# Effective Mechanical Properties and Thickness Determination of Boron Nitride Nanosheets Using Molecular Dynamics Simulation

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Computational Model

## 3. Results and Discussion

#### 3.1. Validation of the Simulation Model

^{2}which is comparable with the ab initio prediction of 271 J/m

^{2}[35] and MD prediction of 267 J/m

^{2}[29]. Hence, the above confirmation study validates the accuracy of the simulation model adopted in the study.

#### 3.2. Effect of Geometry and Tensile Loading Direction

#### 3.3. Effect of the Concentration and Position of Vacancy Defect

#### 3.4. Effect of Temperature and Vacancy Defects

## 4. Determination of Thickness and the Young’s Modulus of BNNS

_{a}is the strain energy of the BNNS structure under axial loading, A is the surface area of the BNNS, a

_{j}(j = 0,1,2,3,…) is the coefficient of the fitted polynomial of W

_{a}in terms of strain, and ε derived from the strain energy-strain plot.

_{b}is the energy of the BNNS structure during bending process to form a BNNT, b

_{j}(j = 0,1,2,3,…) is the coefficient of the fitted polynomial of W

_{b}in terms of curvature, and κ is derived from the energy-curvature plot.

^{2}and 1.785 eV, respectively. These values are in good agreement with the K and D values computed from various numerical approaches, as illustrated in Table 1. From Figure 7, the correct thickness of BNNS is determined by the intersection of the K and D curves, while also satisfying the Vodenitcharova-Zhang necessary criterion [40]. Hence, the correct effective thickness of BNNS is h ≈ 0.106 nm and the Young’s modulus ≈ 2.75 TPa.

- (1)
- (2)
- For a thickness of 3.4 Å, the Young’s modulus of the BNNS reported by computational studies is lower than that of graphene, and should be valid regardless of any thickness considered. As the computed modulus of BNNS (2.75 TPa) is lower than the correct modulus of graphene, which is reported to be 3.4–3.5 TPa [41,55], the above findings can be validated.

## 5. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Falin, A.; Cai, Q.; Santos, E.J.G.; Scullion, D.; Qian, D.; Zhang, R.; Yang, Z.; Huang, S.; Watanabe, K.; Taniguchi, T.; et al. Mechanical properties of atomically thin boron nitride and the role of interlayer interactions. Nat. Commun.
**2017**, 8, 15818. [Google Scholar] [CrossRef] [PubMed] - Zeng, H.; Zhi, C.; Zhang, Z.; Wei, X.; Wang, X.; Guo, W.; Bando, Y.; Golberg, D. “White graphenes”: Boron nitride nanoribbons via boron nitride nanotube unwrapping. Nano Lett.
**2010**, 10, 5049–5055. [Google Scholar] [CrossRef] [PubMed] - Zhang, J.; Wang, C. Mechanical properties of hybrid boron nitride-carbon nanotubes. J. Phys. D Appl. Phys.
**2016**, 49, 15. [Google Scholar] [CrossRef] - Golberg, D.; Bando, Y.; Huang, Y.; Terao, T.; Mitome, M.; Tang, C.; Zhi, C. Boron nitride nanotubes and nanosheets. ACS Nano
**2010**, 4, 2979–2993. [Google Scholar] [CrossRef] [PubMed] - Isarn, I.; Ramis, X.; Ferrando, F.; Serra, A. Thermoconductive thermosetting composites based on boron nitride fillers and thiol-epoxy matrices. Polymers
**2018**, 10, 277. [Google Scholar] [CrossRef] - Yu, J.; Zhao, W.; Wu, Y.; Wang, D.; Feng, R. Tribological properties of epoxy composite coatings reinforced with functionalized C-BN and H-BN nanofillers. Appl. Surf. Sci.
**2018**, 434, 1311–1320. [Google Scholar] [CrossRef] - Shahrokhi, M.; Mortazavi, B.; Berdiyorov, G.R. New two-dimensional boron nitride allotropes with attractive electronic and optical properties. Solid State Commun.
**2017**, 253, 51–56. [Google Scholar] [CrossRef] - Tao, X.; Zhang, L.; Zheng, X.; Hao, H.; Wang, X.; Song, L.; Zeng, Z.; Guo, H. h-BN/graphene van der Waals vertical heterostructure: A fully spin-polarized photocurrent generator. Nanoscale
**2018**, 10, 174–183. [Google Scholar] [CrossRef] [PubMed] - Arutt, C.N.; Alles, M.L.; Liao, W.; Gong, H.; Davidson, J.L.; Schrimpf, R.D.; Reed, R.A.; Weller, R.A.; Bolotin, K.; Nicholl, R.; et al. The study of radiation effects in emerging micro and nano electro mechanical systems (M and NEMS). Semicond. Sci. Technol.
**2017**, 32, 1. [Google Scholar] [CrossRef] - Garel, J.; Zhao, C.; Popovitz-Biro, R.; Golberg, D.; Wang, W.; Joselevich, E. BCN nanotubes as highly sensitive torsional electromechanical transducers. Nano Lett.
**2014**, 14, 6132–6137. [Google Scholar] [CrossRef] [PubMed] - Bosak, A.; Serrano, J.; Krisch, M.; Watanabe, K.; Taniguchi, T.; Kanda, H. Elasticity of hexagonal boron nitride: Inelastic X-ray scattering measurements. Phys. Rev. B Condens. Matter Mater. Phys.
**2006**, 73, 041402(R). [Google Scholar] [CrossRef] - Song, L.; Ci, L.; Lu, H.; Sorokin, P.B.; Jin, C.; Ni, J.; Kvashnin, A.G.; Kvashnin, D.G.; Lou, J.; Yakobson, B.I.; et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett.
**2010**, 10, 3209–3215. [Google Scholar] [CrossRef] [PubMed] - Kim, S.M.; Hsu, A.; Park, M.H.; Chae, S.H.; Yun, S.J.; Lee, J.S.; Cho, D.H.; Fang, W.; Lee, C.; Palacios, T.; et al. Synthesis of large-area multilayer hexagonal boron nitride for high material performance. Nat. Commun.
**2015**, 6, 8662. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Chopra, N.G.; Zettl, A. Measurement of the elastic modulus of a multi-wall boron nitride nanotube. Solid State Commun.
**1998**, 105, 297–300. [Google Scholar] [CrossRef] - Suryavanshi, A.P.; Yu, M.F.; Wen, J.; Tang, C.; Bando, Y. Elastic modulus and resonance behavior of boron nitride nanotubes. Appl. Phys. Lett.
**2004**, 84, 2527–2529. [Google Scholar] [CrossRef] - Eshkalak, K.E.; Sadeghzadeh, S.; Jalaly, M. Mechanical properties of defective hybrid graphene-boron nitride nanosheets: A molecular dynamics study. Comput. Mater. Sci.
**2018**, 149, 170–181. [Google Scholar] [CrossRef] - Griebel, M.; Hamaekers, J.; Heber, F. A molecular dynamics study on the impact of defects and functionalization on the young modulus of boron-nitride nanotubes. Comput. Mater. Sci.
**2009**, 45, 1097–1103. [Google Scholar] [CrossRef] - Li, N.; Ding, N.; Qu, S.; Liu, L.; Guo, W.; Wu, C.M.L. Mechanical properties and failure behavior of hexagonal boron nitride sheets with nano-cracks. Comput. Mater. Sci.
**2017**, 140, 356–366. [Google Scholar] [CrossRef] - Wang, H.; Ding, N.; Zhao, X.; Wu, C.M.L. Defective boron nitride nanotubes: Mechanical properties, electronic structures and failure behaviors. J. Phys. D Appl. Phys.
**2018**, 51, 12. [Google Scholar] [CrossRef] - Le, M.Q. Prediction of young’s modulus of hexagonal monolayer sheets based on molecular mechanics. Int. J. Mech. Mater. Des.
**2015**, 11, 15–24. [Google Scholar] [CrossRef] - Mortazavi, B.; Rémond, Y. Investigation of tensile response and thermal conductivity of boron-nitride nanosheets using molecular dynamics simulations. Phys. E Low-Dimens. Syst. Nanostruct.
**2012**, 44, 1846–1852. [Google Scholar] [CrossRef] - Wu, J.; Wang, B.; Wei, Y.; Yang, R.; Dresselhaus, M. Mechanics and mechanically tunable band gap in single-layer hexagonal boron-nitride. Mater. Res. Lett.
**2013**, 1, 200–206. [Google Scholar] [CrossRef] - Mirnezhad, M.; Ansari, R.; Shahabodini, A. Temperature effect on young’s modulus of boron nitride sheets. J. Therm. Stresses
**2013**, 36, 152–159. [Google Scholar] [CrossRef] - Han, T.; Luo, Y.; Wang, C. Effects of temperature and strain rate on the mechanical properties of hexagonal boron nitride nanosheets. J. Phys. D Appl. Phys.
**2014**, 47, 2. [Google Scholar] [CrossRef] - Oh, E.S. Elastic properties of boron-nitride nanotubes through the continuum lattice approach. Mater. Lett.
**2010**, 64, 859–862. [Google Scholar] [CrossRef] - Hernández, E.; Goze, C.; Bernier, P.; Rubio, A. Elastic properties of single-wall nanotubes. Appl. Phys. A Mater. Sci. Process.
**1999**, 68, 287–292. [Google Scholar] [CrossRef] [Green Version] - Ansari, R.; Mirnezhad, M.; Sahmani, S. Prediction of chirality- and size-dependent elastic properties of single-walled boron nitride nanotubes based on an accurate molecular mechanics model. Superlattices Microstruct.
**2015**, 80, 196–205. [Google Scholar] [CrossRef] - Akdim, B.; Pachter, R.; Duan, X.; Adams, W.W. Comparative theoretical study of single-wall carbon and boron-nitride nanotubes. Phys. Rev. B Condens. Matter Mater. Phys.
**2003**, 67, 245404. [Google Scholar] [CrossRef] - Los, J.H.; Kroes, J.M.H.; Albe, K.; Gordillo, R.M.; Katsnelson, M.I.; Fasolino, A. Extended tersoff potential for boron nitride: Energetics and elastic properties of pristine and defective h-BN. Phys. Rev. B
**2017**, 96, 184108. [Google Scholar] [CrossRef] - Thomas, S.; Ajith, K.M.; Chandra, S.; Valsakumar, M.C. Temperature dependent structural properties and bending rigidity of pristine and defective hexagonal boron nitride. J. Phys. Condens. Matter
**2015**, 27, 315302. [Google Scholar] [CrossRef] [PubMed] - Boldrin, L.; Scarpa, F.; Chowdhury, R.; Adhikari, S. Effective mechanical properties of hexagonal boron nitride nanosheets. Nanotechnology
**2011**, 22, 50. [Google Scholar] [CrossRef] [PubMed] - Genoese, A.; Genoese, A.; Rizzi, N.L.; Salerno, G. Force constants of BN, SiC, AlN and GaN sheets through discrete homogenization. Meccanica
**2018**, 53, 593–611. [Google Scholar] [CrossRef] - Thomas, S.; Ajith, K.M.; Valsakumar, M.C. Directional anisotropy, finite size effect and elastic properties of hexagonal boron nitride. J. Phys. Condens. Matter
**2016**, 28, 295302. [Google Scholar] [CrossRef] [PubMed] - Jiang, L.; Guo, W. A molecular mechanics study on size-dependent elastic properties of single-walled boron nitride nanotubes. J. Mech. Phys. Solids
**2011**, 59, 1204–1213. [Google Scholar] [CrossRef] - Kudin, K.N.; Scuseria, G.E.; Yakobson, B.I. C
_{2}F, BN, and C nanoshell elasticity from ab initio computations. Phys. Rev. B Condens. Matter Mater. Phys.**2001**, 64, 235406. [Google Scholar] [CrossRef] - Peng, Q.; Ji, W.; De, S. Mechanical properties of the hexagonal boron nitride monolayer: Ab initio study. Comput. Mater. Sci.
**2012**, 56, 11–17. [Google Scholar] [CrossRef] [Green Version] - Verma, V.; Jindal, V.K.; Dharamvir, K. Elastic moduli of a boron nitride nanotube. Nanotechnology
**2007**, 18, 43. [Google Scholar] [CrossRef] - Zhao, S.; Xue, J. Mechanical properties of hybrid graphene and hexagonal boron nitride sheets as revealed by molecular dynamic simulations. J. Phys. D Appl. Phys.
**2013**, 46, 13. [Google Scholar] [CrossRef] - Le, M.Q.; Nguyen, D.T. Atomistic simulations of pristine and defective hexagonal BN and SiC sheets under uniaxial tension. Mater. Sci. Eng. A
**2014**, 615, 481–488. [Google Scholar] [CrossRef] - Vodenitcharova, T.; Zhang, L.C. Effective wall thickness of a single-walled carbon nanotube. Phys. Rev. B
**2003**, 68, 165401. [Google Scholar] [CrossRef] - Wang, C.Y.; Zhang, L.C. A critical assessment of the elastic properties and effective wall thickness of single-walled carbon nanotubes. Nanotechnology
**2008**, 19, 7. [Google Scholar] [CrossRef] [PubMed] - Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys.
**1995**, 117, 1–19. [Google Scholar] [CrossRef] - Tersoff, J. New empirical approach for the structure and energy of covalent systems. Phys. Rev. B
**1988**, 37, 6991–7000. [Google Scholar] [CrossRef] - Tersoff, J. Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. Phys. Rev. B
**1989**, 39, 5566–5568. [Google Scholar] [CrossRef] - KinacI, A.; Haskins, J.B.; Sevik, C.; ÇaǧIn, T. Thermal conductivity of BN-C nanostructures. Phys. Rev. B
**2012**, 86, 115410. [Google Scholar] [CrossRef] - Rajasekaran, G.; Kumar, R.; Parashar, A. Tersoff potential with improved accuracy for simulating graphene in molecular dynamics environment. Mater. Res. Express
**2016**, 3, 3. [Google Scholar] [CrossRef] - Mortazavi, B.; Cuniberti, G. Mechanical properties of polycrystalline boron-nitride nanosheets. RSC Adv.
**2014**, 4, 19137–19143. [Google Scholar] [CrossRef] - Qi-Lin, X.; Zhen-Huan, L.; Xiao-Geng, T. The defect-induced fracture behaviors of hexagonal boron-nitride monolayer nanosheets under uniaxial tension. J. Phys. D Appl. Phys.
**2015**, 48, 37. [Google Scholar] [CrossRef] - Wei, A.; Li, Y.; Datta, D.; Guo, H.; Lv, Z. Mechanical properties of graphene grain boundary and hexagonal boron nitride lateral heterostructure with controlled domain size. Comput. Mater. Sci.
**2017**, 126, 474–478. [Google Scholar] [CrossRef] - Tabarraei, A.; Wang, X. A molecular dynamics study of nanofracture in monolayer boron nitride. Mater. Sci. Eng. A
**2015**, 641, 225–230. [Google Scholar] [CrossRef] - Wong, C.H.; Vijayaraghavan, V. Nanomechanics of free form and water submerged single layer graphene sheet under axial tension by using molecular dynamics simulation. Mater. Sci. Eng. A
**2012**, 556, 420–428. [Google Scholar] [CrossRef] - Zhang, Y.Y.; Xiang, Y.; Wang, C.M. Buckling of defective carbon nanotubes. J. Appl. Phys.
**2009**, 106, 620–653. [Google Scholar] [CrossRef] - Yakobson, B.I.; Brabec, C.J.; Bernholc, J. Nanomechanics of carbon tubes: Instabilities beyond linear response. Phys. Rev. Lett.
**1996**, 76, 2511–2514. [Google Scholar] [CrossRef] [PubMed] - Huang, Y.; Wu, J.; Hwang, K.C. Thickness of graphene and single-wall carbon nanotubes. Phys. Rev. B
**2006**, 74, 245413. [Google Scholar] [CrossRef] - Batra, R.C.; Gupta, S.S. Wall thickness and radial breathing modes of single-walled carbon nanotubes. J. Appl. Mech.
**2008**, 75, 0610101–0610106. [Google Scholar] [CrossRef]

**Figure 1.**Simulation of BNNS under tensile loading. The atoms enclosed inside the black rectangle at either ends of BNNS is subjected to tensile loading. The loading direction is indicated by the arrows. Atoms depicted in ochre are boron and atoms depicted in blue are nitrogen.

**Figure 4.**Tensile loading stages of single-layer BNNS at 300 K at (

**a**) ɛ = 0.0; (

**b**) ɛ = 0.12; and (

**c**) ɛ = 0.25.

**Figure 5.**Tensile loading characteristics of single layer BNNS with vacancy defects along the axial and transverse directions at 300 K.

**Figure 8.**Determination of the correct thickness and Young’s modulus of BNNS from the intersection of axial stiffness and bending stiffness curves on the E-h coordinate plane.

Experimental Method | Young’s Modulus (TPa) |
---|---|

Nanoindentation measurement of few layer BNNS exfoliated from single crystal BN [1]. | 0.865 ± 0.073 |

IXS of BNNS crystal synthesized from Ba-B-N catalyst system under high temperature and pressure [11]. | 0.811 |

Nanoindentation measurement on defective BNNS synthesized by CVD from bulk BN crystal [12]. | 0.334 ± 0.024 |

AFM measurement on high quality BNNS synthesized from borazine precursor using CVD process [13]. | 1.16 ± 0.1 |

Thermal assisted vibration of cantilevered BNNT observed using TEM [14]. | 1.22 ± 0.24 |

Electric-field-induced technique to apply sinusoidal signal which induces vibration in BNNT [15]. | 0.505–1.031 |

Technique | Temperature (K) | Young’s Modulus (TPa) | Axial Stiffness (TPa nm) | Bending Stiffness (eV) |
---|---|---|---|---|

Tersoff potential [16] | 300 | 0.930 | NA | NA |

Tersoff potential [17] | NA | 0.730–0.890 | 0.248–0.292 | NA |

Tersoff potential [18] | 0–2000 | 0.398–0.720 | NA | NA |

DFT calculation [19] | NA | NA | 0.293–0.311 | NA |

Mechanics model [20] | 0 | NA | 0.332 | NA |

Tersoff potential [21] | 300 | 0.800–0.850 | 0.264–0.280 | NA |

DFT calculation [22] | NA | 0.760–1.055 | NA | 0.95 |

DFT-QHA model [23] | 0–1000 | NA | 0.278–0.283 | NA |

T-B potential [24] | 300 | 0.881 | NA | NA |

Continuum model [25] | NA | 0.900–1.000 | NA | NA |

Tight binding [26] | NA | NA | 0.284–0.310 | NA |

MM-DFT model [27] | NA | 0.83 | 0.282 | 1.74 |

DFT calculation [28] | NA | 0.700–0.830 | NA | NA |

Tersoff potential [29] | 0 | NA | 0.267 | NA |

Tersoff-like model [30] | 300 | NA | NA | 1.5–1.7 |

Atomistic-FEM [31] | NA | NA | 0.240–0.315 | NA |

DMH technique [32] | NA | NA | 0.267 | NA |

Tersoff potential [33] | NA | 0.295–0.695 | NA | 0.22–0.56 |

MM model [34] | NA | NA | 0.260–0.269 | NA |

Ab initio [35] | NA | NA | 0.271 | 1.29 |

DFT calculation [36] | NA | NA | 0.279 | NA |

Modified T-B [37] | NA | 0.982–1.113 | NA | NA |

Tersoff potential [38] | 300 | 0.716 | NA | NA |

Tersoff potential [39] | 0 | 0.749–0.770 | 0.248–0.258 | NA |

Factors | Tensile Strength of BNNS |
---|---|

Temperature | Decreases |

Defect concentration | Decreases |

Geometry | Unknown |

Defect position | Unknown |

Defects and Temperature | Unknown |

Loading direction | Superior in zigzag direction |

Aspect Ratio (L/W) | BNNS Dimensions (L × W) | Total Number of Atoms |
---|---|---|

1.0 | 62.38 Å × 60.27 Å | 1408 |

2.0 | 89.11 Å × 42.63 Å | 1420 |

3.0 | 104.39 Å × 33.81 Å | 1328 |

4.0 | 120.94 Å × 29.40 Å | 1344 |

Aspect Ratio (L/W) | BNNS Dimensions (L × W) | Total Number of Atoms |
---|---|---|

1.0 | 62.48 Å × 61.11 Å | 1450 |

2.0 | 86.73 Å × 43.28 Å | 1400 |

3.0 | 104.37 Å × 33.10 Å | 1344 |

4.0 | 119.81 Å × 30.55 Å | 1374 |

**Table 6.**Percentage reduction of the maximum tensile force of BNNS with defects when temperature is increased from 300 to 900 K.

Number of Defects | Reduction of Maximum Tensile Force (%) |
---|---|

0 | 14.25 |

2 | 13.83 |

4 | 11.97 |

6 | 10.16 |

Armchair BNNS | Zigzag BNNS | ||
---|---|---|---|

Aspect Ratio | Mechanical Strength (GPa) | Aspect Ratio | Mechanical Strength (GPa) |

1.0 | 254.31 | 1.0 | 302.75 |

2.0 | 266.82 | 2.0 | 318.51 |

3.0 | 259.33 | 3.0 | 317.70 |

4.0 | 266.21 | 4.0 | 306.67 |

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Vijayaraghavan, V.; Zhang, L.
Effective Mechanical Properties and Thickness Determination of Boron Nitride Nanosheets Using Molecular Dynamics Simulation. *Nanomaterials* **2018**, *8*, 546.
https://doi.org/10.3390/nano8070546

**AMA Style**

Vijayaraghavan V, Zhang L.
Effective Mechanical Properties and Thickness Determination of Boron Nitride Nanosheets Using Molecular Dynamics Simulation. *Nanomaterials*. 2018; 8(7):546.
https://doi.org/10.3390/nano8070546

**Chicago/Turabian Style**

Vijayaraghavan, Venkatesh, and Liangchi Zhang.
2018. "Effective Mechanical Properties and Thickness Determination of Boron Nitride Nanosheets Using Molecular Dynamics Simulation" *Nanomaterials* 8, no. 7: 546.
https://doi.org/10.3390/nano8070546