Sustainable Desalination by 3:1 Reduced Graphene Oxide/Titanium Dioxide Nanotubes (rGO/TiONTs) Composite via Capacitive Deionization at Different Sodium Chloride Concentrations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Synthesis of 3:1 Reduced Graphene Oxide/Titanium Dioxide Nanotubes (rGO/TiONTs)
2.3. Reduced Graphene Oxide/Titanium Dioxide Nanotubes Surface Properties
2.4. Chronoamperometry at Different Initial Influent Concentrations
2.5. Chronocoulometry at Different Initial Influent Concentrations
3. Results and Discussion
3.1. Reduced Graphene Oxide/Titanium Dioxide Nanotubes Surface Properties
3.2. Chronoamperometry at Different Initial Influent Concentrations
3.3. Chronocoulometry at Different Initial Influent Concentrations
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tran, M.; Koncagul, E.; Connor, R. Water and Jobs: Facts and Figures; UN: Perugia, Italy, 2016. [Google Scholar]
- Wu, P.; Xia, L.; Dai, M.; Lin, L.; Song, S. Electrosorption of Fluoride on TiO2-Loaded Activated Carbon in Water. Colloids Surf. A Physicochem. Eng. Asp. 2016, 502, 66–73. [Google Scholar] [CrossRef]
- Tsai, Y.-C.; Doong, R. Activation of Hierarchically Ordered Mesoporous Carbons for Enhanced Capacitive Deionization Application. Synth. Met. 2015, 205, 48–57. [Google Scholar] [CrossRef]
- Chen, Z.; Song, C.; Sun, X.; Guo, H.; Zhu, G. Kinetic and Isotherm Studies on the Electrosorption of NaCl from Aqueous Solutions by Activated Carbon Electrodes. Desalination 2011, 267, 239–243. [Google Scholar] [CrossRef]
- Chang, L.M.; Duan, X.Y.; Liu, W. Preparation and Electrosorption Desalination Performance of Activated Carbon Electrode with Titania. Desalination 2011, 270, 285–290. [Google Scholar] [CrossRef]
- Li, N.; An, J.; Wang, X.; Wang, H.; Lu, L.; Ren, Z.J. Resin-Enhanced Rolling Activated Carbon Electrode for Efficient Capacitive Deionization. Desalination 2017, 419, 20–28. [Google Scholar] [CrossRef]
- Li, H.; Ma, Y.; Niu, R. Improved Capacitive Deionization Performance by Coupling TiO2 Nanoparticles with Carbon Nanotubes. Sep. Purif. Technol. 2016, 171, 93–100. [Google Scholar] [CrossRef]
- Mossad, M.; Zou, L. A Study of the Capacitive Deionisation Performance under Various Operational Conditions. J. Hazard. Mater. 2012, 213–214, 491–497. [Google Scholar] [CrossRef]
- Oren, Y. Capacitive Deionization (CDI) for Desalination and Water Treatment—Past, Present and Future (a Review). Desalination 2008, 228, 10–29. [Google Scholar] [CrossRef]
- Porada, S.; Zhao, R.; Van Der Wal, A.; Presser, V.; Biesheuvel, P.M. Review on the Science and Technology of Water Desalination by Capacitive Deionization. Prog. Mater. Sci. 2013, 58, 1388–1442. [Google Scholar] [CrossRef]
- El-Deen, A.G.; Choi, J.-H.; Kim, C.S.; Khalil, K.A.; Almajid, A.A.; Barakat, N.A.M. TiO2 Nanorod-Intercalated Reduced Graphene Oxide as High Performance Electrode Material for Membrane Capacitive Deionization. Desalination 2015, 361, 53–64. [Google Scholar] [CrossRef]
- Gao, T.; Li, H.; Zhou, F.; Gao, M.; Liang, S.; Luo, M. Mesoporous Carbon Derived from ZIF-8 for High Efficient Electrosorption. Desalination 2019, 451, 133–138. [Google Scholar] [CrossRef]
- Rasines, G.; Lavela, P.; Macías, C.; Zafra, M.C.; Tirado, J.L.; Ania, C.O. On the Use of Carbon Black Loaded Nitrogen-Doped Carbon Aerogel for the Electrosorption of Sodium Chloride from Saline Water. Electrochim. Acta 2015, 170, 154–163. [Google Scholar] [CrossRef]
- Gu, X.; Hu, M.; Du, Z.; Huang, J.; Wang, C. Fabrication of Mesoporous Graphene Electrodes with Enhanced Capacitive Deionization. Electrochim. Acta 2015, 182, 183–191. [Google Scholar] [CrossRef]
- Feng, C.; Chen, Y.; Yu, C.; Hou, C. Highly Porous Activated Carbon with Multi-Channeled Structure Derived from Loofa Sponge as a Capacitive Electrode Material for the Deionization of Brackish Water. Chemosphere 2018, 208, 285–293. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Yang, Z.; Hou, S.; Li, M.; Lv, R.; Kang, F.; Huang, Z.H. GO/Auricularia-Derived Hierarchical Porous Carbon Used for Capacitive Deionization with High Performance. Colloids Surf. A Physicochem. Eng. Asp. 2018, 547, 134–140. [Google Scholar] [CrossRef]
- Sun, Z.; Chai, L.; Liu, M.; Shu, Y.; Li, Q.; Wang, Y.; Wang, Q.; Qiu, D. Capacitive Deionization of Chloride Ions by Activated Carbon Using a Three-Dimensional Electrode Reactor. Sep. Purif. Technol. 2018, 191, 424–432. [Google Scholar] [CrossRef]
- Liu, P.I.; Chung, L.C.; Ho, C.H.; Shao, H.; Liang, T.M.; Chang, M.C.; Ma, C.C.M.; Horng, R.Y. Comparative Insight into the Capacitive Deionization Behavior of the Activated Carbon Electrodes by Two Electrochemical Techniques. Desalination 2016, 379, 34–41. [Google Scholar] [CrossRef]
- Shen, J.; Li, Y.; Wang, C.; Luo, R.; Li, J.; Sun, X.; Shen, J.; Han, W.; Wang, L. Hollow ZIFs-Derived Nanoporous Carbon for Efficient Capacitive Deionization. Electrochim. Acta 2018, 273, 34–42. [Google Scholar] [CrossRef]
- Zornitta, R.L.; Ruotolo, L.A.M. Simultaneous Analysis of Electrosorption Capacity and Kinetics for CDI Desalination Using Different Electrode Configurations. Chem. Eng. J. 2018, 332, 33–41. [Google Scholar] [CrossRef]
- Ma, J.; Wang, L.; Yu, F. Water-Enhanced Performance in Capacitive Deionization for Desalination Based on Graphene Gel as Electrode Material. Electrochim. Acta 2018, 263, 40–46. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Wang, M.; Xu, X.; Lu, T.; Sun, C.Q.; Pan, L. Phosphorus-Doped 3D Carbon Nanofiber Aerogels Derived from Bacterial-Cellulose for Highly-Efficient Capacitive Deionization. Carbon N. Y. 2018, 130, 377–383. [Google Scholar] [CrossRef]
- Zhang, W.; Jia, B. Toward Anti-Fouling Capacitive Deionization by Using Visible-Light Reduced TiO2/Graphene Nanocomposites. MRS Commun. 2015, 5, 613–617. [Google Scholar] [CrossRef]
- Lazarte, J.P.L.; Dipasupil, R.C.; Pasco, G.Y.S.; Eusebio, R.C.P.; Orbecido, A.H.; Doong, R.; Bautista-patacsil, L. Synthesis of Reduced Graphene Oxide/Titanium Dioxide Nanotubes (RGO/TNT) Composites as an Electrical Double Layer Capacitor. Nanomaterials 2018, 8, 934. [Google Scholar] [CrossRef] [PubMed]
- Bautista-Patacsil, L.; Lazarte, J.P.L.; Dipasupil, R.C.; Pasco, G.Y.; Eusebio, R.C.; Orbecido, A.; Doong, R. Deionization Utilizing Reduced Graphene Oxide-Titanium Dioxide Nanotubes Composite for the Removal of Pb2+ and Cu2+. J. Environ. Chem. Eng. 2019, 103063. [Google Scholar] [CrossRef]
- Yuan, H.; Abu-Reesh, I.M.; He, Z. Enhancing Desalination and Wastewater Treatment by Coupling Microbial Desalination Cells with Forward Osmosis. Chem. Eng. J. 2015, 270, 437–443. [Google Scholar] [CrossRef]
- Holloway, R.W.; Wait, A.S.; Fernandes da Silva, A.; Herron, J.; Schutter, M.D.; Lampi, K.; Cath, T.Y. Long-Term Pilot Scale Investigation of Novel Hybrid Ultrafiltration-Osmotic Membrane Bioreactors. Desalination 2015, 363, 64–74. [Google Scholar] [CrossRef]
- Bracco, G.; Holst, B. Surface Science Techniques; Springer: Berlin/Heidelberg, Germany, 2013; Volume 51. [Google Scholar]
- Tsai, Y.C.; Doong, R.-A. Hierarchically Ordered Mesoporous Carbons and Silver Nanoparticles as Asymmetric Electrodes for Highly Efficient Capacitive Deionization. Desalination 2016, 398, 171–179. [Google Scholar] [CrossRef]
- Ahmed, M.A.; Tewari, S. Capacitive Deionization: Processes, Materials and State of the Technology. J. Electroanal. Chem. 2018, 813, 178–192. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, Y.; Wang, R.; Wu, Y.; Xu, S.; Wang, J. Performance Comparison and Energy Consumption Analysis of Capacitive Deionization and Membrane Capacitive Deionization Processes. Desalination 2013, 324, 127–133. [Google Scholar] [CrossRef]
- Dermentzis, K.; Wessner, W. Continuous Capacitive Deionization with Regenerative Rotating Film Electrodes. Electrochem. Commun. 2018, 92, 5–8. [Google Scholar] [CrossRef]
Initial Concentration (ppm) | Initial Charge Current (A·g−1) | Initial Discharge Current (A·g−1) | Absolute Ratio |
---|---|---|---|
100 | 1.47 | −1.42 | 1.04 |
2000 | 15.15 | −4.82 | 3.14 |
15,000 | 31.97 | −2.85 | 11.22 |
30,000 | 54.44 | −16.40 | 3.32 |
Initial Concentration (ppm) | Charge after Electrosorption (mAh·g−1) | Charge after Desorption (mAh·g−1) | Percent Discharged (%) |
---|---|---|---|
100 | 71.11 | 67.5 | 5.08 |
2000 | 82.50 | 76.5 | 7.27 |
15,000 | 82.55 | 78.51 | 4.90 |
30,000 | 95.56 | 90.56 | 5.23 |
Initial Concentration (ppm) | rGO/TiONTs Mass (mg) | Specific Electrosorption Capacity (mg Sodium Chloride Per g Electrode) | Charge Efficiency (%) | Specific Energy Consumption (×106, kWh·g−1) | Energy Consumption Per Kilogram of Sodium Chloride Removed (kWh·kg−1) |
---|---|---|---|---|---|
100 | 36 | 77.66 | 99.96 | 86.11 | 1.11 |
2000 | 40 | 89.98 | 99.53 | 99.54 | 1.11 |
15,000 | 47 | 90.00 | 99.26 | 99.88 | 1.11 |
30,000 | 36 | 104.29 | 98.46 | 116.61 | 1.12 |
Electrode | Initial Concentration (ppm or mg·L−1) | Flow Rate (mL·min−1) | Time (min) | Electrosorption Capacity (mg·g−1) | Reference |
---|---|---|---|---|---|
TiO2 nanorod-rGO | 280 | 20 | 5 | 9.1 | [11] |
Mesoporous carbon | 500 | 34 | 180 | 4.8 | [12] |
Carbon black loaded N-doped carbon aerogel | 1461 (25 mM) | Not reported | 120 | 7.3 | [13] |
Fe3O4 etched mesoporous graphene | 150 (300 µS·cm−1) | 10 | 120 | 10.3 | [14] |
Highly porous activated carbon | 584.4 (10 mM) | 5 | 60 | 22.5 | [15] |
Graphene oxide/auricularia | 55.72 | Not reported | 56 | 7.74 | [16] |
Granular activated carbon | 1649 (1000 ppm Cl−) | 168 | 300 | 9.6 (5.8 mg Cl−·g−1) | [17] |
Activated carbon | 1168.8 (20 mM) | 12 | Not reported | 12.1 | [18] |
Hollow zeolitic imidazolate frameworks derived nanoporous carbon | 500 | 25 | 40 | 15.31 | [19] |
Polyaniline activated carbon | 600 | 26 | 56 | 15.3 | [20] |
Graphene hydrogel | 500 | 10 | 300 | 49.34 | [21] |
P-doped carbon nanofiber aerogels | 1649 (1000 ppm Cl−) | 50 | 60 | 16.20 | [22] |
3:1 Reduced graphene oxide/titanium dioxide nanotubes | 100 | 25 | 120 | 77.66 | This work |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lazarte, J.P.L.; Bautista-Patacsil, L.; Eusebio, R.C.P.; Orbecido, A.H.; Doong, R.-a. Sustainable Desalination by 3:1 Reduced Graphene Oxide/Titanium Dioxide Nanotubes (rGO/TiONTs) Composite via Capacitive Deionization at Different Sodium Chloride Concentrations. Nanomaterials 2019, 9, 1319. https://doi.org/10.3390/nano9091319
Lazarte JPL, Bautista-Patacsil L, Eusebio RCP, Orbecido AH, Doong R-a. Sustainable Desalination by 3:1 Reduced Graphene Oxide/Titanium Dioxide Nanotubes (rGO/TiONTs) Composite via Capacitive Deionization at Different Sodium Chloride Concentrations. Nanomaterials. 2019; 9(9):1319. https://doi.org/10.3390/nano9091319
Chicago/Turabian StyleLazarte, John Paolo L., Liza Bautista-Patacsil, Ramon Christian P. Eusebio, Aileen H. Orbecido, and Ruey-an Doong. 2019. "Sustainable Desalination by 3:1 Reduced Graphene Oxide/Titanium Dioxide Nanotubes (rGO/TiONTs) Composite via Capacitive Deionization at Different Sodium Chloride Concentrations" Nanomaterials 9, no. 9: 1319. https://doi.org/10.3390/nano9091319
APA StyleLazarte, J. P. L., Bautista-Patacsil, L., Eusebio, R. C. P., Orbecido, A. H., & Doong, R.-a. (2019). Sustainable Desalination by 3:1 Reduced Graphene Oxide/Titanium Dioxide Nanotubes (rGO/TiONTs) Composite via Capacitive Deionization at Different Sodium Chloride Concentrations. Nanomaterials, 9(9), 1319. https://doi.org/10.3390/nano9091319