Gold Nanoclusters: Bridging Gold Complexes and Plasmonic Nanoparticles in Photophysical Properties
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Yau, S.H.; Varnavski, O.; Goodson, T. An ultrafast look at Au nanoclusters. Acc. Chem. Res. 2013, 46, 1506–1516. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Higaki, T.; Hu, G.; Sfeir, M.Y.; Chen, Y.; Jiang, D.; Jin, R. Three-orders-of-magnitude variation of carrier lifetimes with crystal phase of gold nanoclusters. Science 2019, 364, 279–282. [Google Scholar] [PubMed]
- Hartland, G.V. Optical studies of dynamics in noble metal nanostructures. Chem. Rev. 2011, 111, 3858–3887. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Zeng, C.; Song, Y.; Padelford, J.W.; Wang, G.; Sfeir, M.Y.; Higaki, T.; Jin, R. On the non-metallicity of 2.2 nm Au246(SR)80 nanoclusters. Angew. Chem. Int. Ed. 2017, 129, 16475–16479. [Google Scholar] [CrossRef]
- Bain, D.; Paramanik, B.; Patra, A. Silver(I)-induced conformation change of DNA: Gold nanocluster as a spectroscopic probe. J. Phys. Chem. C 2017, 121, 4608–4617. [Google Scholar] [CrossRef]
- Paramanik, B.; Bain, D.; Patra, A. Making and breaking of DNA-metal base pairs: Hg2+ and Au nanocluster based off/on probe. J. Phys. Chem. C 2016, 120, 17127–17135. [Google Scholar] [CrossRef]
- Guan, Z.; Gao, N.; Jiang, X.-F.; Yuan, P.; Han, F.; Xu, Q.-H. Huge enhancement in two-photon photoluminescence of au nanoparticle clusters revealed by single-particle spectroscopy. J. Am. Chem. Soc. 2013, 135, 7272–7277. [Google Scholar] [CrossRef]
- Higaki, T.; Zhou, M.; Lambright, K.J.; Kirschbaum, K.; Sfeir, M.Y.; Jin, R. Sharp transition from nonmetallic Au246 to metallic Au279 with nascent surface plasmon resonance. J. Am. Chem. Soc. 2018, 140, 5691–5695. [Google Scholar] [CrossRef]
- Russier-Antoine, I.; Bertorelle, F.; Vojkovic, M.; Rayane, D.; Salmon, E.; Jonin, C.; Dugourd, P.; Antoine, R.; Brevet, P.-F. Non-linear optical properties of gold quantum clusters. The smaller the better. Nanoscale 2014, 6, 13572–13578. [Google Scholar] [CrossRef]
- Zhu, M.; Aikens, C.M.; Hollander, F.J.; Schatz, G.C.; Jin, R. Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. J. Am. Chem. Soc. 2008, 130, 5883–5885. [Google Scholar] [CrossRef]
- Jin, R.; Zeng, C.; Zhou, M.; Chen, Y. Atomically precise colloidal metal nanoclusters and nanoparticles: Fundamentals and opportunities. Chem. Rev. 2016, 116, 10346–10413. [Google Scholar] [CrossRef] [PubMed]
- Olesiak-Banska, J.; Waszkielewicz, M.; Samoc, M. Two-photon chiro-optical properties of gold Au25 nanoclusters. Phys. Chem. Chem. Phys. 2018, 20, 24523–24526. [Google Scholar] [CrossRef] [PubMed]
- Zeng, C.; Chen, Y.; Kirschbaum, K.; Lambright, K.J.; Jin, R. Emergence of hierarchical structural complexities in nanoparticles and their assembly. Science 2016, 354, 1580–1584. [Google Scholar] [CrossRef] [PubMed]
- Che, C.-M.; Lai, S.-W. Luminescence and photophysics of gold complexes. In Gold Chemistry; Wiley-VCH/Verlag GmbH & Co. KGaA: Weinheim, Germany, 2009; pp. 249–281. [Google Scholar]
- Yam, V.W.-W.; Au, V.K.-M.; Leung, S.Y.-L. Light-emitting self-assembled materials based on d8 and d10 transition metal complexes. Chem. Rev. 2015, 115, 7589–7728. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.; You, G.; Polavarapu, L.; Xu, Q.-H. Bimetallic Au/Ag core–shell nanorods studied by ultrafast transient absorption spectroscopy under selective excitation. J. Phys. Chem. C 2011, 115, 14000–14005. [Google Scholar] [CrossRef]
- Olesiak-Banska, J.; Gordel, M.; Matczyszyn, K.; Shynkar, V.; Zyss, J.; Samoc, M. Gold nanorods as multifunctional probes in a liquid crystalline DNA matrix. Nanoscale 2013, 5, 10975–10981. [Google Scholar] [CrossRef] [PubMed]
- Minutella, E.; Schulz, F.; Lange, H. Excitation-dependence of plasmon-induced hot electrons in gold nanoparticles. J. Phys. Chem. Lett. 2017, 4925–4929. [Google Scholar] [CrossRef]
- Link, S.; El-Sayed, M.A. Optical properties and ultrafast dynamics of metallic nanocrystals. Annu. Rev. Phys. Chem. 2003, 54, 331–366. [Google Scholar] [CrossRef]
- Hartland, G.V. Coherent excitation of vibrational modes in metallic nanoparticles. Annu. Rev. Phys. Chem. 2006, 57, 403–430. [Google Scholar] [CrossRef]
- Link, S.; Beeby, A.; FitzGerald, S.; El-Sayed, M.A.; Schaaff, T.G.; Whetten, R.L. Visible to infrared luminescence from a 28-atom gold cluster. J. Phys. Chem. B 2002, 106, 3410–3415. [Google Scholar] [CrossRef]
- Link, S.; El-Sayed, M.A. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B 1999, 103, 8410–8426. [Google Scholar] [CrossRef]
- Hartland, G.V. Coherent vibrational motion in metal particles: Determination of the vibrational amplitude and excitation mechanism. J. Chem. Phys. 2002, 116, 8048–8055. [Google Scholar] [CrossRef]
- Del Fatti, N.; Bouffanais, R.; Vallée, F.; Flytzanis, C. Nonequilibrium electron interactions in metal films. Phys. Rev. Lett. 1998, 81, 922–925. [Google Scholar] [CrossRef]
- Kwak, K.; Thanthirige, V.D.; Pyo, K.; Lee, D.; Ramakrishna, G. Energy gap law for exciton dynamics in gold cluster molecules. J. Phys. Chem. Lett. 2017, 8, 4898–4905. [Google Scholar] [CrossRef] [PubMed]
- Zeng, C.; Chen, Y.; Kirschbaum, K.; Appavoo, K.; Sfeir, M.Y.; Jin, R. Structural patterns at all scales in a nonmetallic chiral Au133(SR)52 nanoparticle. Sci. Adv. 2015, 1, e1500045. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Herbert, P.J.; Zheng, H.; Knappenberger, K. State-resolved metal nanoparticle dynamics viewed through the combined lenses of ultrafast and magneto-optical spectroscopies. Acc. Chem. Res. 2018, 51, 1433–1442. [Google Scholar] [CrossRef]
- Zhou, M.; Zeng, C.; Sfeir, M.Y.; Cotlet, M.; Iida, K.; Nobusada, K.; Jin, R. Evolution of excited-state dynamics in periodic Au28, Au36, Au44, and Au52 nanoclusters. J. Phys. Chem. Lett. 2017, 8, 4023–4030. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Zeng, C.; Chen, Y.; Zhao, S.; Sfeir, M.Y.; Zhu, M.; Jin, R. Evolution from the plasmon to exciton state in ligand-protected atomically precise gold nanoparticles. Nat. Commun. 2016, 7, 13240. [Google Scholar] [CrossRef] [PubMed]
- Mustalahti, S.; Myllyperkiö, P.; Malola, S.; Lahtinen, T.; Salorinne, K.; Koivisto, J.; Häkkinen, H.; Pettersson, M. Molecule-like photodynamics of Au102(pMBA)44 nanocluster. ACS Nano 2015, 9, 2328–2335. [Google Scholar] [CrossRef] [PubMed]
- Stamplecoskie, K.G.; Kamat, P.V. Size-dependent excited state behavior of glutathione-capped gold clusters and their light-harvesting capacity. J. Am. Chem. Soc. 2014, 136, 11093–11099. [Google Scholar] [CrossRef]
- Wiseman, M.R.; Marsh, P.A.; Bishop, P.T.; Brisdon, B.J.; Mahon, M.F. Homoleptic Gold Thiolate Catenanes. J. Am. Chem. Soc. 2000, 122, 12598–12599. [Google Scholar] [CrossRef]
- Wu, Z.; Suhan, J.; Jin, R. One-pot synthesis of atomically monodisperse, thiol-functionalized Au25 nanoclusters. J. Mater. Chem. 2009, 19, 622–626. [Google Scholar] [CrossRef]
- Yam, V.W.-W.; Cheng, E.C.-C.; Zhou, Z.-Y. A highly soluble luminescent decanuclear gold(I) complex with a propeller-shaped structure. Angew. Chem. Int. Ed. 2000, 39, 1683–1685. [Google Scholar] [CrossRef]
- Forward, J.M.; Bohmann, D.; Fackler, J.P.; Staples, R.J. Luminescence studies of gold(I) thiolate complexes. Inorg. Chem. 1995, 34, 6330–6336. [Google Scholar] [CrossRef]
- Konishi, K.; Iwasaki, M.; Shichibu, Y. Phosphine-ligated gold clusters with core+exo geometries: Unique properties and interactions at the ligand–cluster interface. Acc. Chem. Res. 2018, 51, 3125–3133. [Google Scholar] [CrossRef] [PubMed]
- Wing-Wah Yam, V.; Kam-Wing Lo, K. Luminescent polynuclear d10 metal complexes. Chem. Soc. Rev. 1999, 28, 323–334. [Google Scholar]
- Lei, Z.; Pei, X.-L.; Guan, Z.-J.; Wang, Q.-M. Full protection of intensely luminescent gold(I)–silver(I) cluster by phosphine ligands and inorganic anions. Angew. Chem. Int. Ed. 2017, 56, 7117–7120. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Jin, R. On the ligand’s role in the fluorescence of gold nanoclusters. Nano Lett. 2010, 10, 2568–2573. [Google Scholar] [CrossRef]
- Link, S.; El-Sayed, M.A.; Schaaff, T.G.; Whetten, R.L. Transition from nanoparticle to molecular behavior: A femtosecond transient absorption study of a size-selected 28 atom gold cluster. Chem. Phys. Lett. 2002, 356, 240–246. [Google Scholar] [CrossRef]
- Kim, H.N.; Lee, M.H.; Kim, H.J.; Kim, J.S.; Yoon, J. A new trend in rhodamine-based chemosensors: Application of spirolactam ring-opening to sensing ions. Chem. Soc. Rev. 2008, 37, 1465–1472. [Google Scholar] [CrossRef]
- Sadkowski, P.J.; Fleming, G.R. Photophysics of acid and base forms of rhodamine-B. Chem. Phys. Lett. 1978, 57, 526–529. [Google Scholar] [CrossRef]
- Moog, R.S.; Ediger, M.D.; Boxer, S.G.; Fayer, M.D. Viscosity dependence of the rotational reorientation of rhodamine B in mono- and polyalcohols. Picosecond transient grating experiments. J. Phys. Chem. 1982, 86, 4694–4700. [Google Scholar] [CrossRef]
- Beaumont, P.C.; Johnson, D.G.; Parsons, B.J. Photophysical properties of laser dyes: Picosecond laser flash photolysis studies of rhodamine 6G, rhodamine B and rhodamine 101. J. Chem. Soc. Faraday Trans. 1993, 89, 4185–4191. [Google Scholar] [CrossRef]
- Zhang, X.F.; Zhang, Y.K.; Liu, L.M. Fluorescence lifetimes and quantum yields of ten rhodamine derivatives: Structural effect on emission mechanism in different solvents. J. Lumin. 2014, 145, 448–453. [Google Scholar] [CrossRef]
- Kasha, M. Characterization of electronic transitions in complex molecules. Discuss. Faraday Soc. 1950, 9, 14–19. [Google Scholar] [CrossRef]
- Zhou, M.; Lei, Z.; Guo, Q.; Wang, Q.-M.; Xia, A. Solvent dependent excited state behaviors of luminescent gold(I)–silver(I) cluster with hypercoordinated carbon. J. Phys. Chem. C 2015, 119, 14980–14988. [Google Scholar] [CrossRef]
- Zeng, C.-j.; Zhou, M.; Gayathri, C.; Gil, R.R.; Sfeir, M.Y.; Jin, R. Au10(TBBT)10: The beginning and the end of aun(tbbt)m nanoclusters. Chin. J. Chem. Phys. 2018, 31, 555–562. [Google Scholar] [CrossRef]
- Devadas, M.S.; Kim, J.; Sinn, E.; Lee, D.; Goodson, T., 3rd; Ramakrishna, G. Unique ultrafast visible luminescence in monolayer-protected au25 clusters. J. Phys. Chem. C 2010, 114, 22417–22423. [Google Scholar] [CrossRef]
- Zhou, M.; Tian, S.; Zeng, C.; Sfeir, M.Y.; Wu, Z.; Jin, R. Ultrafast relaxation dynamics of Au38(SC2H4Ph)24 nanoclusters and effects of structural isomerism. J. Phys. Chem. C 2017, 121, 10686–10693. [Google Scholar] [CrossRef]
- Qian, H.; Sfeir, M.Y.; Jin, R. Ultrafast relaxation dynamics of [Au25(SR)18]q nanoclusters: Effects of charge state. J. Phys. Chem. C 2010, 114, 19935–19940. [Google Scholar] [CrossRef]
- Varnavski, O.; Ramakrishna, G.; Kim, J.; Lee, D.; Goodson, T., III. Optically excited acoustic vibrations in quantum-sized monolayer-protected gold clusters. ACS Nano 2010, 4, 3406–3412. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Jin, R.; Sfeir, M.Y.; Chen, Y.; Song, Y.; Jin, R. Electron localization in rod-shaped triicosahedral gold nanocluster. Proc. Natl. Acad. Sci. USA 2017, 114, E4697–E4705. [Google Scholar] [CrossRef] [PubMed]
- Rafiq, S.; Scholes, G.D. Slow intramolecular vibrational relaxation leads to long-lived excited-state wavepackets. J. Phys. Chem. A 2016, 120, 6792–6799. [Google Scholar] [CrossRef] [PubMed]
- Sagar, D.M.; Cooney, R.R.; Sewall, S.L.; Dias, E.A.; Barsan, M.M.; Butler, I.S.; Kambhampati, P. Size dependent, state-resolved studies of exciton-phonon couplings in strongly confined semiconductor quantum dots. Phys. Rev. B 2008, 77, 235321. [Google Scholar] [CrossRef]
- Hodak, J.H.; Henglein, A.; Hartland, G.V. Electron-phonon coupling dynamics in very small (between 2 and 8 nm diameter) Au nanoparticles. J. Chem. Phys. 2000, 112, 5942–5947. [Google Scholar] [CrossRef]
Structure | Eg | Steady-State abs. | PL | Transient Absorption | |
---|---|---|---|---|---|
Dye molecules e.g., Rhodamine B | No core | >1–2 eV | Multiple bands (e.g. π–π transition) | Yes | ESA + GSB + SE, IC, ISC, long lifetime (ns), power independence |
Complexes, e.g., Au10(SR)10 | No core | >2 eV | Multiple bands (charge transfer, CT) | Yes | ESA (predominant), ISC, long lifetime (μs–ns), power independence |
Nanoclusters, e.g., Au25(SR)18 | Core + surface (staple motifs) | ~2.5 eV to zero | Multiple bands (metal core-based + metal ↔ ligand CT) | Yes | ESA + GSB, acoustic vibrations, IC, ISC, varying lifetime (ns–ps), power independence |
Plasmonic NPs, e.g., 13 nm AuNPs | Core + surface | Zero | Single-band SPR (nanospheres) | Negligible | GSB, acoustic vibrations, short lifetime (ps), power dependence |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, M.; Zeng, C.; Li, Q.; Higaki, T.; Jin, R. Gold Nanoclusters: Bridging Gold Complexes and Plasmonic Nanoparticles in Photophysical Properties. Nanomaterials 2019, 9, 933. https://doi.org/10.3390/nano9070933
Zhou M, Zeng C, Li Q, Higaki T, Jin R. Gold Nanoclusters: Bridging Gold Complexes and Plasmonic Nanoparticles in Photophysical Properties. Nanomaterials. 2019; 9(7):933. https://doi.org/10.3390/nano9070933
Chicago/Turabian StyleZhou, Meng, Chenjie Zeng, Qi Li, Tatsuya Higaki, and Rongchao Jin. 2019. "Gold Nanoclusters: Bridging Gold Complexes and Plasmonic Nanoparticles in Photophysical Properties" Nanomaterials 9, no. 7: 933. https://doi.org/10.3390/nano9070933
APA StyleZhou, M., Zeng, C., Li, Q., Higaki, T., & Jin, R. (2019). Gold Nanoclusters: Bridging Gold Complexes and Plasmonic Nanoparticles in Photophysical Properties. Nanomaterials, 9(7), 933. https://doi.org/10.3390/nano9070933