Near-Field Enhancement and Polarization Selection of a Nano-System for He-Ne Laser Application
Abstract
:1. Introduction
2. Structures and Methods
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ebbesen, T.W.; Lezec, H.J.; Ghaemi, H.F.; Thio, T.; Wolff, P.A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 1998, 391, 667–669. [Google Scholar] [CrossRef]
- Martin-Moreno, L.; Garcia-Vidal, F.; Lezec, H.; Pellerin, K.; Thio, T.; Pendry, J.; Ebbesen, T.W. Theory of extraordinary optical transmission through subwavelength hole arrays. Phys. Rev. Lett. 2001, 86, 1114. [Google Scholar] [CrossRef] [PubMed]
- Lezec, H.J.; Degiron, A.; Devaux, E.; Linke, R.; Martin-Moreno, L.; Garcia-Vidal, F.; Ebbesen, T.W. Beaming light from a subwavelength aperture. Science 2002, 297, 820–822. [Google Scholar] [CrossRef] [PubMed]
- Barnes, W.L.; Murray, W.A.; Dintinger, J.; Devaux, E.; Ebbesen, T.W. Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film. Phys. Rev. Lett. 2004, 92, 107401. [Google Scholar] [CrossRef]
- Gordon, R.; Brolo, A.; McKinnon, A.; Rajora, A.; Leathem, B.; Kavanagh, K. Strong polarization in the optical transmission through elliptical nanohole arrays. Phys. Rev. Lett. 2004, 92, 037401. [Google Scholar] [CrossRef]
- Garcia-Vidal, F.J.; Martin-Moreno, L.; Ebbesen, T.; Kuipers, L. Light passing through subwavelength apertures. Rev. Mod. Phys. 2010, 82, 729. [Google Scholar] [CrossRef]
- Srituravanich, W.; Pan, L.; Wang, Y.; Sun, C.; Bogy, D.B.; Zhang, X. Flying plasmonic lens in the near field for high-speed nanolithography. Nat. Nanotechnol. 2008, 3, 733. [Google Scholar] [CrossRef]
- Xie, Z.; Yu, W.; Wang, T.; Zhang, H.; Fu, Y.; Liu, H.; Li, F.; Lu, Z.; Sun, Q. Plasmonic nanolithography: A review. Plasmonics 2011, 6, 565. [Google Scholar] [CrossRef]
- Sreekanth, K.V.; Alapan, Y.; ElKabbash, M.; Ilker, E.; Hinczewski, M.; Gurkan, U.A.; De Luca, A.; Strangi, G. Extreme sensitivity biosensing platform based on hyperbolic metamaterials. Nat. Mater. 2016, 15, 621. [Google Scholar] [CrossRef]
- Aristov, A.I.; Manousidaki, M.; Danilov, A.; Terzaki, K.; Fotakis, C.; Farsari, M.; Kabashin, A.V. 3D plasmonic crystal metamaterials for ultra-sensitive biosensing. Sci. Rep. 2016, 6, 25380. [Google Scholar] [CrossRef]
- Li, M.; Cushing, S.K.; Wu, N. Plasmon-enhanced optical sensors: A review. Analyst 2015, 140, 386–406. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Xu, J.; Deng, Z.L.; Hu, D.; Qin, F.; Li, X. Unidirectional enhanced dipolar emission with an individual dielectric nanoantenna. Nanomaterials 2019, 9, 629. [Google Scholar] [CrossRef] [PubMed]
- Matricardi, C.; Hanske, C.; Garcia-Pomar, J.L.; Langer, J.; Mihi, A.; Liz-Marzan, L.M. Gold nanoparticle plasmonic superlattices as surface-enhanced Raman spectroscopy substrates. ACS Nano 2018, 12, 8531–8539. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhang, Y.; Shih, T.M.; Yang, W.; Hu, S.; Hu, X.; Li, J.; Ren, B.; Mao, B.; Yang, Z. Plasmon-induced magnetic resonance enhanced Raman spectroscopy. Nano Lett. 2018, 18, 2209–2216. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, N.; Li, P.; Yu, L.; Chen, S.; Zhang, Y.; Jing, Z.; Peng, W. Low-Cost Localized surface plasmon resonance biosensing platform with a response enhancement for protein detection. Nanomaterials 2019, 9, 1019. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.C.; Lu, Y.C.; Hung, Y.J. Controlling the nanoscale gaps on silver Island film for efficient surface-enhanced Raman spectroscopy. Nanomaterials 2019, 9, 470. [Google Scholar] [CrossRef] [PubMed]
- Jang, Y.H.; Jang, Y.J.; Kim, S.; Quan, L.N.; Chung, K.; Kim, D.H. Plasmonic solar cells: From rational design to mechanism overview. Chem. Rev. 2016, 116, 14982–15034. [Google Scholar] [CrossRef]
- Mandal, P.; Sharma, S. Progress in plasmonic solar cell efficiency improvement: A status review. Renew. Sust. Energ. Rev. 2016, 65, 537–552. [Google Scholar] [CrossRef]
- Kluczyk, K.; David, C.; Jacak, J.; Jacak, W. On modeling of plasmon-induced enhancement of the efficiency of solar cells modified by metallic nano-particles. Nanomaterials 2019, 9, 3. [Google Scholar] [CrossRef]
- Wang, B.; Zhu, X.; Li, S.; Chen, M.; Lu, H.; Yang, Y. Ag@ SiO2 core-shell nanoparticles embedded in a TiO2 mesoporous layer substantially improve the performance of perovskite solar cells. Nanomaterials 2018, 8, 701. [Google Scholar] [CrossRef]
- Degiron, A.; Lezec, H.; Yamamoto, N.; Ebbesen, T.W. Optical transmission properties of a single subwavelength aperture in a real metal. Opt. Commun. 2004, 239, 61–66. [Google Scholar] [CrossRef]
- Garcia-Vidal, F.; Moreno, E.; Porto, J.; Martin-Moreno, L. Transmission of light through a single rectangular hole. Phys. Rev. Lett. 2005, 95, 103901. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Hesselink, L. Design of a C aperture to achieve λ/10 resolution and resonant transmission. J. Opt. Soc. Am. B 2004, 21, 1305–1317. [Google Scholar] [CrossRef]
- Lindquist, N.C.; Johnson, T.W.; Nagpal, P.; Norris, D.J.; Oh, S.H. Plasmonic nanofocusing with a metallic pyramid and an integrated C-shaped aperture. Sci. Rep. 2013, 3, 1857. [Google Scholar] [CrossRef] [PubMed]
- Jin, E.X.; Xu, X. Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture. Appl. Phys. Lett. 2005, 86, 111106. [Google Scholar] [CrossRef] [Green Version]
- Jin, E.X.; Xu, X. Enhanced optical near field from a bowtie aperture. Appl. Phys. Lett. 2006, 88, 153110. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Xu, X. High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging. Appl. Phys. Lett. 2007, 90, 261105. [Google Scholar] [CrossRef]
- Murphy-DuBay, N.; Wang, L.; Kinzel, E.C.; Uppuluri, S.M.; Xu, X. Nanopatterning using NSOM probes integrated with high transmission nanoscale bowtie aperture. Opt. Express 2008, 16, 2584–2589. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; He, S. Enhancing extraordinary transmission of light through a metallic nanoslit with a nanocavity antenna. Opt. Lett. 2009, 34, 16–18. [Google Scholar] [CrossRef]
- Banzer, P.; Kindler, J.; Quabis, S.; Peschel, U.; Leuchs, G. Extraordinary transmission through a single coaxial aperture in a thin metal film. Opt. Express 2010, 18, 10896–10904. [Google Scholar] [CrossRef]
- Valdivia-Valero, F.; Nieto-Vesperinas, M. Enhanced transmission through subwavelength apertures by excitation of particle localized plasmons and nanojets. Opt. Express 2011, 19, 11545–11557. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.S.; Zhou, J.; Lan, C.W.; Wu, H.Y.; Bi, K. Mie-resonance-coupled total broadband transmission through a single subwavelength aperture. Appl. Phys. Lett. 2014, 104, 204103. [Google Scholar]
- Bi, K.; Liu, W.; Guo, Y.; Dong, G.; Lei, M. Magnetically tunable broadband transmission through a single small aperture. Sci. Rep. 2015, 5, 12489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Bi, K.; Lei, M. Magnetically tunable dual-band transmission through a single subwavelength aperture. Appl. Phys. Lett. 2015, 106, 194102. [Google Scholar] [CrossRef]
- Guo, Y.; Liang, H.; Hou, X.; Lv, X.; Li, L.; Li, J.; Bi, K.; Lei, M.; Zhou, J. Thermally tunable enhanced transmission of microwaves through a subwavelength aperture by a dielectric metamaterial resonator. Appl. Phys. Lett. 2016, 108, 051906. [Google Scholar] [CrossRef]
- Cakmak, A.O.; Aydin, K.; Colak, E.; Li, Z.; Bilotti, F.; Vegni, L.; Ozbay, E. Enhanced transmission through a subwavelength aperture using metamaterials. Appl. Phys. Lett. 2009, 95, 052103. [Google Scholar] [CrossRef] [Green Version]
- Aydin, K.; Cakmak, A.O.; Sahin, L.; Li, Z.; Bilotti, F.; Vegni, L.; Ozbay, E. Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture. Phys. Rev. Lett. 2009, 102, 013904. [Google Scholar] [CrossRef]
- Ates, D.; Cakmak, A.O.; Colak, E.; Zhao, R.; Soukoulis, C.M.; Ozbay, E. Transmission enhancement through deep subwavelength apertures using connected split ring resonators. Opt. Express 2010, 18, 3952–3966. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Zhou, J. Total broadband transmission of microwaves through a subwavelength aperture by localized E-field coupling of split-ring resonators. Opt. Express 2014, 22, 27136–27143. [Google Scholar] [CrossRef]
- Guo, Y.; Zhou, J. Dual-band-enhanced transmission through a subwavelength aperture by coupled metamaterial resonators. Sci. Rep. 2015, 5, 8144. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, S.; Bi, K.; Lei, M.; Zhou, J. Low-power nonlinear enhanced electromagnetic transmission of a subwavelength metallic aperture. Photonics Res. 2018, 6, 1102–1106. [Google Scholar] [CrossRef]
- Yee, K. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antenn. Propag. 1966, 14, 302–307. [Google Scholar]
- Wang, Q.; Wang, X.; Wu, S. Interaction between two perpendicular Fabry–Perot-like resonances of the antenna–dielectric–slit structure and their influences on the transmission enhancement. Plasmonics 2013, 8, 669–676. [Google Scholar] [CrossRef]
- Astilean, S.; Lalanne, P.; Palamaru, M. Light transmission through metallic channels much smaller than the wavelength. Opt. Commun. 2000, 175, 265–273. [Google Scholar] [CrossRef]
- Li, Z.B.; Yang, Y.H.; Kong, X.T.; Zhou, W.Y.; Tian, J.G. Fabry-Perot resonance in slit and grooves to enhance the transmission through a single subwavelength slit. J. Opt. A Pure Appl. Opt. 2009, 11, 105002. [Google Scholar] [CrossRef]
- Xie, Y.; Zakharian, A.R.; Moloney, J.V.; Mansuripur, M. Transmission of light through slit apertures in metallic films. Opt. Express 2004, 12, 6106–6121. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Chu, S.; Yu, L.; Gao, H.; Peng, W. Near-Field Enhancement and Polarization Selection of a Nano-System for He-Ne Laser Application. Nanomaterials 2019, 9, 1421. https://doi.org/10.3390/nano9101421
Wang Q, Chu S, Yu L, Gao H, Peng W. Near-Field Enhancement and Polarization Selection of a Nano-System for He-Ne Laser Application. Nanomaterials. 2019; 9(10):1421. https://doi.org/10.3390/nano9101421
Chicago/Turabian StyleWang, Qiao, Shuwen Chu, Li Yu, Huixuan Gao, and Wei Peng. 2019. "Near-Field Enhancement and Polarization Selection of a Nano-System for He-Ne Laser Application" Nanomaterials 9, no. 10: 1421. https://doi.org/10.3390/nano9101421
APA StyleWang, Q., Chu, S., Yu, L., Gao, H., & Peng, W. (2019). Near-Field Enhancement and Polarization Selection of a Nano-System for He-Ne Laser Application. Nanomaterials, 9(10), 1421. https://doi.org/10.3390/nano9101421