Agar Hydrogel Template Synthesis of Mn3O4 Nanoparticles through an Ion Diffusion Method Controlled by Ion Exchange Membrane and Electrochemical Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis
2.3. Characterization
2.4. Electrode Preparation and Electrochemical Characterization
3. Results and Discussion
3.1. Morphology and Structure
3.2. Electrochemical Performance of Mn3O4 Electrode
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Han, K.H.; Huang, H.; Gong, Q.H.; Si, T.T.; Zhang, Z.L.; Zhou, G.W. Temperature induced hierarchical Tremella-like and Pinecone-like NiO microspheres for high-performance supercapacitor electrode materials. J. Mater. Sci. 2018, 53, 12477–12491. [Google Scholar] [CrossRef]
- Lu, W.J.; Huang, S.Z.; Miao, L.; Liu, M.X.; Zhu, D.Z.; Li, L.C.; Duan, H.; Xu, Z.J.; Gan, L.H. Synthesis of MnO2/N-doped ultramicroporous carbon nanospheres for high-performance supercapacitor electrodes. Chin. Chem. Lett. 2017, 28, 1324–1329. [Google Scholar] [CrossRef]
- Naderi, H.R.; Sobhani-Nasab, A.; Rahimi-Nasrabadi, M.; Ganjali, M.R. Decoration of nitrogen-doped reduced graphene oxide with cobalt tungstate nanoparticles for use in high-performance supercapacitors. Appl. Surf. Sci. 2017, 423, 1025–1034. [Google Scholar] [CrossRef]
- Wang, Y.L.; Chang, B.B.; Guan, D.X.; Pei, K.M.; Chen, Z.; Yang, M.S.; Dong, X.P. Preparation of nanospherical porous NiO by a hard template route and its supercapacitor application. Mater. Lett. 2014, 135, 172–175. [Google Scholar] [CrossRef]
- Tiruneh, S.N.; Kang, B.K.; Kwag, S.H.; Lee, Y.; Kim, M.; Yoon, D.H. Synergistically Active NiCo2S4 Nanoparticles Coupled with Holey Defect Graphene Hydrogel for High-Performance Solid-State Supercapacitors. Chem. Eur. J. 2018, 24, 3263–3270. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wei, B.Q. Facile synthesis and super capacitive behavior of SWNT/MnO2 hybrid films. Nano Energy 2012, 1, 479–487. [Google Scholar] [CrossRef]
- Augustyn, V.; Simon, P.; Dunn, B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 2014, 7, 1597–1614. [Google Scholar] [CrossRef] [Green Version]
- He, Y.T.; Wang, L.X.; Jia, D.Z.; Zhao, Z.B.; Qiu, J.S. NiWO4/Ni/Carbon Composite Fibres for Supercapacitors with Excellent Cycling Performance. Electrochim. Acta 2016, 222, 446–454. [Google Scholar] [CrossRef]
- Li, J.; Wei, M.; Chu, W.; Wang, N. High-stable α-phase NiCo double hydroxide microspheres via microwave synthesis for supercapacitor electrode materials. Chem. Eng. J. 2017, 316, 277–287. [Google Scholar] [CrossRef]
- Wu, Q.F.; Hu, Z.H.; Liu, Y.F. A Novel Electrode Material of NiO Prepared by Facile Hydrothermal Method for Electrochemical Capacitor Application. J. Mater. Eng. Perform. 2013, 22, 2398–2402. [Google Scholar] [CrossRef]
- Zhang, G.X.; Xiao, X.; Li, B.; Gu, P.; Xue, H.G.; Pang, H. Transition metal oxides with one-dimensional/one-dimensional-analogue nanostructures for advanced supercapacitors. J. Mater. Chem. A 2017, 5, 8155–8186. [Google Scholar] [CrossRef]
- Li, N.; Huang, X.K.; Zhang, H.Y. High energy density transparent and flexible asymmetric supercapacitor based on a transparent metal hydroxides@graphene micro-structured film via a scalable gas-liquid diffusion method. J. Alloys Compd. 2017, 712, 194–203. [Google Scholar] [CrossRef]
- Lokhande, V.C.; Lokhande, A.C.; Lokhande, C.D.; Kim, J.H.; Ji, T. Supercapacitive composite metal oxide electrodes formed with carbon, metal oxides and conducting polymers. J. Alloys Compd. 2016, 682, 381–403. [Google Scholar] [CrossRef]
- Wu, Z.S.; Wang, D.W.; Ren, W.; Zhao, J.; Zhou, G.; Li, F.; Cheng, H.M. Anchoring Hydrous RuO2 on Graphene Sheets for High-Performance Electrochemical Capacitors. Adv. Funct. Mater. 2010, 20, 3595–3602. [Google Scholar] [CrossRef]
- Wei, W.F.; Cui, X.W.; Chen, W.X.; Ivey, D.G. Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem. Soc. Rev. 2011, 40, 1697–1721. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.F.; Cai, K.F.; Chen, Y.X.; Chen, L.D. Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy 2017, 36, 268–285. [Google Scholar] [CrossRef]
- Li, W.; Xu, J.; Pan, Y.; An, L.; Xu, K.; Wang, G.; Yu, Z.; Yu, L.; Hu, J. A facile synthesis of α-MnO2 used as a supercapacitor electrode material: The influence of the Mn-based precursor solutions on the electrochemical performance. Appl. Surf. Sci. 2015, 357, 1747–1752. [Google Scholar] [CrossRef]
- Ge, J.; Yao, H.B.; Hu, W.; Yu, X.F.; Yan, Y.X.; Mao, L.B.; Li, H.H.; Li, S.S.; Yu, S.H. Facile dip coating processed graphene/MnO2 nanostructured sponges as high performance supercapacitor electrodes. Nano Energy 2013, 2, 505–513. [Google Scholar] [CrossRef]
- Xiao, X.C.; Wang, Y.; Chen, G.; Wang, L.H.; Wang, Y.D. Mn3O4/activated carbon composites with enhanced electrochemical performances for electrochemical capacitors. J. Alloys Compd. 2017, 703, 163–173. [Google Scholar] [CrossRef]
- Jiang, H.; Zhao, T.; Yan, C.Y.; Ma, J.; Li, C.Z. Hydrothermal synthesis of novel Mn3O4 nano-octahedrons with enhanced supercapacitors performances. Nanoscale 2010, 2, 2195–2198. [Google Scholar] [CrossRef]
- Ren, X.G.; An, J.W.; Yan, S.H.; Gao, L.Z.; Xu, S.M.; Wang, X.M.; Wei, G.Q. Assembly of Mn3O4/carbon Black Composite and Its Supercapacitor Application. Int. J. Electrochem. Sci. 2016, 11, 5080–5089. [Google Scholar] [CrossRef]
- Ulutas, C.; Erken, O.; Gunes, M.; Gumus, C. Effect of Annealing Temperature on The physical Properties of Mn3O4 Thin Film Prepared by Chemical Bath Deposition. Int. J. Electrochem. Sci. 2016, 11, 2835–2845. [Google Scholar] [CrossRef]
- Makgopa, K.; Raju, K.; Ejikeme, P.M.; Ozoemena, K.I. High-performance Mn3O4/onion-like carbon (OLC) nanohybrid pseudocapacitor: Unravelling the intrinsic properties of OLC against other carbon supports. Carbon 2017, 117, 20–32. [Google Scholar] [CrossRef]
- Qiao, Y.Q.; Sun, Q.J.; Sha, O.; Zhang, X.Y.; Tang, Y.F.; Shen, T.D.; Kong, L.X.; Gao, W.M. Synthesis of Mn3O4 nano-materials via CTAB/SDS vesicle templating for high performance supercapacitors. Mater. Lett. 2018, 210, 128–132. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, D.; Wei, Y.Q.; Li, A.Y.; Liu, B.; Yuan, Y.; Zhang, H.C.; Li, G.H.; Zhang, F. Fabrication of a 1D Mn3O4 nano-rod electrode for aqueous asymmetric supercapacitors and capacitive deionization. Inorg. Chem. Front. 2019, 6, 355–365. [Google Scholar] [CrossRef]
- Liu, Z.H.; Zhang, L.; Xu, G.C.; Zhang, L.; Jia, D.Z.; Zhang, C.Y. Mn3O4 hollow microcubes and solid nanospheres derived from a metal formate framework for electrochemical capacitor applications. RSC Adv. 2017, 7, 11129–11134. [Google Scholar] [CrossRef]
- Liu, H.; Xue, Q.; Zhao, J.S.; Zhang, Q. Enhanced supercapacitive performance of binary cooperative complementary Co(OH)2/Mn3O4 nanomaterials directly synthesized through ion diffusion method controlled by ion exchange membrane. Electrochim. Acta 2018, 260, 330–337. [Google Scholar] [CrossRef]
- Xie, Y.D.; Kocaefe, D.; Chen, C.Y.; Kocaefe, Y. Review of Research on Template Methods in Preparation of Nanomaterials. J. Nanomater. 2016, 2016, 1–10. [Google Scholar] [CrossRef]
- Acharya, G.; Shin, C.S.; McDermott, M.; Mishra, H.; Park, H.; Kwon, I.C.; Park, K. The hydrogel template method for fabrication of homogeneous nano/microparticles. J. Control. Release 2010, 141, 314–319. [Google Scholar] [CrossRef] [PubMed]
- Sahiner, N. Soft and flexible hydrogel templates of different sizes and various functionalities for metal nanoparticle preparation and their use in catalysis. Prog. Polym. Sci. 2013, 38, 1329–1356. [Google Scholar] [CrossRef]
- Liu, G.; Zhao, D.C.; Tomsia, A.P.; Minor, A.M.; Song, X.Y.; Saiz, E. Three-Dimensional Biomimetic Mineralization of Dense Hydrogel Templates. J. Am. Chem. Soc. 2009, 131, 9937–9939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caruso, R.A.; Giersig, M.; Willig, F.; Antonietti, M. Porous “coral-like” TiO2 structures produced by templating polymer gels. Langmuir 1998, 14, 6333–6336. [Google Scholar] [CrossRef]
- Schattka, J.H.; Shchukin, D.G.; Jia, J.G.; Antonietti, M.; Caruso, R.A. Photocatalytic activities of porous titania and titania/zirconia structures formed by using a polymer gel templating. Chem. Mater. 2002, 14, 5103–5108. [Google Scholar] [CrossRef]
- Shchukin, D.G.; Schattka, J.H.; Antonietti, M.; Caruso, R.A. Photocatalytic properties of porous metal oxide networks formed by nanoparticle infiltration in a polymer gel template. J. Phys. Chem. B 2003, 107, 952–957. [Google Scholar] [CrossRef]
- Hao, X.T.; Zhao, J.S.; Zhang, Q. Temperature-dependent textural and electrochemical properties of a ruthenium oxide capacitor prepared by exchange membrane controlled ion diffusion. Ceram. Int. 2016, 42, 9170–9177. [Google Scholar] [CrossRef]
- Zhao, J.S.; Zhang, Q. Synthesis of Ni(OH)2 Nanoflakes Through a Novel Ion Diffusion Method Controlled by Ion Exchange Membrane and Electrochemical Supercapacitive Properties. Electrochim. Acta 2015, 184, 47–57. [Google Scholar] [CrossRef]
- Gnana Sundara Raj, B.; Asiri, A.M.; Wu, J.J.; Anandan, S. Synthesis of Mn3O4 nanoparticles via chemical precipitation approach for supercapacitor application. J. Alloys Compd. 2015, 636, 234–240. [Google Scholar] [CrossRef]
- Hiremath, V.; Cho, M.; Seo, J.G. Self-assembled Mn3O4 nano-clusters over carbon nanotube threads with enhanced supercapacitor performance. New J. Chem. 2018, 42, 19608–19614. [Google Scholar] [CrossRef]
- Wan, Z.; Wang, J.L. Degradation of sulfamethazine using Fe3O4-Mn3O4/reduced graphene oxide hybrid as Fenton-like catalyst. J. Hazard. Mater. 2017, 324, 653–664. [Google Scholar] [CrossRef]
- Ghaemi, M.; Ataherian, F.; Zolfaghari, A.; Jafari, S.M. Charge storage mechanism of sonochemically prepared MnO2 as supercapacitor electrode: Effects of physisorbed water and proton conduction. Electrochim. Acta 2008, 53, 4607–4614. [Google Scholar] [CrossRef]
- Chandra Sekhar, S.; Nagaraju, G.; Yu, J.S. Ant-cave structured MnCO3/Mn3O4 microcubes by biopolymer-assisted facile synthesis for high-performance pseudocapacitors. Appl. Surf. Sci. 2018, 435, 398–405. [Google Scholar] [CrossRef]
- Xu, L.; Zhao, Y.; Lian, J.B.; Xu, Y.G.; Bao, J.; Qiu, J.X.; Xu, L.; Xu, H.; Hua, M.Q.; Li, H.M. Morphology controlled preparation of ZnCo2O4 nanostructures for asymmetric supercapacitor with ultrahigh energy density. Energy 2017, 123, 296–304. [Google Scholar] [CrossRef]
- Atchudan, R.; Edison, T.N.J.I.; Perumal, S.; Lee, Y.R. Green synthesis of nitrogen-doped graphitic carbon sheets with use of Prunus persica for supercapacitor applications. Appl. Surf. Sci. 2017, 393, 276–286. [Google Scholar] [CrossRef]
- Sankar, K.V.; Kalpana, D.; Selvan, R.K. Electrochemical properties of microwave-assisted reflux-synthesized Mn3O4 nanoparticles in different electrolytes for supercapacitor applications. J. Appl. Electrochem. 2012, 42, 463–470. [Google Scholar] [CrossRef]
- Zeng, W.; Huang, Y.P.; Xiong, Y.; Wang, N.; Xu, C.; Huang, L.S. Gas bubble templated synthesis of Mn3O4-embedded hollow carbon nanospheres in ethanol flame for elastic supercapacitor. J. Alloys Compd. 2018, 731, 210–221. [Google Scholar] [CrossRef]
- Xu, J.A.; Gao, L.; Cao, J.Y.; Wang, W.C.; Chen, Z.D. Preparation and electrochemical capacitance of cobalt oxide (Co3O4) nanotubes as supercapacitor material. Electrochim. Acta 2010, 56, 732–736. [Google Scholar] [CrossRef]
- Sambath Kumar, K.; Cherusseri, J.; Thomas, J. Two-Dimensional Mn3O4 Nanowalls Grown on Carbon Fibers as Electrodes for Flexible Supercapacitors. ACS Omega 2019, 4, 4472–4480. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Y.F.; Hai, Z.Y.; Li, Y.K.; Kan, S.H.; Chen, J.M.; Chen, X.; Zhuiykov, S.; Cui, D.F.; Xue, C.Y. Facile-synthesized NiCo2O4@MnMoO4 with novel and functional structure for superior performance supercapacitors. Appl. Surf. Sci. 2018, 452, 413–422. [Google Scholar] [CrossRef]
- Xu, X.W.; Pei, L.Y.; Yang, Y.; Shen, J.F.; Ye, M.X. Facile synthesis of NiWO4/reduced graphene oxide nanocomposite with excellent capacitive performance for supercapacitors. J. Alloys Compd. 2016, 654, 23–31. [Google Scholar] [CrossRef]
- Zhou, X.Y.; Long, B.; Cheng, F.Y.; Tang, J.J.; Sun, A.T.; Yang, J.; Jia, M.; Wang, H. N-doped carbon encapsulated porous MnO/Mn3O4 submicrospheres as high-performance anode for lithium-ion batteries. J. Electroanal. Chem. 2019, 838, 1–6. [Google Scholar] [CrossRef]
- Wu, T.H.; Chu, Y.H.; Hu, C.C.; Hardwick, L.J. Criteria appointing the highest acceptable cell voltage of asymmetric supercapacitors. Electrochem. Commun. 2013, 27, 81–84. [Google Scholar] [CrossRef]
- Arora, P.; Popov, B.N.; White, R.E. Electrochemical investigations of cobalt-doped LiMn2O4 as cathode material for lithium-ion batteries. J. Electrochem. Soc. 1998, 145, 807–815. [Google Scholar] [CrossRef]
- Wang, F.; Hu, S.S. Electrochemical reduction of dioxygen on carbon nanotubes-dihexadecyl phosphate film electrode. J. Electroanal. Chem. 2005, 580, 68–77. [Google Scholar] [CrossRef]
Samples | Surface Area, SBET (m2 g−1) | Average Pore Diameter, AP (nm) | Total Pore Volume, Vtot (cm3 g−1) |
---|---|---|---|
M0 | 28.64 | 32.24 | 0.231 |
M1.0 | 75.70 | 13.56 | 0.257 |
M1.5 | 58.79 | 15.91 | 0.234 |
M2.0 | 62.64 | 12.89 | 0.202 |
M2.5 | 49.61 | 15.31 | 0.190 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, Q.; Zhang, Q. Agar Hydrogel Template Synthesis of Mn3O4 Nanoparticles through an Ion Diffusion Method Controlled by Ion Exchange Membrane and Electrochemical Performance. Nanomaterials 2019, 9, 503. https://doi.org/10.3390/nano9040503
Xue Q, Zhang Q. Agar Hydrogel Template Synthesis of Mn3O4 Nanoparticles through an Ion Diffusion Method Controlled by Ion Exchange Membrane and Electrochemical Performance. Nanomaterials. 2019; 9(4):503. https://doi.org/10.3390/nano9040503
Chicago/Turabian StyleXue, Qian, and Qiang Zhang. 2019. "Agar Hydrogel Template Synthesis of Mn3O4 Nanoparticles through an Ion Diffusion Method Controlled by Ion Exchange Membrane and Electrochemical Performance" Nanomaterials 9, no. 4: 503. https://doi.org/10.3390/nano9040503
APA StyleXue, Q., & Zhang, Q. (2019). Agar Hydrogel Template Synthesis of Mn3O4 Nanoparticles through an Ion Diffusion Method Controlled by Ion Exchange Membrane and Electrochemical Performance. Nanomaterials, 9(4), 503. https://doi.org/10.3390/nano9040503