Next Article in Journal
Targeted Gold Nanoparticle–Oligonucleotide Contrast Agents in Combination with a New Local Voxel-Wise MRI Analysis Algorithm for In Vitro Imaging of Triple-Negative Breast Cancer
Next Article in Special Issue
Evolution of Hair Treatment and Care: Prospects of Nanotube-Based Formulations
Previous Article in Journal
Aggregation-Induced Emission (AIE)-Labeled Cellulose Nanocrystals for the Detection of Nitrophenolic Explosives in Aqueous Solutions
Previous Article in Special Issue
Directly Grown Multiwall Carbon Nanotube and Hydrothermal MnO2 Composite for High-Performance Supercapacitor Electrodes
Review

Antimicrobial Applications of Clay Nanotube-Based Composites

1
Functional Aluminosilicate Nanomaterials Lab, Gubkin University, 119991 Moscow, Russian Federation
2
Bionanotechnology Lab, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Republic of Tatarstan, Russian Federation
3
Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA 71270, USA
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Nanomaterials 2019, 9(5), 708; https://doi.org/10.3390/nano9050708
Received: 16 April 2019 / Revised: 28 April 2019 / Accepted: 30 April 2019 / Published: 7 May 2019
(This article belongs to the Special Issue Nanotubes for Health, Environment and Cultural Heritages)
Halloysite nanotubes with different outer surface/inner lumen chemistry (SiO2/Al2O3) are natural objects with a 50 nm diameter hollow cylindrical structure, which are able to carry functional compounds both inside and outside. They are promising for biological applications where their drug loading capacity combined with a low toxicity ensures the safe interaction of these nanomaterials with living cells. In this paper, the antimicrobial properties of the clay nanotube-based composites are reviewed, including applications in microbe-resistant biocidal textile, paints, filters, and medical formulations (wound dressings, drug delivery systems, antiseptic sprays, and tissue engineering scaffolds). Though halloysite-based antimicrobial materials have been widely investigated, their application in medicine needs clinical studies. This review suggests the scalable antimicrobial nano/micro composites based on natural tubule clays and outlines research and development perspectives in the field. View Full-Text
Keywords: antimicrobial composites; halloysite; clay nanotubes; biofouling; microbiology antimicrobial composites; halloysite; clay nanotubes; biofouling; microbiology
Show Figures

Figure 1

MDPI and ACS Style

Stavitskaya, A.; Batasheva, S.; Vinokurov, V.; Fakhrullina, G.; Sangarov, V.; Lvov, Y.; Fakhrullin, R. Antimicrobial Applications of Clay Nanotube-Based Composites. Nanomaterials 2019, 9, 708. https://doi.org/10.3390/nano9050708

AMA Style

Stavitskaya A, Batasheva S, Vinokurov V, Fakhrullina G, Sangarov V, Lvov Y, Fakhrullin R. Antimicrobial Applications of Clay Nanotube-Based Composites. Nanomaterials. 2019; 9(5):708. https://doi.org/10.3390/nano9050708

Chicago/Turabian Style

Stavitskaya, Anna, Svetlana Batasheva, Vladimir Vinokurov, Gölnur Fakhrullina, Vadim Sangarov, Yuri Lvov, and Rawil Fakhrullin. 2019. "Antimicrobial Applications of Clay Nanotube-Based Composites" Nanomaterials 9, no. 5: 708. https://doi.org/10.3390/nano9050708

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop