Next Article in Journal
Shape Memory Polyurethane Biocomposites Based on Toughened Polycaprolactone Promoted by Nano-Chitosan
Next Article in Special Issue
Raman Imaging of Nanocarriers for Drug Delivery
Previous Article in Journal
Constructing a Z-scheme Heterojunction of Egg-Like [email protected] [email protected]2 Photocatalyst via a Facile Reflux Method for Enhanced Photocatalytic Performance
Previous Article in Special Issue
Magnetite-Supported Gold Nanostars for the Uptake and SERS Detection of Tetracycline
Article

Diagnosis in a Preclinical Model of Bladder Pain Syndrome Using a Au/ZnO Nanorod-based SERS Substrate

1
Biomedical Engineering Research Center, Asan Medical Center, Seoul 05505, Korea
2
Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
3
Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
4
Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
5
Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea
6
Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
7
Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul 05505, Korea
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Nanomaterials 2019, 9(2), 224; https://doi.org/10.3390/nano9020224
Received: 31 December 2018 / Revised: 30 January 2019 / Accepted: 5 February 2019 / Published: 7 February 2019
(This article belongs to the Special Issue Raman Imaging Methods for Nanomaterials and Bioapplications)
To evaluate the feasibility of ZnO nanorod-based surface enhanced Raman scattering (SERS) diagnostics for disease models, particularly for interstitial cystitis/bladder pain syndrome (IC/BPS), ZnO-based SERS sensing chips were developed and applied to an animal disease model. ZnO nanorods were grown to form nano-sized porous structures and coated with gold to facilitate size-selective biomarker detection. Raman spectra were acquired on a surface enhanced Raman substrate from the urine in a rat model of IC/BPS and analyzed using a statistical analysis method called principal component analysis (PCA). The nanorods grown after the ZnO seed deposition were 30 to 50 nm in diameter and 500 to 600 nm in length. A volume of gold corresponding to a thin film thickness of 100 nm was deposited on the grown nanorod structure. Raman spectroscopic signals were measured in the scattered region for nanometer biomarker detection to indicate IC/BPS. The Raman peaks for the control group and IC/BPS group are observed at 641, 683, 723, 873, 1002, 1030, and 1355 cm−1, which corresponded to various bonding types and compounds. The PCA results are plotted in 2D and 3D. The Raman signals and statistical analyses obtained from the nano-sized biomarkers of intractable inflammatory diseases demonstrate the possibility of an early diagnosis. View Full-Text
Keywords: interstitial cystitis/bladder pain syndrome (IC/BPS); ZnO nanorods; surface enhancement Raman spectroscopy (SERS); principal component analysis (PCA) interstitial cystitis/bladder pain syndrome (IC/BPS); ZnO nanorods; surface enhancement Raman spectroscopy (SERS); principal component analysis (PCA)
Show Figures

Figure 1

MDPI and ACS Style

Lee, S.; Namgoong, J.-M.; Yu, H.Y.; Jue, M.; Kim, G.; Jeon, S.; Shin, D.-M.; Choo, M.-S.; Joo, J.; Pack, C.-G.; Kim, J.K. Diagnosis in a Preclinical Model of Bladder Pain Syndrome Using a Au/ZnO Nanorod-based SERS Substrate. Nanomaterials 2019, 9, 224. https://doi.org/10.3390/nano9020224

AMA Style

Lee S, Namgoong J-M, Yu HY, Jue M, Kim G, Jeon S, Shin D-M, Choo M-S, Joo J, Pack C-G, Kim JK. Diagnosis in a Preclinical Model of Bladder Pain Syndrome Using a Au/ZnO Nanorod-based SERS Substrate. Nanomaterials. 2019; 9(2):224. https://doi.org/10.3390/nano9020224

Chicago/Turabian Style

Lee, Sanghwa, Jung-Man Namgoong, Hwan Y. Yu, Miyeon Jue, Gwanho Kim, Sangmin Jeon, Dong-Myung Shin, Myung-Soo Choo, Jinmyoung Joo, Chan-Gi Pack, and Jun K. Kim 2019. "Diagnosis in a Preclinical Model of Bladder Pain Syndrome Using a Au/ZnO Nanorod-based SERS Substrate" Nanomaterials 9, no. 2: 224. https://doi.org/10.3390/nano9020224

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop