ZnO Nanorods Based Enzymatic Biosensor for Selective Determination of Penicillin
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Preparation of Sensor Electrodes
2.3. Immobilization of the Enzyme
3. Results and Discussion
Performance Evaluation of the Sensor
4. Conclusions
References
- Yakovlev, V.P.; Yakovlev, S.V. Ratsional’naya Anti Mikrobnaya Farmakoterapiya (Rational Antimicrobial Pharmacotherapy); Litterra: Moscow, Russia, 2007. [Google Scholar]
- Pikkemaat, M.G. Microbial screening methods for detection of antibiotic residues in slaughter animals. Anal Bioanal. Chem. 2009, 395, 893–905. [Google Scholar] [CrossRef]
- Sokolova, L.I.; Chernyaev, A.P. Determination of benzyl penicillin, levomycetin (chloramphenicol), and tetracycline in food products by high-performance liquid chromatography. J. Anal. Chem. 2001, 6, 1032–1034. [Google Scholar] [CrossRef]
- BenitoPeo, E.; PartalRodera, A.I.; Leonzoz, M.E.; Moreno-Bondi, M.C. Evaluation of mixed mode solid phase extraction cartridges for the preconcentration of beta-lactam antibiotics in wastewater using liquid chromatography with UV-DAD detection. Anal. Chem. Acta 2006, 556, 415–422. [Google Scholar] [CrossRef]
- Akhmad, A.S.; Rakhman, N.; Islam, F. Spectrophotometric determination of ampicillin, amoxycillin, and carbenicillin using folin-ciocalteu phenol reagent. J. Anal. Chem. 2004, 59, 119–123. [Google Scholar] [CrossRef]
- Krasnikova, A.V.; Iozep, A.A. Spectrophotometric determination of penicillin antibiotics. Pharmaceut. Chem. J. 2000, 33, 931–948. [Google Scholar]
- El Walily, M.; Gazy, A.; Belal, S. Use of cerium (IV) in the spectrophotometric and spectrofluorimetric determinations of penicillins and cephalosporins in their pharmaceutical preparations. Spectroscop. Lett. 2000, 33, 931–948. [Google Scholar] [CrossRef]
- Xiao, Y.; Wang, H.Y.; Han, J. Simultaneous determination of carvedilol and ampicillin sodium by synchronous fluorimetry. Spectrochim. Acta 2005, 61, 567–573. [Google Scholar] [CrossRef]
- Santos, E.M.G.; Araújo, A.N.; Couto, C.M. Montenegro, M.C.; Kejzlarová, A.; Solich, P. Ion selective electrodes for penicillin-G based on Mn(III) TPP-Cl and their application in pharmaceutical formulations control by sequential injection analysis. J. Pharm. Biomed. Anal. 2004, 36, 701–709. [Google Scholar] [CrossRef]
- Kulapina, E.G.; Baraguzina, V.V.; Kulapina, O.I. Ion-selective electrodes for determining penicillin antibiotics in biological fluids and pharmaceutical forms. J. Anal. Chem. 2004, 59, 875–879. [Google Scholar] [CrossRef]
- Shvedene, N.V.; Borovskaya, S.V. Determination of β-lactam antibiotics by potentiometric with ion-selective electrodes. J. Anal. Chem. 2004, 58, 1085–1090. [Google Scholar] [CrossRef]
- Kulapina, E.G.; Barinova, O.V.; Kulapina, O.I.; Utts, I.A.; Snesarev, S.V. Modern methods of antibiotic determination in biological samples and drugs (review). Antibiot. Khimioter. 2009, 54, 53–60. [Google Scholar]
- Enfors, S.O.; Nilsson, H. Design and response characteristics of an enzyme electrode for measurement of penicillin in fermentation broth. Enzyme Microb. Technol. 1979, 1, 260–264. [Google Scholar] [CrossRef]
- Caras, S.; Janata, J. Field effect transistor sensitive to penicillin. J. Anal. Chem. 1980, 52, 1935–1937. [Google Scholar] [CrossRef]
- Miyahara, Y.; Moriizumi, T.; Ichimura, K. Integrated enzyme FET’s for simultaneous detection of urea and glucose. Sens. Actuat. 1985, 7, 1–10. [Google Scholar] [CrossRef]
- Vlasov, Y.; Bratov, A.; Levichev, S.; Tarantov, Y. Enzyme semiconductor sensor based on butyrylcholinesterase. Sens. Actuat. B 1991, 4, 283–286. [Google Scholar] [CrossRef]
- Sakai, H.; Kaneki, N.; Hara, H. Analytical application for chemicals using an enzyme sensor based on an ISFET. Sens. Actuat. B 1993, 13-14, 578–580. [Google Scholar] [CrossRef]
- Patolsky, F.; Lieber, C.M. Nanowire nanosensors. Mater. Today 2005, 8, 20–28. [Google Scholar] [CrossRef]
- Errachid, A.; Zine, N.; Samitier, J.; Bausells, J. FET-based chemical sensor systems fabricated with standard technologies. Electroanalysis 2004, 16, 1843–1851. [Google Scholar] [CrossRef]
- Eggins, B. Chemical Sensors and Biosensors in Analytical Techniques in the Sciences; Wiley: West Sussex, UK, 2002. [Google Scholar]
- Schoning, M.J.; Poghossian, A. Recent advances in biologically sensitive field-effect transistors (BioFETs). Analyst 2002, 27, 1137–1151. [Google Scholar]
- Brand, U.; Reinhardt, B.; Riither, F.; Scheper, T.; Schllgerl, K. Bio-field-effect transistors for process control in biotechnology. Sens. Actuat. B 1991, 4, 315–318. [Google Scholar] [CrossRef]
- Thust, M.; Schiining, M.J.; Vetter, J.; Kordos, P.; Liith, H. A long-term stable penicillin-sensitive potentiometric biosensor with enzyme immobilized by heterobifunctional cross-linking. Anal. Chim. Acta 1996, 323, 115–121. [Google Scholar] [CrossRef]
- Beyer, M.; Menzel, C.; Quack, R.; Schepcr, T.; Schiigerl, K.; Treichel, W.; Voigt, H.; Ullrich, M.; Ferretti, R. Development and application of a new enzyme sensor type based on the EIS-capacitance structure for bioprocess control. Biosens. Bioelectron. 1994, 9, 17–21. [Google Scholar] [CrossRef]
- Xu, L.; Zhu, Y.; Tang, L.; Yang, X.; Li, C. Biosensor based on self-assembling glucose oxidase and dendrimer-encapsulated Pt nanoparticles on carbon nanotubes for glucose detection. Electroanalysis 2007, 19, 717–722. [Google Scholar] [CrossRef]
- Heo, Y.W.; Norton, D.P.; Tien, L.C.; Kwon, Y.; Kang, B.S.; Ren, F.; Pearton, S.J.; LaRoche, J.R. ZnO nanowire growth and devices. Mater. Sci. Eng. 2004, 47, 1–47. [Google Scholar] [CrossRef]
- Fan, Z.; Lu, J.G. Zinc oxide nanostructures: Synthesis and properties. J. Nanosci. Nanotechnol. 2005, 5, 1561–1573. [Google Scholar] [CrossRef]
- Ram, M.K.; Adami, M.; Paddeu, S.; Nicolini, C. Nano-assembly of glucose oxidase on the in situ self-assembled films of polypyrrole and its optical, surface and electrochemical characterizations. Nanotechnology 2000, 11, 112–119. [Google Scholar] [CrossRef]
- Zhu, X.L.; Yuri, I.; Gan, X.; Suzuki, I.; Li, G.X. Electrochemical study of the effect of nano-zinc oxide on microperoxidase and its application to more sensitive hydrogen peroxide biosensor preparation. Biosens. Bioelectron. 2007, 22, 1600–1604. [Google Scholar] [CrossRef]
- Zhang, F.F.; Wang, X.L.; Ai, S.Y.; Sun, Z.D.; Wan, Q.; Zhu, Z.Q.; Xian, Y.Z.; Jin, L.T.; Yamamoto, K. Immobilization of uricase on ZnO nanorods for a reagent less uric acid biosensor. Anal. Chem. Acta 2004, 519, 155–160. [Google Scholar] [CrossRef]
- Singh, S.P.; Arya, S.K.; Pandey, P.; Malhotra, B.D.; Saha, S.; Sreenivas, K.; Gupta, V. Cholesterol biosensor based on rf sputtered zinc oxide nonporous thin film. Appl. Phys. Lett. 2007, 91, 63901–63903. [Google Scholar]
- Zhao, Z.W.; Chen, X.J.; Tay, B.K.; Chen, J.S.; Han, Z.J.; Khor, K.A. A novel Amperometric biosensor based on ZnO: Co nanoclusters for biosensing glucose. Biosens. Bioelectron. 2007, 23, 135–139. [Google Scholar] [CrossRef]
- Wang, J.X.; Sun, X.W.; Wei, A.; Lei, Y.; Cai, X.P.; Li, C.M.; Dong, Z.L. Zinc oxide nanocomb biosensor for glucose detection. Appl. Phys. Lett. 2006, 88, 233106–233108. [Google Scholar] [CrossRef]
- Zang, J.F.; Li, C.M.; Cui, X.Q.; Wang, J.X.; Sun, X.W.; Dong, H.; Sun, C.Q. Tailoring zinc oxide nanowires for high performance amperometric glucose sensor. Electroanalysis 2007, 19, 1008–1014. [Google Scholar] [CrossRef]
- Ali, S.M.U.; Nur, O.; Willander, M.; Danielsson, B. Glucose detection with a commercial MOFET using a ZnO nanowires extended GATE. IEEE Trans. Nanotechnol. 2009, 8, 678–683. [Google Scholar] [CrossRef]
- Ali, S.M.U.; Nur, O.; Willander, M.; Danielsson, B. A fast and sensitive potentiometric glucose microsensor based on glucose oxidase coated ZnO nanowires grown on a thin silver wire. Sens. Actuat. B 2010, 145, 869–874. [Google Scholar] [CrossRef]
- Ali, S.M.U.; Alvi, N.H.; Ibupoto, Z.H.; Nur, O.; Willander, M.; Danielsson, B. Selective potentiometric determination of uric acid with uricase immobilized on ZnO nanowires. Sens. Actuat. B 2010, 2, 241–247. [Google Scholar]
- Shaw, G.W.; Claremont, D.J.; Pickup, J.C.; Bergveld, P. Highly sensitive glucose sensor based on work function changes measured by an EMOSFET. Analyst 2003, 128, 1062–1066. [Google Scholar] [CrossRef]
- Al-Hilli, S.M.; Al-Mofarji, R.T.; Klason, P.; Willander, M. Zinc oxide nanorods grownon two-dimensional macroporous periodic structures and plane Si as a pH Sensor. J. Appl. Phys. 2008. [Google Scholar] [CrossRef]
- Leszczynaska, E.; Koncki, R.; Glab, S. Biosensors with immobilized penicillin amidohydrolase and penicillinase for determination of β-lactam antibiotics. Chem. Anal. 1996, 41, 839–844. [Google Scholar]
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Ibupoto, Z.H.; Ali, S.M.U.; Khun, K.; Chey, C.O.; Nur, O.; Willander, M. ZnO Nanorods Based Enzymatic Biosensor for Selective Determination of Penicillin. Biosensors 2011, 1, 153-163. https://doi.org/10.3390/bios1040153
Ibupoto ZH, Ali SMU, Khun K, Chey CO, Nur O, Willander M. ZnO Nanorods Based Enzymatic Biosensor for Selective Determination of Penicillin. Biosensors. 2011; 1(4):153-163. https://doi.org/10.3390/bios1040153
Chicago/Turabian StyleIbupoto, Zafar Hussain, Syed Muhammad Usman Ali, Kimleang Khun, Chan Oeurn Chey, Omer Nur, and Magnus Willander. 2011. "ZnO Nanorods Based Enzymatic Biosensor for Selective Determination of Penicillin" Biosensors 1, no. 4: 153-163. https://doi.org/10.3390/bios1040153
APA StyleIbupoto, Z. H., Ali, S. M. U., Khun, K., Chey, C. O., Nur, O., & Willander, M. (2011). ZnO Nanorods Based Enzymatic Biosensor for Selective Determination of Penicillin. Biosensors, 1(4), 153-163. https://doi.org/10.3390/bios1040153