Terbium Functionalized Schizochytrium-Derived Carbon Dots for Ratiometric Fluorescence Determination of the Anthrax Biomarker
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of CDs
2.3. Preparation of CDs-Tb
2.4. Characterization
2.5. Ratiometric Fluorescence Detection for DPA
3. Results
3.1. Characterization of the CDs
3.2. Characterization of CDs-Tb
3.3. Determination of the DPA
3.4. Mechanism for DPA Detection Using CDs-Tb
3.5. Selectivity of DPA Detection
3.6. Analysis in Real Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Yilmaz, M.D.; Hsu, S.H.; Reinhoudt, D.N.; Velders, A.H.; Huskens, J. Ratiometric fluorescent detection of an anthrax biomarker at molecular printboards. Angew. Chem. Int. Ed. 2010, 49, 5938–5941. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, J.; Whitney, A.V.; Elam, J.W.; Van Duyne, R.P. Ultrastable substrates for surface-enhanced raman spectroscopy: Al2O3 overlayers fabricated by atomic layer deposition yield Improved anthrax biomarker detection. J. Am. Chem. Soc. 2006, 128, 10304–10309. [Google Scholar] [CrossRef] [PubMed]
- Cable, M.L.; Kirby, J.P.; Soarasaenee, K.; Gray, H.B.; Ponce, A. Bacterial spore detection by [Tb3+ (macrocycle)(dipicolinate)] luminescence. J. Am. Chem. Soc. 2007, 129, 1474–1475. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Gu, J.P.; Chen, Y.Z.; Zhang, X.X.; Wu, H.X.; Qiao, X.G. Europium functionalized silicon quantum dots nanomaterials for ratiometric fluorescence detection of bacillus anthrax biomarker. Spectrochim. Acta Part A 2019, 212, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Gui, R.J.; Jin, H.; Bu, X.N.; Fu, Y.X.; Wang, Z.H.; Liu, Q.Y. Recent advances in dual-emission ratiometric fluorescence probes for chemo/biosensing and bioimaging of biomarkers. Coord. Chem. Rev. 2019, 383, 82–103. [Google Scholar] [CrossRef]
- Aulsebrook, M.L.; Graham, B.; Grace, M.R.; Tuck, K.L. Lanthanide complexes for luminescence-based sensing of low molecular weight analytes. Coord. Chem. Rev. 2018, 375, 191–220. [Google Scholar] [CrossRef]
- Cable, M.L.; Kirby, J.P.; Levine, D.J.; Manary, M.J.; Gray, H.B.; Ponce, A. Detection of bacterial spores with lanthanide-macrocycle binary complexes. J. Am. Chem. Soc. 2009, 131, 9562–9570. [Google Scholar] [CrossRef]
- Lee, I.; Oh, W.K.; Jang, J. Screen-printed fluorescent sensors for rapid and sensitive anthrax biomarker detection. J. Hazard. Mater. 2013, 252, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Luan, K.; Meng, R.Q.; Shan, C.F.; Cao, J.; Jia, J.G.; Liu, W.S.; Tang, Y. Terbium functionalized micelle nanoprobe for ratiometric fluorescence detection of anthrax spore biomarker. Anal. Chem. 2018, 90, 3600–3607. [Google Scholar] [CrossRef]
- Gao, N.; Zhang, Y.F.; Huang, P.C.; Xiang, Z.H.; Wu, F.Y.; Mao, L.Q. Perturbing tandem energy transfer in luminescent heterobinuclear lanthanide coordination polymer nanoparticles enables real-time monitoring of release of the anthrax biomarker from bacterial spores. Anal. Chem. 2018, 90, 7004–7011. [Google Scholar] [CrossRef]
- Zhang, L.N.; Wang, Z.W.; Zhang, J.B.; Jia, J.B.; Zhao, D.; Fan, Y.C. Phenanthroline-derivative functionalized carbon dots for highly selective and sensitive detection of Cu2+ and S2- and imaging inside live cells. Nanomaterials 2018, 8, 1071. [Google Scholar] [CrossRef] [PubMed]
- Namdari, P.; Negahdari, B.; Eatemadi, A. Synthesis, properties and biomedical applications of carbon-based quantum dots: An updated review. Biomed. Pharmacother. 2017, 87, 209–222. [Google Scholar] [CrossRef] [PubMed]
- Rong, M.C.; Deng, X.Z.; Chi, S.; Huang, L.Z.; Zhou, Y.B.; Shen, Y.N.; Chen, X. Ratiometric fluorometric determination of the anthrax biomarker 2,6-dipicolinic acid by using europium(III)-doped carbon dots in a test stripe. Microchim. Acta 2018, 185, 201–210. [Google Scholar]
- Li, P.J.; Ang, A.N.; Feng, H.T.; Li, S.F.Y. Rapid detection of an anthrax biomarker based on the recovered fluorescence of carbon dot-Cu(II) system. J. Mater. Chem. C 2017, 5, 6962–6972. [Google Scholar] [CrossRef]
- Meng, W.X.; Bai, X.; Wang, B.Y.; Liu, Z.Y.; Lu, S.Y.; Yang, B. Biomass-Derived Carbon Dots and Their Applications. Energy Environ. Mater. 2019. [Google Scholar] [CrossRef]
- Tian, C.; Wang, Q.; Zhang, C. Optical and electrochemical responses of an anthrax biomarker based on single-walled carbon nanotubes covalently loaded with terbium complexes. Chem. Commun. 2011, 47, 12521–12523. [Google Scholar]
- Zhang, Y.H.; Li, B.; Ma, H.P.; Zhang, L.M.; Zheng, Y.X. Rapid and facil retiometric detection of an anthrax biomarker by regulating energy transfer process in bio-metal-organic framework. Biosens. Bioelectron. 2016, 85, 287–293. [Google Scholar] [CrossRef]
- Ma, B.L.; Zeng, F.; Zheng, F.Y.; Wu, S.Z. Fluorescent detection of anthrax biomarker based on PVA film. Analyst 2011, 136, 3649–3655. [Google Scholar]
- Taylor, K.M.L.; Lin, W.B. Hybrid silica nanoparticles for luminescent spore detection. J. Mater. Chem. 2009, 19, 6418–6422. [Google Scholar] [CrossRef]
- Guo, L.P.; Zhang, Y.; Li, W.C. Sustainable microalgae for the simultaneous synthesis of carbon quantum dots for cellular imaging and porous carbon for CO2 capture. J. Colloid Interface Sci. 2017, 493, 257–264. [Google Scholar] [CrossRef]
- Liu, M.L.; Chen, B.B.; He, J.H.; Li, C.M.; Li, Y.F.; Huang, C.Z. Anthrax biomarker: An ultrasensitive fluorescent ratiometry of dipicolinic acid by using terbium(III)-modified carbon dots. Talanta 2019, 191, 443–448. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Xie, Y.J.; Kirillov, A.M.; Liu, L.L.; Yu, M.H.; Liu, W.S.; Tang, Y. A ratiometric fluorescent nanoprobe based on terbium functionalized carbon dots for highly sensitive detection of an anthrax biomarker. Chem. Commun. 2015, 51, 5036–5039. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Li, B.Y.; Zhong, K.L.; Lu, Y. Photoluminescence properties of N-doped carbon dots prepared in different solvents and applications in pH sensing. J. Mater. Sci. 2018, 53, 2424–2433. [Google Scholar]
- Ray, S.C.; Saha, A.; Jana, N.R.; Sarkar, R. Fluorescent carbon nanoparticles: Synthesis, characterization, and bioimaging application. J. Phys. Chem. C 2009, 113, 18546–18551. [Google Scholar] [CrossRef]
- Bao, L.; Liu, C.; Zhang, Z.L.; Pang, D.W. Photoluminescence-tunable carbon nanodots: Surface-state energy-gap tuning. Adv. Mater. 2015, 27, 1663–1667. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.; Wei, J.S.; Zhong, N.; Gao, Q.Y.; Xiong, H.M. Highly efficient red-emitting carbon dots with gram-scale yield for bioimaging. Langmuir 2017, 33, 12635–12642. [Google Scholar] [CrossRef] [PubMed]
Sample | Add DPA (μM) | Found 1 (μM) | Recovery 2 (%) | RSD (%) |
---|---|---|---|---|
1.0 | 1.05 | 105.01 | 3.05 | |
Lake water | 2.0 | 1.93 | 96.50 | 2.65 |
5.0 | 5.22 | 103.26 | 3.79 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Wang, Z.; Zhang, J.; Shi, C.; Sun, X.; Zhao, D.; Liu, B. Terbium Functionalized Schizochytrium-Derived Carbon Dots for Ratiometric Fluorescence Determination of the Anthrax Biomarker. Nanomaterials 2019, 9, 1234. https://doi.org/10.3390/nano9091234
Zhang L, Wang Z, Zhang J, Shi C, Sun X, Zhao D, Liu B. Terbium Functionalized Schizochytrium-Derived Carbon Dots for Ratiometric Fluorescence Determination of the Anthrax Biomarker. Nanomaterials. 2019; 9(9):1234. https://doi.org/10.3390/nano9091234
Chicago/Turabian StyleZhang, Lina, Zhanwei Wang, Jingbo Zhang, Changliang Shi, Xiaoli Sun, Dan Zhao, and Baozhong Liu. 2019. "Terbium Functionalized Schizochytrium-Derived Carbon Dots for Ratiometric Fluorescence Determination of the Anthrax Biomarker" Nanomaterials 9, no. 9: 1234. https://doi.org/10.3390/nano9091234
APA StyleZhang, L., Wang, Z., Zhang, J., Shi, C., Sun, X., Zhao, D., & Liu, B. (2019). Terbium Functionalized Schizochytrium-Derived Carbon Dots for Ratiometric Fluorescence Determination of the Anthrax Biomarker. Nanomaterials, 9(9), 1234. https://doi.org/10.3390/nano9091234