Next Article in Journal
In Situ X-ray Photoelectron Spectroscopic and Electrochemical Studies of the Bromide Anions Dissolved in 1-Ethyl-3-Methyl Imidazolium Tetrafluoroborate
Previous Article in Journal
Resorcinol Functionalized Gold Nanoparticles for Formaldehyde Colorimetric Detection
Article Menu
Issue 2 (February) cover image

Export Article

Open AccessArticle
Nanomaterials 2019, 9(2), 303; https://doi.org/10.3390/nano9020303

Microstructured and Degradable Bacterial Cellulose–Gelatin Composite Membranes: Mineralization Aspects and Biomedical Relevance

Faculty of Mechanical Engineering, University of Maribor, 2000 Maribor, Slovenia
*
Author to whom correspondence should be addressed.
Received: 28 January 2019 / Revised: 13 February 2019 / Accepted: 14 February 2019 / Published: 22 February 2019
  |  
PDF [6702 KB, uploaded 22 February 2019]
  |  

Abstract

Bacterial cellulose (BC)–gelatin (GEL) membranes were processed by successive periodate oxidation and a freeze-thawing/carbodiimide crosslinking procedure, first facilitating a Schiff-base reaction among respective aldehyde and hydroxyl groups, and later GEL stabilization and microstructuring. The formation of highly microporous structures within the GEL portion, with significant differences between bottom and top, was elucidated, and pores in the 27.6 ± 3 µm–108 ± 5 µm range were generated, exceeding the threshold value of ~10 µm sufficient for cell trafficking. During a relatively short (6 h) exhaustion procedure in supersaturated simulated body fluid solution, the membranes accommodated the combination of biologically relevant minerals, i.e., flake-like octacalcium phosphate (OCP) and (amorphous) apatite, onto their surface, forming a membrane with intensive swelling (650–1650%) and up to 90% weight loss in a 4-week period. The membranes´ 6-day eluates did not evoke any cytotoxic effects toward human fibroblast, MRC-5 cells. The same type of cells retained their morphology in direct contact with the membrane, attaching to the GEL porous site, while not attaching to the GEL thin-coated BC side, most probably due to combined, ablation effect of dominant β-sheet conformation and carbodiimide crosslinking. Together with arrested proliferation through the BC side, the membranes demonstrated beneficial properties for potential guided tissue regeneration (GTR) applications. View Full-Text
Keywords: bacterial cellulose; gelatin; microstructuring; mineralization; guided tissue regeneration bacterial cellulose; gelatin; microstructuring; mineralization; guided tissue regeneration
Figures

Graphical abstract

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Supplementary material

SciFeed

Share & Cite This Article

MDPI and ACS Style

Gorgieva, S.; Hribernik, S. Microstructured and Degradable Bacterial Cellulose–Gelatin Composite Membranes: Mineralization Aspects and Biomedical Relevance. Nanomaterials 2019, 9, 303.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Nanomaterials EISSN 2079-4991 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top