Next Article in Journal
Investigation of ZnO-decorated CNTs for UV Light Detection Applications
Next Article in Special Issue
Continuous Flow Removal of Anionic Dyes in Water by Chitosan-Functionalized Iron Oxide Nanoparticles Incorporated in a Dextran Gel Column
Previous Article in Journal
Towards Low Cost and Low Temperature Capacitive CO2 Sensors Based on Amine Functionalized Silica Nanoparticles
Previous Article in Special Issue
Tailoring the Performance of Graphene Aerogels for Oil/Organic Solvent Separation by 1-Step Solvothermal Approach
Open AccessArticle

Synthesis of Hierarchical Porous Carbon in Molten Salt and Its Application for Dye Adsorption

The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, UK
Authors to whom correspondence should be addressed.
Nanomaterials 2019, 9(8), 1098;
Received: 12 July 2019 / Revised: 29 July 2019 / Accepted: 29 July 2019 / Published: 31 July 2019
(This article belongs to the Special Issue Nanomaterials and Nanotechnology in Wastewater Treatment)
PDF [7440 KB, uploaded 13 August 2019]
  |     |  


Hierarchical porous carbon was successfully synthesized from glucose in a molten salt at 800 °C for 2 h. It was amorphous and contained numerous oxygen containing functional groups on its surface. The porous carbon with 1.0 wt% Fe(NO3)3·9H2O oxidizing agent showed the highest specific surface area of 1078 m2/g, and the largest pore volume of 0.636 cm3/g, among all of the samples. Raman and TEM results revealed that it had more defects and pores than other as-prepared carbon materials. The adsorption capacities of as-prepared porous carbon for methylene blue (MB) and methyl orange (MO) were 506.8 mg/g and 683.8 mg/g, respectively. The adsorption isotherms fit the Langmuir model and the adsorption kinetics followed the pseudo-second-order kinetic model. View Full-Text
Keywords: hierarchically porous carbon; molten salt method; Fe(NO3)3·9H2O; dye adsorption hierarchically porous carbon; molten salt method; Fe(NO3)3·9H2O; dye adsorption

Graphical abstract

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Supplementary material


Share & Cite This Article

MDPI and ACS Style

Li, S.; Zhang, H.; Hu, S.; Liu, J.; Zhu, Q.; Zhang, S. Synthesis of Hierarchical Porous Carbon in Molten Salt and Its Application for Dye Adsorption. Nanomaterials 2019, 9, 1098.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Nanomaterials EISSN 2079-4991 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top