Next Article in Journal
KMnF3:Yb3+,Er3+ Core-Active-Shell Nanoparticles with Broadband Down-Shifting Luminescence at 1.5 μm for Polymer-Based Waveguide Amplifiers
Next Article in Special Issue
Application of Solid Lipid Nanoparticles to Improve the Efficiency of Anticancer Drugs
Previous Article in Journal
Poly-ε-Caprolactone/Gelatin Hybrid Electrospun Composite Nanofibrous Mats Containing Ultrasound Assisted Herbal Extract: Antimicrobial and Cell Proliferation Study
Previous Article in Special Issue
Solid Lipid Nanoparticles Loading Idebenone Ester with Pyroglutamic Acid: In Vitro Antioxidant Activity and In Vivo Topical Efficacy
Article Menu
Issue 3 (March) cover image

Export Article

Open AccessArticle

Solid Lipid Nanoparticles Surface Modification Modulates Cell Internalization and Improves Chemotoxic Treatment in an Oral Carcinoma Cell Line

1
Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Barrio Sarriena S/N, 48940 Leioa, Spain
2
Instituto Biofisika (CSIC, UPV/EHU), Barrio Sarriena S/N, 48940 Leioa, Spain
*
Author to whom correspondence should be addressed.
Nanomaterials 2019, 9(3), 464; https://doi.org/10.3390/nano9030464
Received: 23 February 2019 / Revised: 14 March 2019 / Accepted: 15 March 2019 / Published: 20 March 2019
  |  
PDF [5734 KB, uploaded 20 March 2019]
  |  

Abstract

Solid lipid nanoparticles (SLN) present low toxicity, versatility to incorporate both lipophilic and hydrophilic drugs, controlled drug release and they are easy to scale-up. It is well known that the endocytosis pathway by which SLN are taken up and the subsequent subcellular distribution are crucial for the biological effect of the incorporated drug. In addition, interactions between SLN and cells depend on many factors, such as, the composition of nanoparticle surface. In this work different amounts of phosphatidylethanolamine polyethylene glycol (PE–PEG) were added to SLN composed of stearic acid, Epikuron 200 and sodium taurodeoxycholate. Characterization of obtained nanoparticle suspensions were performed by the analysis of particle size, polydispersity index, ζ-potential, cell toxicity and cell internalization pathway. We have observed that the presence of PE–PEG improves active cell internalization of the nanoparticles in an oral adenocarcinoma cell line, reducing non-specific internalization mechanisms. Finally, we have tested the effect of surface coating on the efficiency of incorporated drugs using all-trans retinoic acid as a model drug. We have observed that delivery of this drug into PE–PEG coated SLN increases its chemotoxic effect compared to non-coated SLN. Therefore, it can be concluded that surface modification with PE–PEG improves the efficiency and the specificity of the SLN-loaded drug. View Full-Text
Keywords: solid lipid nanoparticles; phosphatidilethanolamine–polyethileneglycol; controlled drug delivery; cell internalization pathway; cytotoxicity; all-trans retinoic acid solid lipid nanoparticles; phosphatidilethanolamine–polyethileneglycol; controlled drug delivery; cell internalization pathway; cytotoxicity; all-trans retinoic acid
Figures

Graphical abstract

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Supplementary material

SciFeed

Share & Cite This Article

MDPI and ACS Style

Arana, L.; Bayón-Cordero, L.; Sarasola, L.I.; Berasategi, M.; Ruiz, S.; Alkorta, I. Solid Lipid Nanoparticles Surface Modification Modulates Cell Internalization and Improves Chemotoxic Treatment in an Oral Carcinoma Cell Line. Nanomaterials 2019, 9, 464.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Nanomaterials EISSN 2079-4991 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top