Next Article in Journal
Multisensory System Used for the Analysis of the Water in the Lower Area of River Danube
Next Article in Special Issue
Investigation of ZnO-decorated CNTs for UV Light Detection Applications
Previous Article in Journal
Influence of the Sulfur Content Catalyst on the Packing Density of Carbon Nanotube Forests
Previous Article in Special Issue
Electrochemical Detection of Ultratrace Lead Ion through Attaching and Detaching DNA Aptamer from Electrochemically Reduced Graphene Oxide Electrode
Open AccessArticle

Preparation, Characterization and Adsorption Potential of Grainy Halloysite-CNT Composites for Anthracene Removal from Aqueous Solution

Institute of Water and Wastewater Engineering, Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland
*
Author to whom correspondence should be addressed.
Nanomaterials 2019, 9(6), 890; https://doi.org/10.3390/nano9060890
Received: 30 April 2019 / Revised: 8 June 2019 / Accepted: 10 June 2019 / Published: 17 June 2019
Grainy Hal-CNT composites were prepared from powder halloysite nanoclay (Hal) and carbon nanotubes (CNTs). The effect of the amount and type of CNTs, as well as calcination temperature on morphology and properties of Hal-CNT composites and their adsorption capacity of anthracene (ANT), were studied. The surface topography of granules was heterogenous, with cracks and channels created during granulation of powder clay and CNTs. In FTIR, spectra were exhibited only in the bands arising from halloysite, due to its dominance in the granules. The increase in the heating temperature to 550 °C resulted in mesoporosity/macroporosity of the granules, the lowest specific surface area (SSA) and poorest adsorption potential. Overall, SSA of all Hal-CNT composites were higher than raw Hal, and by itself, heated halloysite. The larger amount of CNTs enhanced adsorption kinetics due to the more external adsorption sites. The equilibrium was established with the contact time of approximately 30 min for the sample Hal-SWCNT 85:15, while the samples with loading 96:4, it was 60–90 min. Adsorption isotherms for ANT showed L1 type, which is representative for the sorbents with limited adsorption capacity. The Langmuir model described the adsorption process, suggesting a monolayer covering. The sample Hal-SWCNT 85:15 exhibited the highest adsorption capacity of ANT, due to its highest SSA and microporous character. View Full-Text
Keywords: nanohalloysite; carbon nanotubes; adsorption; micropollutants nanohalloysite; carbon nanotubes; adsorption; micropollutants
Show Figures

Figure 1

MDPI and ACS Style

Kamińska, G.; Dudziak, M.; Kudlek, E.; Bohdziewicz, J. Preparation, Characterization and Adsorption Potential of Grainy Halloysite-CNT Composites for Anthracene Removal from Aqueous Solution. Nanomaterials 2019, 9, 890.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map

1
Back to TopTop