On-Demand CMOS-Compatible Fabrication of Ultrathin Self-Aligned SiC Nanowire Arrays
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Nanofabrication
3.2. Structural, Compositional, Optical, and Morphological Properties
3.3. Deterministic Ion Integration Into NW Arrays
3.4. Photoluminescence Properties
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cui, Y.; Wei, Q.; Park, H.; Lieber, C.M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293, 1289–1292. [Google Scholar] [CrossRef] [PubMed]
- Pan, C.; Dong, L.; Zhu, G.; Niu, S.; Yu, R.; Yang, Q.; Liu, Y.; Wang, Z.L. High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array. Nat. Photonics 2013, 7, 752–758. [Google Scholar] [CrossRef]
- Patolsky, F.; Zheng, G.; Lieber, C.M. Nanowire-based biosensors. Anal. Chem. 2006, 78, 4260–4269. [Google Scholar] [CrossRef] [PubMed]
- Mu, L.; Chang, Y.; Sawtelle, S.D.; Wipf, M.; Duan, X.; Reed, M.A. Silicon nanowire field-effect transistors—A versatile class of potentiometric nanobiosensors. IEEE Access 2015, 3, 287–302. [Google Scholar] [CrossRef]
- Gao, A.; Lu, N.; Dai, P.; Li, T.; Pei, H.; Gao, X. Silicon-nanowire-based CMOS-compatible field-effect transistor nanosensors for ultrasensitive electrical detection of nucleic acids. Nano Lett. 2011, 11, 3974–3978. [Google Scholar] [CrossRef] [PubMed]
- Patolsky, F.; Zheng, G.; Lieber, C.M. Nanowire sensors for medicine and the life sciences. Nanomedicine (London, England) 2006, 1, 51–65. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Chan, G.; Choi, J.W.; Ryu, I.; Yao, Y.; Mcdowell, M.T.; Lee, S.W.; Jackson, A.; Yang, Y.; Hu, L.; et al. Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control. Nat. Nanotechnol. 2012, 7, 310–315. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.P.A.; Zheng, G.; Lieber, C.M. Subthreshold regime has the optimal sensitivity for nanowire FET biosensors. Nano Lett. 2010, 10, 547–552. [Google Scholar] [CrossRef] [PubMed]
- Babinec, T.M.; Hausmann, B.J.M.; Khan, M.; Zhang, Y.A.; Maze, J.R.; Hemmer, P.R.; Loncar, M.A. A diamond nanowire single-photon source. Nat. Nanotechnol. 2010, 5, 195–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lohrmann, A.; Johnson, B.C.; McCallum, J.C.; Castelletto, S. A review on single photon sources in silicon carbide. Rep. Prog. Phys. 2017, 80, 34502. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, V.; Gosele, U. Materials science: How nanowires grow. Science 2007, 316, 698–699. [Google Scholar] [CrossRef] [PubMed]
- Martin, C.R. Template synthesis of electronically conductive polymer nanostructures. Acc. Chem. Res. 1995, 28, 61–68. [Google Scholar] [CrossRef]
- Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H. One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 2003, 15, 353–389. [Google Scholar] [CrossRef]
- Kwiat, M.; Cohen, S.; Pevzner, A.; Patolsky, F. Large-scale ordered 1D-nanomaterials arrays: Assembly or not? Nano Today 2013, 8, 677–694. [Google Scholar] [CrossRef]
- Azevedo, R.G.; Jones, D.G.; Jog, A.V.; Jamshidi, B.; Myers, D.R.; Chen, L.; Fu, X.A.; Mehregany, M.; Wijesundara, M.B.J.; Pisano, A.P. A SiC MEMS resonant strain sensor for harsh environment applications. IEEE Sens. J. 2007, 7, 568–576. [Google Scholar] [CrossRef]
- Myers, D.R. Silicon carbide resonant tuning fork for microsensing applications in high-temperature and high G-shock environments. J. Micro/Nanolithogr. MEMS MOEMS 2009, 8, 21116. [Google Scholar] [CrossRef]
- Neudeck, P.G.; Spry, D.J.; Chen, L.Y.; Beheim, G.M.; Okojie, R.S.; Chang, C.W.; Meredith, R.D.; Ferrier, T.L.; Evans, L.J.; Krasowski, M.J.; et al. Stable electrical operation of 6H-SiC JFETs and ICs for thousands of hours at 500 °C. IEEE Electron Device Lett. 2008, 29, 456–459. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, J.; Wang, M.; Li, Y. High-temperature hydrogen sensor based on platinum nanoparticle-decorated SiC nanowire device. Sens. Actuators B Chem. 2014, 201, 402–406. [Google Scholar] [CrossRef]
- Oliveros, A.; Guiseppi-Elie, A.; Saddow, S.E. Silicon carbide: A versatile material for biosensor applications. Biomed. Microdevices 2013, 15, 353–368. [Google Scholar] [CrossRef] [PubMed]
- Deeken, C.R.; Esebua, M.; Bachman, S.L.; Ramshaw, B.J.; Grant, S.A. Assessment of the biocompatibility of two novel, bionanocomposite scaffolds in a rodent model. J. Biomed. Mater. Res. Part B Appl. Biomater. 2011, 96, 351–359. [Google Scholar] [CrossRef] [PubMed]
- Frewin, C.L.; Locke, C.; Saddow, S.E.; Weeber, E.J. Single-crystal cubic silicon carbide: An in vivo biocompatible semiconductor for brain machine interface devices. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; pp. 2957–2960. [Google Scholar] [CrossRef]
- Fradetal, L.; Bano, E.; Attolini, G.; Rossi, F.; Stambouli, V. A silicon carbide nanowire field effect transistor for DNA detection. Nanotechnology 2016, 27, 235501. [Google Scholar] [CrossRef] [PubMed]
- WebElements Periodic Table. Available online: https://www.webelements.com/silicon/isotopes.html (accessed on 13 August 2018).
- Böttger, T.; Thiel, C.W.; Sun, Y.; Cone, R.L. Optical decoherence and spectral diffusion at 1.5 μm in Er3+: Y2SiO5 versus magnetic field, temperature, and Er3+ concentration. Phys. Rev. B 2006, 73, 075101. [Google Scholar] [CrossRef]
- Cheng, G.; Chang, T.H.; Qin, Q.; Huang, H.; Zhu, Y. Mechanical properties of silicon carbide nanowires: Effect of size-dependent defect density. Nano Lett. 2014, 14, 754–758. [Google Scholar] [CrossRef] [PubMed]
- Estes, M.J.; Moddel, G. Luminescence from amorphous silicon nanostructures. Phys. Rev. B 1996, 54, 14633–14642. [Google Scholar] [CrossRef]
- Orchard, J.R.; Woodhead, C.; Wu, J.; Tang, M.; Beanland, R.; Noori, Y.; Liu, H.; Young, R.J.; Mowbray, D.J. Silicon-based single quantum dot emission in the telecoms C-band. ACS Photonics 2017, 4, 1740–1746. [Google Scholar] [CrossRef]
- Hanson, R. Quantum information: Mother nature outgrown. Nat. Mater. 2009, 8, 368. [Google Scholar] [CrossRef] [PubMed]
- Ford, B.; Tabassum, N.; Nikas, V.; Gallis, S. Strong photoluminescence enhancement of silicon oxycarbide through defect engineering. Materials 2017, 10, 446. [Google Scholar] [CrossRef] [PubMed]
- Tabassum, N.; Nikas, V.; Ford, B.; Huang, M.; Kaloyeros, A.E.; Gallis, S. Time-resolved analysis of the White photoluminescence from chemically synthesized SiCxOy thin films and nanowires. Appl. Phys. Lett. 2016, 109, 43104. [Google Scholar] [CrossRef]
- Nikas, V.; Tabassum, N.; Ford, B.; Smith, L.; Kaloyeros, A.E.; Gallis, S. Strong visible light emission from silicon-oxycarbide nanowire arrays prepared by electron beam lithography and reactive ion etching. J. Mater. Res. 2015, 30, 3692–3699. [Google Scholar] [CrossRef]
- Pawbake, A.; Mayabadi, A.; Waykar, R.; Kulkarni, R.; Jadhavar, A.; Waman, V.; Parmar, J.; Bhattacharyya, S.; Ma, Y.R.; Devan, R.; et al. Growth of boron doped hydrogenated nanocrystalline cubic silicon carbide (3C-SiC) films by Hot Wire-CVD. Mater. Res. Bull. 2016, 76, 205–215. [Google Scholar] [CrossRef]
- Zekentes, K.; Rogdakis, K. SiC nanowires: Material and devices. J. Phys. D Appl. Phys. 2011, 44, 133001. [Google Scholar] [CrossRef]
- Gallis, S.; Nikas, V.; Huang, M.; Eisenbraun, E.; Kaloyeros, A.E. Comparative study of the effects of thermal treatment on the optical properties of hydrogenated amorphous silicon-oxycarbide. J. Appl. Phys. 2007, 102, 024302. [Google Scholar] [CrossRef]
- Gallis, S.; Nikas, V.; Eisenbraun, E.; Huang, M.; Kaloyeros, A.E. On the effects of thermal treatment on the composition, structure, morphology, and optical properties of hydrogenated amorphous silicon-oxycarbide. J. Mater. Res. 2009, 24, 2561–2573. [Google Scholar] [CrossRef]
- Calcagno, L.; Musumeci, P.; Roccaforte, F.; Bongiorno, C.; Foti, G. Crystallisation mechanism of amorphous silicon carbide. Appl. Surf. Sci. 2001, 184, 123–127. [Google Scholar] [CrossRef]
- Madapura, S. Heteroepitaxial growth of SiC on Si(100) and (111) by chemical vapor deposition using trimethylsilane. J. Electrochem. Soc. 1999, 146, 1197–1202. [Google Scholar] [CrossRef]
- Steckl, A.J.; Devrajan, J.; Tlali, S.; Jackson, H.E.; Tran, C.; Gorin, S.N.; Ivanova, L.M. Characterization of 3C–SiC crystals grown by thermal decomposition of methyltrichlorosilane. Appl. Phys. Lett. 1996, 69, 3824–3826. [Google Scholar] [CrossRef]
- Shaffer, P.T.B.; Naum, R.G. Refractive index and dispersion of beta silicon carbide. J. Opt. Soc. Am. 1969, 59, 1498. [Google Scholar] [CrossRef]
- Persson, C.; Lindefelt, U. Detailed band structure for 3C-, 2H-, 4H-, 6H-SiC, and Si around the fundamental band gap. Phys. Rev. B Condens. Matter Mater. Phys. 1996, 54, 10257–10260. [Google Scholar] [CrossRef]
- Dey, S.; Tapily, K.; Consiglio, S.; Clark, R.D.; Wajda, C.S.; Leusink, G.L.; Woll, A.R.; Diebold, A.C. Role of Ge and Si substrates in higher-k tetragonal phase formation and interfacial properties in cyclical atomic layer deposition-anneal Hf1−xZrxO2/Al2O3 thin film stacks. J. Appl. Phys. 2016, 120. [Google Scholar] [CrossRef]
- Iwanowski, R.; Fronc, K.; Paszkowicz, W.; Heinonen, M. XPS and XRD study of crystalline 3C-SiC grown by sublimation method. J. Alloys Compd. 1999, 286, 143–147. [Google Scholar] [CrossRef]
- Hall, W.H. X-ray line broadening in metals. Proc. Phys. Soc. Sect. A 1949, 62, 741–743. [Google Scholar] [CrossRef]
- Wu, R.; Zhou, K.; Yue, C.Y.; Wei, J.; Pan, Y. Recent progress in synthesis, properties and potential applications of SiC nanomaterials. Prog. Mater. Sci. 2015, 72, 1–60. [Google Scholar] [CrossRef] [Green Version]
- Gao, L.; Zhong, H.; Chen, Q. Synthesis of 3C–SiC nanowires by reaction of poly (ethylene terephthalate) waste with SiO2 microspheres. J. Alloys Compd. 2013, 566, 212–216. [Google Scholar] [CrossRef]
- Noda, S.; Fujita, M.; Asano, T. Spontaneous-emission control by photonic crystals and nanocavities. Nat. Photonics 2007, 1, 449–458. [Google Scholar] [CrossRef]
- Polman, A. Erbium implanted thin film photonic materials. J. Appl. Phys. 1997, 82, 1–39. [Google Scholar] [CrossRef]
- Nikas, V.; Gallis, S.; Huang, M.; Kaloyeros, A.E. Thermal annealing effects on photoluminescence properties of carbon-doped silicon-rich oxide thin films implanted with erbium. J. Appl. Phys. 2011, 109, 093521. [Google Scholar] [CrossRef]
- Tabassum, N.; Nikas, V.; Ford, B.; Crawford, E.; Gallis, S. Engineering Er3+ placement and emission through chemically-synthesized self-aligned SiC: Ox nanowire photonic crystal structures. arXiv, 2017; arXiv:1707.05738. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tabassum, N.; Kotha, M.; Kaushik, V.; Ford, B.; Dey, S.; Crawford, E.; Nikas, V.; Gallis, S. On-Demand CMOS-Compatible Fabrication of Ultrathin Self-Aligned SiC Nanowire Arrays. Nanomaterials 2018, 8, 906. https://doi.org/10.3390/nano8110906
Tabassum N, Kotha M, Kaushik V, Ford B, Dey S, Crawford E, Nikas V, Gallis S. On-Demand CMOS-Compatible Fabrication of Ultrathin Self-Aligned SiC Nanowire Arrays. Nanomaterials. 2018; 8(11):906. https://doi.org/10.3390/nano8110906
Chicago/Turabian StyleTabassum, Natasha, Mounika Kotha, Vidya Kaushik, Brian Ford, Sonal Dey, Edward Crawford, Vasileios Nikas, and Spyros Gallis. 2018. "On-Demand CMOS-Compatible Fabrication of Ultrathin Self-Aligned SiC Nanowire Arrays" Nanomaterials 8, no. 11: 906. https://doi.org/10.3390/nano8110906
APA StyleTabassum, N., Kotha, M., Kaushik, V., Ford, B., Dey, S., Crawford, E., Nikas, V., & Gallis, S. (2018). On-Demand CMOS-Compatible Fabrication of Ultrathin Self-Aligned SiC Nanowire Arrays. Nanomaterials, 8(11), 906. https://doi.org/10.3390/nano8110906