [CrossRef]
- Malik, R.; Tomer, V.K.; Mishra, Y.K.; Lin, L. Functional gas sensing nanomaterials: A panoramic view. Appl. Phys. Rev. 2020, 7, 021301. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Xue, Z.; Chen, X.; Huang, C.; Bai, W.; Lu, Z.; Wang, T. Nanomaterial-based gas sensors used for breath diagnosis. J. Mater. Chem. B 2020, 8, 3231–3248. [Google Scholar] [CrossRef]
- Yang, T.; Liu, Y.; Wang, H.; Duo, Y.; Zhang, B.; Ge, Y.; Zhang, H.; Chen, W. Recent advances in 0D nanostructure-functionalized low-dimensional nanomaterials for chemiresistive gas sensors. J. Mater. Chem. C 2020, 8, 7272–7299. [Google Scholar] [CrossRef]
- Hassan, H.S.; Elkady, M.F. Semiconductor Nanomaterials for Gas Sensor Applications. In Environmental Nanotechnology Volume 3; Dasgupta, N., Ranjan, S., Lichtfouse, E., Eds.; Environmental Chemistry for a Sustainable World; Springer International Publishing: Cham, Switzerland, 2020; pp. 305–355. ISBN 978-3-030-26672-1. [Google Scholar]
- Menzel, A.; Subannajui, K.; Bakhda, R.; Wang, Y.; Thomann, R.; Zacharias, M. Tuning the Growth Mechanism of ZnO Nanowires by Controlled Carrier and Reaction Gas Modulation in Thermal CVD. J. Phys. Chem. Lett. 2012, 3, 2815–2821. [Google Scholar] [CrossRef]
- Kadhim, I.H.; Hassan, H.A.; Ibrahim, F.T. Hydrogen gas sensing based on nanocrystalline SnO2 thin films operating at low temperatures. Int. J. Hydrog. Energy 2020, 45, 25599–25607. [Google Scholar] [CrossRef]
- Yang, F.; Guo, Z. Engineering NiO sensitive materials and its ultra-selective detection of benzaldehyde. J. Colloid Interface Sci. 2016, 467, 192–202. [Google Scholar] [CrossRef] [PubMed]
- Rombach, J.; Bierwagen, O.; Papadogianni, A.; Mischo, M.; Cimalla, V.; Berthold, T.; Krischok, S.; Himmerlich, M. Electrical Conductivity and Gas-sensing Properties of Mg-doped and Undoped Single-crystalline In2O3 Thin Films: Bulk vs. Surface. Procedia Eng. 2015, 120, 79–82. [Google Scholar] [CrossRef] [Green Version]
- De Lacy Costello, B.P.J.; Ewen, R.J.; Jones, P.R.H.; Ratcliffe, N.M.; Wat, R.K.M. A study of the catalytic and vapour-sensing properties of zinc oxide and tin dioxide in relation to 1-butanol and dimethyldisulphide. Sens. Actuators B Chem. 1999, 61, 199–207. [Google Scholar] [CrossRef]
- Kim, J.; Hong, U.G.; Choi, Y.; Hong, S. Enhancing the evanescent field in TiO2/Au hybrid thin films creates a highly sensitive room-temperature formaldehyde gas biosensor. Colloids Surf. B Biointerfaces 2019, 182, 110303. [Google Scholar] [CrossRef] [PubMed]
- Asad, M.; Sheikhi, M.H. Highly sensitive wireless H2S gas sensors at room temperature based on CuO-SWCNT hybrid nanomaterials. Sens. Actuators B Chem. 2016, 231, 474–483. [Google Scholar] [CrossRef]
- Choi, W.K.; Liew, T.H.; Dawood, M.K.; Smith, H.I.; Thompson, C.V.; Hong, M.H. Synthesis of Silicon Nanowires and Nanofin Arrays Using Interference Lithography and Catalytic Etching. Nano Lett. 2008, 8, 3799–3802. [Google Scholar] [CrossRef]
- Colson, P.; Henrist, C.; Cloots, R. Nanosphere Lithography: A Powerful Method for the Controlled Manufacturing of Nanomaterials. J. Nanomater. 2013, 2013, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Donthu, S.; Pan, Z.; Myers, B.; Shekhawat, G.; Wu, N.; Dravid, V. Facile Scheme for Fabricating Solid-State Nanostructures Using E-Beam Lithography and Solution Precursors. Nano Lett. 2005, 5, 6. [Google Scholar] [CrossRef]
- Wang, J.; Zou, B.; Ruan, S.; Zhao, J.; Chen, Q.; Wu, F. HCHO sensing properties of Ag-doped In2O3 nanofibers synthesized by electrospinning. Mater. Lett. 2009, 63, 1750–1753. [Google Scholar] [CrossRef]
- Lu, X.; Wang, C.; Wei, Y. One-Dimensional Composite Nanomaterials: Synthesis by Electrospinning and Their Applications. Small 2009, 5, 2349–2370. [Google Scholar] [CrossRef]
- Duarte, E.A.; Quintero, P.A.; Meisel, M.W.; Nino, J.C. Electrospinning synthesis of superconducting BSCCO nanowires. Phys. C Supercond. 2013, 495, 109–113. [Google Scholar] [CrossRef]
- Andre, R.S.; Shimizu, F.M.; Miyazaki, C.M.; Riul, A.; Manzani, D.; Ribeiro, S.J.L.; Oliveira, O.N.; Mattoso, L.H.C.; Correa, D.S. Hybrid layer-by-layer (LbL) films of polyaniline, graphene oxide and zinc oxide to detect ammonia. Sens. Actuators B Chem. 2017, 238, 795–801. [Google Scholar] [CrossRef] [Green Version]
- Gaikwad, G.; Patil, P.; Patil, D.; Naik, J. Synthesis and evaluation of gas sensing properties of PANI based graphene oxide nanocomposites. Mater. Sci. Eng. B 2017, 218, 14–22. [Google Scholar] [CrossRef]
- Yan, L.; Yu, R.; Chen, J.; Xing, X. Template-Free Hydrothermal Synthesis of CeO2 Nano-octahedrons and Nanorods: Investigation of the Morphology Evolution. Cryst. Growth Des. 2008, 8, 1474–1477. [Google Scholar] [CrossRef]
- Li, C.; Yang, J.; Yang, P.; Lian, H.; Lin, J. Hydrothermal Synthesis of Lanthanide Fluorides LnF3 (Ln = La to Lu) Nano-/Microcrystals with Multiform Structures and Morphologies. Chem. Mater. 2008, 20, 4317–4326. [Google Scholar] [CrossRef]
- Li, W.-J.; Shi, E.-W.; Ko, J.-M.; Chen, Z.; Ogino, H.; Fukuda, T. Hydrothermal synthesis of MoS2 nanowires. J. Cryst. Growth 2003, 250, 418–422. [Google Scholar] [CrossRef]
- Piticescu, R.M.; Piticescu, R.R.; Taloi, D.; Badilita, V. Hydrothermal synthesis of ceramic nanomaterials for functional applications. Nanotechnology 2003, 14, 312–317. [Google Scholar] [CrossRef]
- Lupan, O.; Chow, L.; Chai, G.; Schulte, A.; Park, S.; Heinrich, H. A rapid hydrothermal synthesis of rutile SnO2 nanowires. Mater. Sci. Eng. B 2009, 157, 101–104. [Google Scholar] [CrossRef]
- Jafari, M.; Nouri, A.; Kazemimoghadam, M.; Mohammadi, T. Investigations on hydrothermal synthesis parameters in preparation of nanoparticles of LTA zeolite with the aid of TMAOH. Powder Technol. 2013, 237, 442–449. [Google Scholar] [CrossRef]
- Bayati, B.; Babaluo, A.A.; Karimi, R. Hydrothermal synthesis of nanostructure NaA zeolite: The effect of synthesis parameters on zeolite seed size and crystallinity. J. Eur. Ceram. Soc. 2008, 28, 2653–2657. [Google Scholar] [CrossRef]
- Alegria, L.D.; Schroer, M.D.; Chatterjee, A.; Poirier, G.R.; Pretko, M.; Patel, S.K.; Petta, J.R. Structural and Electrical Characterization of Bi2Se3 Nanostructures Grown by Metal–Organic Chemical Vapor Deposition. Nano Lett. 2012, 12, 4711–4714. [Google Scholar] [CrossRef] [Green Version]
- Young, C.; Wang, J.; Kim, J.; Sugahara, Y.; Henzie, J.; Yamauchi, Y. Controlled Chemical Vapor Deposition for Synthesis of Nanowire Arrays of Metal–Organic Frameworks and Their Thermal Conversion to Carbon/Metal Oxide Hybrid Materials. Chem. Mater. 2018, 30, 3379–3386. [Google Scholar] [CrossRef]
- Gao, L.; Li, H.; Ren, W.; Wang, G.; Li, H.; Ashalley, E.; Zhong, Z.; Ji, H.; Zhou, Z.; Wu, J.; et al. The high-yield growth of Bi2Se3 nanostructures via facile physical vapor deposition. Vacuum 2017, 140, 58–62. [Google Scholar] [CrossRef]
- Kidambi, P.R.; Ducati, C.; Dlubak, B.; Gardiner, D.; Weatherup, R.S.; Martin, M.-B.; Seneor, P.; Coles, H.; Hofmann, S. The Parameter Space of Graphene Chemical Vapor Deposition on Polycrystalline Cu. J. Phys. Chem. C 2012, 116, 22492–22501. [Google Scholar] [CrossRef]
- Huang, G. Single-crystalline Bi2Se3 nanowires grown by catalyst-free ambient pressure chemical vapor deposition. Mater. Lett. 2016, 4. [Google Scholar] [CrossRef]
- Aisu, K.; Suzuki, T.S.; Nakamura, E.; Abe, H.; Suzuki, Y. AAO-template assisted synthesis and size control of one-dimensional TiO2 nanomaterials. J. Ceram. Soc. Jpn. 2013, 121, 915–918. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.-G.; Tian, M.-L.; Kumar, N.; Mallouk, T.E. Controllable Template Synthesis of Superconducting Zn Nanowires with Different Microstructures by Electrochemical Deposition. Nano Lett. 2005, 5, 1247–1253. [Google Scholar] [CrossRef] [PubMed]
- Chuang, H.-C.; Hong, G.-Y.; Sanchez, J. Fabrication of high aspect ratio copper nanowires using supercritical CO2 fluids electroplating technique in AAO template. Mater. Sci. Semicond. Process. 2016, 45, 17–26. [Google Scholar] [CrossRef]
- Paulchamy, B.; Arthi, G.; Lignesh, B. A Simple Approach to Stepwise Synthesis of Graphene Oxide Nanomaterial. J. Nanomedicine Nanotechnol. 2015, 06. [Google Scholar] [CrossRef]
- Reetz, M.T.; Helbig, W. Size-Selective Synthesis of Nanostructured Transition Metal Clusters. J. Am. Chem. Soc. 1994, 116, 7401–7402. [Google Scholar] [CrossRef]
- Rodríguez-Sánchez, L.; Blanco, M.C.; López-Quintela, M.A. Electrochemical Synthesis of Silver Nanoparticles. J. Phys. Chem. B 2000, 104, 9683–9688. [Google Scholar] [CrossRef]
- Izzi, M.; Sportelli, M.C.; Ditaranto, N.; Picca, R.A.; Innocenti, M.; Sabbatini, L.; Cioffi, N. Pros and Cons of Sacrificial Anode Electrolysis for the Preparation of Transition Metal Colloids: A Review. ChemElectroChem 2020, 7, 386–394. [Google Scholar] [CrossRef]
- Cao, W.; Elsayed-Ali, H.E. Stability of Ag nanoparticles fabricated by electron beam lithography. Mater. Lett. 2009, 63, 2263–2266. [Google Scholar] [CrossRef]
- Taylor, A.B.; Michaux, P.; Mohsin, A.S.M.; Chon, J.W.M. Electron-beam lithography of plasmonic nanorod arrays for multilayered optical storage. Opt. Express 2014, 22, 13234–13243. [Google Scholar] [CrossRef] [PubMed]
- Cinel, N.A.; Bütün, S.; Özbay, E. Electron beam lithography designed silver nano-disks used as label free nano-biosensors based on localized surface plasmon resonance. Opt. Express 2012, 20, 2587–2597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trasobares, J.; Vaurette, F.; François, M.; Romijn, H.; Codron, J.-L.; Vuillaume, D.; Théron, D.; Clément, N. High speed e-beam lithography for gold nanoarray fabrication and use in nanotechnology. Beilstein J. Nanotechnol. 2014, 5, 1918–1925. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Wang, X.; Huang, W.; Sebastian, P.J.; Gamboa, S. Sol–gel template synthesis of highly ordered MnO2 nanowire arrays. J. Power Sources 2005, 140, 211–215. [Google Scholar] [CrossRef]
- Choi, M.K.; Yoon, H.; Lee, K.; Shin, K. Simple Fabrication of Asymmetric High-Aspect-Ratio Polymer Nanopillars by Reusable AAO Templates. Langmuir 2011, 27, 2132–2137. [Google Scholar] [CrossRef]
- Chon Chen, C.; Cheng, C.-H.; Lin, C.-K. Template assisted fabrication of TiO2 and WO3 nanotubes. Ceram. Int. 2013, 39, 6631–6636. [Google Scholar] [CrossRef]
- Kaushik, A.; Kumar, R.; Arya, S.K.; Nair, M.; Malhotra, B.D.; Bhansali, S. Organic–Inorganic Hybrid Nanocomposite-Based Gas Sensors for Environmental Monitoring. Chem. Rev. 2015, 115, 4571–4606. [Google Scholar] [CrossRef]
- Li, Y.; Jiao, M.; Zhao, H.; Yang, M. High performance gas sensors based on in-situ fabricated ZnO/polyaniline nanocomposite: The effect of morphology on the sensing properties. Sens. Actuators B Chem. 2018, 264, 285–295. [Google Scholar] [CrossRef]
- Zoshki, A.; Rahmani, M.B.; Masdarolomoor, F.; Pilehrood, S.H. Surface functionalization of PANI and PANI/ZnO hybrid nanofibers with metallic catalysts for ammonia sensing at room temperature. Mod. Phys. Lett. B 2019, 33, 1950175. [Google Scholar] [CrossRef]
- Talwar, V.; Singh, O.; Singh, R.C. ZnO assisted polyaniline nanofibers and its application as ammonia gas sensor. Sens. Actuators B Chem. 2014, 191, 276–282. [Google Scholar] [CrossRef]
- Patil, S.L.; Chougule, M.A.; Sen, S.; Patil, V.B. Measurements on room temperature gas sensing properties of CSA doped polyaniline–ZnO nanocomposites. Measurement 2012, 45, 243–249. [Google Scholar] [CrossRef]
- Wang, J.; Chan, S.; Carlson, R.R.; Luo, Y.; Ge, G.; Ries, R.S.; Heath, J.R.; Tseng, H.-R. Electrochemically Fabricated Polyaniline Nanoframework Electrode Junctions that Function as Resistive Sensors. Nano Lett. 2004, 4, 1693–1697. [Google Scholar] [CrossRef]
- Sharma, S.; Nirkhe, C.; Pethkar, S.; Athawale, A.A. Chloroform vapour sensor based on copper/polyaniline nanocomposite. Sens. Actuators B Chem. 2002, 85, 131–136. [Google Scholar] [CrossRef]
- Turemis, M.; Zappi, D.; Giardi, M.T.; Basile, G.; Ramanaviciene, A.; Kapralovs, A.; Ramanavicius, A.; Viter, R. ZnO/polyaniline composite based photoluminescence sensor for the determination of acetic acid vapor. Talanta 2020, 211, 120658. [Google Scholar] [CrossRef] [Green Version]
- Butler, S.K.; Li, F.; Chaube, R.; Laskowski, D.; Lui, C.C. A Single Use Biosensor for the Detection of Nitric Oxide (NO) at ppb and sub-μM Level in Gas-and Liquid- Phase Media. Curr. Biomark. Re-Organ. 2015, 6, 3–9. [Google Scholar] [CrossRef]
- Miasik, J.J.; Hooper, A.; Tofield, B.C. Conducting polymer gas sensors. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 1986, 82, 1117. [Google Scholar] [CrossRef]
- Le Goff, A.; Holzinger, M.; Cosnier, S. Enzymatic biosensors based on SWCNT-conducting polymer electrodes. Analyst 2011, 136, 1279. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, J.; Xie, D.; Chen, G. Polyaniline-Coated Fe3O4 Nanoparticle-Carbon-Nanotube Composite and its Application in Electrochemical Biosensing. Small 2008, 4, 462–466. [Google Scholar] [CrossRef]
- Dhand, C.; Solanki, P.R.; Sood, K.N.; Datta, M.; Malhotra, B.D. Polyaniline nanotubes for impedimetric triglyceride detection. Electrochem. Commun. 2009, 5. [Google Scholar] [CrossRef]
- Pringsheim, E.; Zimin, D.; Wolfbeis, O.S. Fluorescent Beads Coated with Polyaniline: A Novel Nanomaterial for Optical Sensing of pH. 4. Adv. Mater. 2001, 13, 819–822. [Google Scholar] [CrossRef]
- Wang, X.; Shao, M.; Shao, G.; Fu, Y.; Wang, S. Reversible and efficient photocurrent switching of ultra-long polypyrrole nanowires. Synth. Met. 2009, 4. [Google Scholar] [CrossRef]
- Fomo, G.; Waryo, T.; Feleni, U.; Baker, P.; Iwuoha, E. Electrochemical Polymerization. In Functional Polymers; Jafar Mazumder, M.A., Sheardown, H., Al-Ahmed, A., Eds.; Polymers and Polymeric Composites: A Reference Series; Springer International Publishing: Cham, Switzerland, 2019; pp. 105–131. ISBN 978-3-319-95987-0. [Google Scholar]
- Gvozdenović, M.M.; Jugović, B.Z.; Stevanović, J.S.; Grgur, B.N. Electrochemical synthesis of electroconducting polymers. Hem. Ind. 2014, 68, 673–684. [Google Scholar] [CrossRef] [Green Version]
- Martyak, N.M.; McAndrew, P.; McCaskie, J.E.; Dijon, J. Electrochemical polymerization of aniline from an oxalic acid medium. Prog. Org. Coat. 2002, 45, 23–32. [Google Scholar] [CrossRef]
- Sabouraud, G.; Sadki, S.; Brodie, N. The mechanisms of pyrrole electropolymerization. Chem. Soc. Rev. 2000, 29, 283–293. [Google Scholar] [CrossRef]
- Unjaroen, D.; Swart, M.; Browne, W.R. Electrochemical Polymerization of Iron(III) Polypyridyl Complexes through C–C Coupling of Redox Non-innocent Phenolato Ligands. Inorg. Chem. 2017, 56, 470–479. [Google Scholar] [CrossRef]
- Billaud, D.; Maarouf, E.B.; Hannecart, E. Electrochemical polymerization of indole. Polymer 1994, 35, 2010–2011. [Google Scholar] [CrossRef]
- Huang, J.; Kaner, R.B. Nanofiber Formation in the Chemical Polymerization of Aniline: A Mechanistic Study. Angew. Chem. 2004, 116, 5941–5945. [Google Scholar] [CrossRef]
- Stanke, D.; Hallensleben, M.L.; Toppare, L. Oxidative polymerization of pyrrole with iron chloride in nitromethane. Synth. Met. 1995, 72, 159–165. [Google Scholar] [CrossRef]
- Kudoh, Y.; Akami, K.; Matsuya, Y. Chemical polymerization of 3,4-ethylenedioxythiophene using an aqueous medium containing an anionic surfactant. Synth. Met. 1998, 98, 65–70. [Google Scholar] [CrossRef]
- Ahmad, Z.; Manzoor, S.; Talib, M.; Islam, S.S.; Mishra, P. Self-standing MWCNTs based gas sensor for detection of environmental limit of CO2. Mater. Sci. Eng. B 2020, 255, 114528. [Google Scholar] [CrossRef]
- Arunragsa, S.; Seekaew, Y.; Pon-On, W.; Wongchoosuk, C. Hydroxyl edge-functionalized graphene quantum dots for gas-sensing applications. Diam. Relat. Mater. 2020, 105, 107790. [Google Scholar] [CrossRef]
- Han, M.; Kim, J.K.; Lee, J.; An, H.K.; Yun, J.P.; Kang, S.-W.; Jung, D. Room-Temperature Hydrogen-Gas Sensor Based on Carbon Nanotube Yarn. J. Nanosci. Nanotechnol. 2020, 20, 4011–4014. [Google Scholar] [CrossRef] [PubMed]
- Liang, T.; Liu, R.; Lei, C.; Wang, K.; Li, Z.; Li, Y. Preparation and Test of NH3 Gas Sensor Based on Single-Layer Graphene Film. Micromachines 2020, 11, 965. [Google Scholar] [CrossRef]
- Raeyani, D.; Shojaei, S.; Ahmadi-Kandjani, S. Optical graphene quantum dots gas sensors: Experimental study. Mater. Res. Express 2020, 7, 015608. [Google Scholar] [CrossRef]
- Kuretake, T.; Kawahara, S.; Motooka, M.; Uno, S. An Electrochemical Gas Biosensor Based on Enzymes Immobilized on Chromatography Paper for Ethanol Vapor Detection. Sensors 2017, 17, 281. [Google Scholar] [CrossRef] [Green Version]
- Kudo, H.; Suzuki, Y.; Gessei, T.; Takahashi, D.; Arakawa, T.; Mitsubayashi, K. Biochemical gas sensor (bio-sniffer) for ultrahigh-sensitive gaseous formaldehyde monitoring. Biosens. Bioelectron. 2010, 26, 854–858. [Google Scholar] [CrossRef]
- Chien, P.-J.; Suzuki, T.; Tsujii, M.; Ye, M.; Toma, K.; Arakawa, T.; Iwasaki, Y.; Mitsubayashi, K. Bio-sniffer (gas-phase biosensor) with secondary alcohol dehydrogenase (S-ADH) for determination of isopropanol in exhaled air as a potential volatile biomarker. Biosens. Bioelectron. 2017, 91, 341–346. [Google Scholar] [CrossRef]
- Arduini, F.; Amine, A.; Moscone, D.; Ricci, F.; Palleschi, G. Fast, sensitive and cost-effective detection of nerve agents in the gas phase using a portable instrument and an electrochemical biosensor. Anal. Bioanal. Chem. 2007, 388, 1049–1057. [Google Scholar] [CrossRef]
- Edwards, C.; Duanghathaipornsuk, S.; Goltz, M.; Kanel, S.; Kim, D.-S. Peptide Nanotube Encapsulated Enzyme Biosensor for Vapor Phase Detection of Malathion, an Organophosphorus Compound. Sensors 2019, 19, 3856. [Google Scholar] [CrossRef] [Green Version]
- Monkawa, A.; Gessei, T.; Takimoto, Y.; Jo, N.; Wada, T.; Sanari, N. Highly sensitive and rapid gas biosensor for formaldehyde based on an enzymatic cycling system. Sens. Actuators B Chem. 2015, 210, 241–247. [Google Scholar] [CrossRef] [Green Version]
- Mattias Sandström, K.J.; Sunesson, A.-L.; Levin, J.-O.; Turner, A.P.F. A gas-phase biosensor for environmental monitoring of formic acid: Laboratory and field validation. J. Env. Monit 2003, 5, 477–482. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Ramnani, P.; Pham, T.; Villarreal, C.C.; Yu, X.; Liu, G.; Mulchandani, A. Gas Biosensor Arrays Based on Single-Stranded DNA-Functionalized Single-Walled Carbon Nanotubes for the Detection of Volatile Organic Compound Biomarkers Released by Huanglongbing Disease-Infected Citrus Trees. Sensors 2019, 19, 4795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, Y.; Yang, T.; Zhao, X.; Cai, Z.; Chen, G.; Yao, M.; Chen, K.; Bick, M.; Wang, J.; Li, S.; et al. A wireless energy transmission enabled wearable active acetone biosensor for non-invasive prediabetes diagnosis. Nano Energy 2020, 74, 104941. [Google Scholar] [CrossRef]
- Hulko, M.; Hospach, I.; Krasteva, N.; Nelles, G. Cytochrome C Biosensor—A Model for Gas Sensing. Sensors 2011, 11, 5968–5980. [Google Scholar] [CrossRef] [PubMed]
- Misawa, N.; Fujii, S.; Kamiya, K.; Osaki, T.; Takaku, T.; Takahashi, Y.; Takeuchi, S. Construction of a Biohybrid Odorant Sensor Using Biological Olfactory Receptors Embedded into Bilayer Lipid Membrane on a Chip. ACS Sens. 2019, 4, 711–716. [Google Scholar] [CrossRef] [PubMed]
- Cheol Gil, G.; Mitchell, R.J.; Tai Chang, S.; Bock Gu, M. A biosensor for the detection of gas toxicity using a recombinant bioluminescent bacterium. Biosens. Bioelectron. 2000, 15, 23–30. [Google Scholar] [CrossRef]
- Werlen, C.; Jaspers, M.C.M.; van der Meer, J.R. Measurement of Biologically Available Naphthalene in Gas and Aqueous Phases by Use of a Pseudomonas putida Biosensor. Appl. Environ. Microbiol. 2004, 70, 43–51. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Cai, H.; Xu, Y.; Li, Y.; Li, R.; Wang, P. Olfactory cell-based biosensor: A first step towards a neurochip of bioelectronic nose. Biosens. Bioelectron. 2006, 22, 318–322. [Google Scholar] [CrossRef]
- Lonappan, L.; Liu, Y.; Rouissi, T.; Pourcel, F.; Brar, S.K.; Verma, M.; Surampalli, R.Y. Covalent immobilization of laccase on citric acid functionalized micro-biochars derived from different feedstock and removal of diclofenac. Chem. Eng. J. 2018, 351, 985–994. [Google Scholar] [CrossRef]
- Cirillo, G.; Nicoletta, F.P.; Curcio, M.; Spizzirri, U.G.; Picci, N.; Iemma, F. Enzyme immobilization on smart polymers: Catalysis on demand. React. Funct. Polym. 2014, 83, 62–69. [Google Scholar] [CrossRef]
- Barathi, P.; Thirumalraj, B.; Chen, S.-M.; Angaiah, S. A simple and flexible enzymatic glucose biosensor using chitosan entrapped mesoporous carbon nanocomposite. Microchem. J. 2019, 147, 848–856. [Google Scholar] [CrossRef]
- Ganonyan, N.; Benmelech, N.; Bar, G.; Gvishi, R.; Avnir, D. Entrapment of enzymes in silica aerogels. Mater. Today 2020, 33, 24–35. [Google Scholar] [CrossRef]
- Liu, Y.; Wei, M. Development of acetylcholinesterase biosensor based on platinum–carbon aerogels composite for determination of organophosphorus pesticides. Food Control 2014, 36, 49–54. [Google Scholar] [CrossRef]
- Castrovilli, M.C.; Bolognesi, P.; Chiarinelli, J.; Avaldi, L.; Cartoni, A.; Calandra, P.; Tempesta, E.; Giardi, M.T.; Antonacci, A.; Arduini, F.; et al. Electrospray deposition as a smart technique for laccase immobilisation on carbon black-nanomodified screen-printed electrodes. Biosens. Bioelectron. 2020, 163, 112299. [Google Scholar] [CrossRef]
- Castrovilli, M.C.; Bolognesi, P.; Chiarinelli, J.; Avaldi, L.; Calandra, P.; Antonacci, A.; Scognamiglio, V. The convergence of forefront technologies in the design of laccase-based biosensors—An update. TrAC Trends Anal. Chem. 2019, 119, 115615. [Google Scholar] [CrossRef]
- NEMOSINE PROJECT—Innovative packaging solutions for storage and conservation of 20th century cultural heritage of artefacts based on cellulose derivative. Available online: https://nemosineproject.eu/index.php (accessed on 8 October 2020).
- Shetti, N.P.; Bukkitgar, S.D.; Reddy, K.R.; Reddy, C.V.; Aminabhavi, T.M. Nanostructured titanium oxide hybrids-based electrochemical biosensors for healthcare applications. Colloids Surf. B Biointerfaces 2019, 178, 385–394. [Google Scholar] [CrossRef]
- Danielson, E.; Dhamodharan, V.; Porkovich, A.; Kumar, P.; Jian, N.; Ziadi, Z.; Grammatikopoulos, P.; Sontakke, V.A.; Yokobayashi, Y.; Sowwan, M. Gas-Phase Synthesis for Label-Free Biosensors: Zinc-Oxide Nanowires Functionalized with Gold Nanoparticles. Sci. Rep. 2019, 9, 17370. [Google Scholar] [CrossRef] [Green Version]
Approaches | Fabrication Method | Nanostructure Example | Reference |
---|---|---|---|
Top–Down | High-resolution lithography | Nanowires | [17] |
Nanoparticles | [42] | ||
Nanorods | [43] | ||
Nanodisks | [44] | ||
Nanoarrays | [45] | ||
Electrospinning | Nanofiber | [18] | |
Nanowires | [20] | ||
Bottom–Up | Chemical vapor deposition | Nanowires | [31,32] |
Nanoribbons | |||
Nanorods | |||
Nanoparticles | |||
Anodic aluminum oxide membranes | Nanowires | [46] | |
Nanoarrays | |||
Nanopillars | [47] | ||
Nanotubes | [48] | ||
Hydrothermal synthesis | Nanoparticles | [21] | |
Nanotubes | [14] | ||
Nanoflakes | [10] | ||
Hummers method | Graphene oxide nanostructures | [38] | |
Sacrificial anode electrolysis | Metal nanoparticles | [39,40,41] | |
Metal oxide nanoparticles |
Polymerization Method | Polymerization Products | Reference |
---|---|---|
Electrical Polymerization | Polyaniline | [22,66] |
Polypyrrole | [67] | |
Polypyridyl | [68] | |
Polyindole | [69] | |
Chemical Polymerization | Polyaniline | [22] |
Polypyrrole | [70] | |
Polythiophene | [72] |
Metal Oxide-Based Sensors | Polymer-Based Sensors | Carbon-Based Material Sensors | |||
---|---|---|---|---|---|
Pros | Cons | Pros | Cons | Pros | Cons |
High surface-to-volume ratio, large surface area | Require high temperature to work | Operate at room temperature | Response is often unspecific (toward “class” of gasses instead of one) | High surface-to-volume ratio, large surface area | Possible sensing material agglomeration |
Can be synthetized in different shapes to tune response to target gas | Response often degrades over time when continuously exposed to gasses | Simple fabrication process | Response may strongly degrade if exposed to temperatures significantly different from RT | Operate at room temperature | Limited detection range |
Possible sensing material agglomeration | May have limited gas absorption and non-linear sensor response | ||||
Solutions | Solutions | Solutions | |||
“Doping” using other metal/metal oxides/polymers to create multi metal or hybrid systems, lowering operating temperature, increasing selectivity and/or lifetime | “Doping” and/or modification using other materials (i.e., carbon structures, metal oxides) to improve selectivity of response | Improved deposition techniques and nanomaterial functionalization (i.e., other carbon-based nanostructures and/or metal oxide nanoparticles) to improve detection range and linearity of response |
Immobilization Method | Immobilization Surface | Reference |
---|---|---|
Covalent binding | Citric acid-functionalized biochar | [92] |
poly-(ethylene glycol) dimethacrylate | [93] | |
Matrix entrapment | Carbon nanospheres | [94] |
Aerogels | [95,96] | |
Electrospray ionization | Glassy carbon electrodes | [97,98] |
Type of Sensing Element | Sensing Element | Target Gas | Working Temperature of Sensing Element (°C) | Interferents | DATA | Reference | |
---|---|---|---|---|---|---|---|
Limit of Detection (ppm) | Upper Limit of Linearity (ppm) | ||||||
Resistance variation of nanostructured material | TiO nanocrystal | Benzaldehyde | 300 | No interference from EtOH, acetone, benzene, toluene, benzyl alcohol, methanol, ammonia gas | 10 | 800 | [10] |
Metal oxide thin film | Single crystalline In2O3 thin films doped with Mg | Ozone | Nd | Nd | 0.05 | Nd | [11] |
Thin hybrid film for SPR | TiO2/Au hybrid | Formaldehyde | Room temperature | No interference from CO2, H2O, and N2 | 0.2 | 3.5 | [13] |
Metal oxide pure and mixtures | ZnO, SnO ZnO-SnO | 1-butanol | 350 | Nd | ZnO: 0.05 SnO: 0.1 ZnO–SnO: 0.025 | Nd | [12] |
RFID platform with metal oxide–nanotube sensor | SWCNT decorated with Cu nanoparticles | H2S | Room temperature | Nd | 0.1 | 50 | [14] |
Layer-by-layer structure | PANI/GO/PANI/ZnO | NH3 | Room temperature | Nd | 25 | 500 | [21] |
Mixed nanocomposites | Polyaniline/graphene oxide/ zinc oxide | NH3 | 80 | No interference from liquid propane gas, CO2, H2S | 50 | 1000 | [22] |
Spin-coated composite material | Camphor sulfonic acid doped polyaniline–zinc oxide nanocomposites | NH3 | Room temperature | No interference from NO2, H2S, ethanol, methanol | 10 | 100 | [53] |
Conductive nanowires | Polyaniline nanowires | NH3 | Room temperature | HCl, ethanol, polar organic vapors | 0.5 | Nd | [54] |
Chemically synthesized nanocomposite | Cu/PANI | Chloroform | Room temperature | No interference from hexane | 10 | 100 | [55] |
Nanostructure–nanowire composite | ZnO/PANI | Acetic acid | Room temperature | No interference from H2O, ethanol | 1.2 | 10 | [56] |
Ni (II) tetrakis (3-methoxy-4-hydroxyphenyl) porphyrin selective for target gas | Thin-film platinum-based electrochemical sensor | NO | Room temperature | Nd | 0.005 | 0.025 | [57] |
MWCNT sensor for CO2 quantification | MWCNT in alumina sol | CO2 | Room temperature | Nd | 50 | 450 | [73] |
Hydroxyl edge-functionalized graphene quantum dots | Modified graphene quantum dots on nickel electrodes | NH3 | Room temperature | No interference from formalin, ethanol, methanol, toluene, acetone; small interference from O2, dimethylformamide | 10 | 500 | [74] |
Carbon nanotube yarn | Acid-activated carbon nanotubes | H2 | Room temperature | No interference from acetylene, methane, CO, and CO2 | 20,000 | 200,000 | [75] |
Single layer graphene/Au electrode | Single-layer graphene film | NH3 | Room temperature | Nd | 100 | 800 | [76] |
Optical-based graphene quantum dot | Graphene quantum dots | CO2 | Room temperature | Nd | 100 | 1000 | [77] |
Chromatography paper as enzyme supporting and a liquid phase layer on top of electrode | Alcohol oxidase-horse radish peroxidase couple | Ethanol | Room temperature | Nd | 50 | 500 | [78] |
Fiber-optic biochemical gas sensor (Bio-Sniffer) | Fluorescence of NADH produced by formaldehyde dehydrogenase | Formaldehyde | Room temperature | No interference from acetaldehyde, acetone, benzene, methanol, ethanol | 0.0025 | 10 | [79] |
Fiber-optic biochemical gas sensor (Bio-Sniffer) | Fluorescence of NADH produced by secondary alcohol dehydrogenase | Isopropanol | Room temperature | 1-propanol, 1-butanol | 0.001 | 9.060 | [80] |
Amperometric biosensor | Butyrylcholinesterase inhibition | Nerve agents (Sarin) | Room temperature | Nd | Paraoxon 0.005 Sarin 0.012 VX 0.014 | Paraoxon 0.100 Sarin 0.020 VX 0.150 | [81] |
Sensing element encapsulated in peptide nanotubes and Nafion | Butyrylcholinesterase coupled with horseradish peroxidase | Malathion | Room temperature | Nd | 0.006 | 0.025 | [82] |
Enzymatic cycling system | NAD+ coupled with WST-8 and diaphorase enzyme | Formaldehyde | Room temperature | Acetaldehyde, methanol, ethanol, acetone, formic acid | 0.0015 | 0.08 | [83] |
Electrochemical sensor | Formate dehydrogenase | Formic acid | Room temperature | No interference from methanol, formaldehyde, small interference of acetic acid | 0.016 | Nd | [84] |
Modified single-wall carbon nanotubes | Single-strained DNA | Ethylhexanol, linalool, tetradecene, and phenylacetaldehyde | Room temperature | Interferent VOC discarded through PCA | Nd | Nd | [85] |
Composite film-based sensor | Chitosan-reduced graphene oxide | Acetone | Room temperature | Small interference from ethylene, formaldehyde, ethanol, methane, and carbon monoxide | 10 | Nd | [86] |
SnO2-layer on fluorine-doped tin oxide (FTO)-coated glass | Cytochrome c | Methanethiol | Room temperature | Nd | Nd | Nd | [87] |
Reconstructed bilayer lipid membrane | Mosquito olfactory receptors | 1-octen-3-ol | Room temperature | No interference from octanol, octanone | 0.01 | 0.2 | [88] |
Whole-cell biosensor based on recombinant E. coli | Lac:luxCDABE fusion | Benzene | Room temperature | Nd | 48 | Nd | [89] |
Bioluminescent biosensor | P. putida modified pPG7 | Naphthalene | Room temperature | Small responses from DMSO, various methylated naphthalenes | 0.064 | Nd | [90] |
Light-addressable potentiometric sensor | Olfactory receptor neurons and olfactory bulb cells | Acetic acid | Room temperature | Nd | 1.19 | 59.5 | [91] |
Non-Biological Sensing Material | Biological Sensing Material | ||
---|---|---|---|
Pros | Cons | Pros | Cons |
Cheap to produce | Often quite non-specific towards target gas | Bio element is often quite specific for target molecule | Sensor must be stored at a fixed condition to prevent bio element degradation |
Minimal maintenance of finalized sensor | Require complex post-processing of obtained signal to eliminate noise and/or interferents | Detection can happen at extremely low levels (ppb/ppt) | Bio element may degrade over time, influencing the sensor response |
Can be easily integrated into electronic systems | Require material often toxic and/or highly costly | Material to assemble sensors has low environmental impact | Not all bio elements work well for the recognition of gas-phase targets |
Can be easily mass-produced | Can be difficult to separate signal from analyte from degradation of sensing material | Genetic editing may render biosensor even more specific and/or sensible for target | Procedures involved in sensor creation may be difficult to replicate in mass production |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zappi, D.; Ramma, M.M.; Scognamiglio, V.; Antonacci, A.; Varani, G.; Giardi, M.T. High-Tech and Nature-Made Nanocomposites and Their Applications in the Field of Sensors and Biosensors for Gas Detection. Biosensors 2020, 10, 176. https://doi.org/10.3390/bios10110176
Zappi D, Ramma MM, Scognamiglio V, Antonacci A, Varani G, Giardi MT. High-Tech and Nature-Made Nanocomposites and Their Applications in the Field of Sensors and Biosensors for Gas Detection. Biosensors. 2020; 10(11):176. https://doi.org/10.3390/bios10110176
Chicago/Turabian StyleZappi, Daniele, Matiss Martins Ramma, Viviana Scognamiglio, Amina Antonacci, Gabriele Varani, and Maria Teresa Giardi. 2020. "High-Tech and Nature-Made Nanocomposites and Their Applications in the Field of Sensors and Biosensors for Gas Detection" Biosensors 10, no. 11: 176. https://doi.org/10.3390/bios10110176