Next Article in Journal
Nanomaterials towards Biosensing of Alzheimer’s Disease Biomarkers
Previous Article in Journal
Studies on Possible Ion-Confinement in Nanopore for Enhanced Supercapacitor Performance in 4V EMIBF4 Ionic Liquids
Previous Article in Special Issue
Micro- and Nanostructures of Agave Fructans to Stabilize Compounds of High Biological Value via Electrohydrodynamic Processing
Open AccessArticle

Natural Antibacterial Reagents (Centella, Propolis, and Hinokitiol) Loaded into Poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] Composite Nanofibers for Biomedical Applications

1
Interdisciplinary Graduate School of Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
2
Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
*
Author to whom correspondence should be addressed.
Nanomaterials 2019, 9(12), 1665; https://doi.org/10.3390/nano9121665
Received: 19 October 2019 / Revised: 13 November 2019 / Accepted: 19 November 2019 / Published: 22 November 2019
Centella asiatica, propolis, and hinokitiol, as natural antibacterial reagents, were integrated into the poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] (PHBH) polymer to produce antibacterial wound dressings, using electrospinning process. The results showed that the fiber diameters and surface morphology of PHBH composite nanofibers were influenced by the addition of ethanol–centella (EC), methanol–centella (MC), ethanol–propolis (EP), and ethanol–hinokitiol (EH) at various ratios compared to pristine PHBH nanofibers. From FT-IR, the nanofibrous samples with higher contents of natural antibacterial substances showed the peaks of carboxylic acid, aromatic ring, and tropolone carbon ring from centella, propolis, and hinokitiol, respectively. Furthermore, the tensile strength of neat PHBH nanofibers was increased from 8.00 ± 0.71 MPa up to 16.35 ± 1.78 MPa by loading of propolis (EP) 7% into PHBH. X-ray analysis explained that the loading of propolis (EP) was also able to increase the crystallinity in PHBH composite nanofibers from 47.0% to 54.5%. The antibacterial results demonstrated that PHBH composite nanofibers containing natural antibacterial products were potent inhibitors against the growth of Escherichia coli and Staphylococcus aureus, amongst them hinokitiol and propolis proved to be the most effective. Additionally, the release studies displayed that centella and hinokitiol had faster release from PHBH composite nanofibers in comparison to propolis. View Full-Text
Keywords: antibacterial effect; centella; propolis; hinokitiol; biodegradable polymer; PHBH; nanofiber antibacterial effect; centella; propolis; hinokitiol; biodegradable polymer; PHBH; nanofiber
Show Figures

Graphical abstract

MDPI and ACS Style

Rebia, R.A.; binti Sadon, N.S.; Tanaka, T. Natural Antibacterial Reagents (Centella, Propolis, and Hinokitiol) Loaded into Poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] Composite Nanofibers for Biomedical Applications. Nanomaterials 2019, 9, 1665.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop